organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzoyl-3-(naphthalen-1-yl)thio­urea

aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: sohail262001@yahoo.com

(Received 25 October 2011; accepted 31 October 2011; online 5 November 2011)

In the title compound, C18H14N2OS, the dihedral angle between the mean planes of the 3-naphthyl and 1-benzoyl rings is 20.7 (1)°. The crystal packing is stabilized by weak N—H⋯S inter­actions. Intra­molecular N—H⋯O and C—H⋯O hydrogen bonding is also observed.

Related literature

For the biological activity of thio­urea in medicinal chemistry, see: Saeed et al. (2009[Saeed, S., Rashid, N., Tahir, A. & Jones, P. G. (2009). Acta Cryst. E65, o1870-o1871.], 2010a[Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010a). Eur. J. Med. Chem. 45, 1323-1331.],b[Saeed, S., Rashid, N., Hussain, R., Jones, P. G. & Bhatti, M. H. (2010b). Cent. Eur. J. Chem. 8, 550-558.]); Maddani & Prabhu (2010[Maddani, M. R. & Prabhu, K. R. (2010). J. Org. Chem. 75, 2327-2332.]). For the use of thio­urea derivatives in organocatalysis, see: Jung & Kim (2008[Jung, S. H. & Kim, D. Y. (2008). Tetrahedron Lett. 49, 5527-5530.]) and for their use as curing agents for ep­oxy resins, see: Saeed et al. (2011[Saeed, S., Rashid, N., Hussain, R. & Jones, P. G. (2011). Eur. J. Chem. 2, 77-82.]). For the use of thio­ureas as ligands in coordination chemistry, see: Burrows et al. (1999[Burrows, A. D., Colman, M. D. & Mahon, M. F. (1999). Polyhedron, 18, 2665-2671.]); Henderson et al. (2002[Henderson, W., Nicholson, B. K., Dinger, M. B. & Bennett, R. L. (2002). Inorg. Chim. Acta, 338, 210-218.]); Schuster et al. (1990[Schuster, M., Kugler, B. & Konig, K. H. (1990). Fresenius J. Anal. Chem. 338, 717-720.]). For the pesticidal activity of acyl thio­ureas, see: Che et al. (1999[Che, D.-J., Li, G., Yao, X.-L., Wu, Q.-J., Wang, W.-L. & Zhu, Y. (1999). J. Organomet. Chem. 584, 190-196.]). For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N2OS

  • Mr = 306.37

  • Monoclinic, P 21 /n

  • a = 9.7368 (14) Å

  • b = 5.2256 (10) Å

  • c = 28.619 (4) Å

  • β = 92.126 (12)°

  • V = 1455.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 K

  • 0.35 × 0.08 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.925, Tmax = 0.982

  • 12731 measured reflections

  • 3460 independent reflections

  • 2206 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.135

  • S = 1.05

  • 3460 reflections

  • 205 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 (2) 1.85 (2) 2.600 (3) 144 (2)
N1—H1⋯S1i 0.86 (2) 2.80 (2) 3.591 (2) 153 (2)
C15—H15A⋯O1 0.95 2.51 3.411 (3) 159
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thioureas are the subject of significant interest because of their usefulness in medicinal chemistry due to their biological activity as fungicides (Saeed et al., 2010a), anticancer (Saeed et al., 2010b),herbicides, rodenticides and phenoloxidase enzymatic inhibitors (Maddani & Prabhu, 2010). Recently, thiourea derivatives have found use in organocatalysis (Jung & Kim, 2008). Amino-thiourea derivatives (Saeed et al., 2009) and their transition metal complexes are used as curing agents for epoxy resins (Saeed et al., 2011). Thioureas have a long history as a ligand in coordination chemistry and coordinate readily to a metal via sulfur and oxygen (Burrows et al., 1999). These hard and soft donor atoms provide a multitude of bonding possibilities (Henderson et al., 2002). Hydrogen bonding behavior of some thioureas have been investigated and it is found that intramolecular hydrogen bonds between the carbonyl oxygen and a nitrogen atom is common. The complexing capacity of thiourea derivatives has been reported (Schuster et al., 1990). Also, some acyl thioureas have been found to possess pesticidal activities and promote plant growth while others have been shown to have a notable positive effect on the germination of maize seeds and on the chlorophyll contents in seedling leaves (Che et al., 1999). With the simultaneous presence of S, N and O electron donors, the versalitility and behavior of acylthioureas as building blocks in polydentate ligands for metal ions have become a recent topic of interest. Substituted acylthiourea ligands might act as monodentate sulfur donors, bidentate oxygen and nitrogen donors. In continuation of our research program concerned with structural modification of biologically active thiourea derivatives and their transition metal complexes, we aim to incorporate the aliphatic and aromatic moieties in the substituted phenyl nucleus with thiourea functionality to obtain new functions in an attempt to improve the antimicrobial profile of these compounds. In view of the importance of thiourea derivatives, the crystal structure of the title compound, C18H14N2OS, (I), is reported.

In the title compound, (I), the dihedral angle between the mean planes of the 3-naphthyl and 1-benzoyl rings is 20.7 (1)° (Fig. 1). Crystal packing is stabilized by weak N1—H1···S1 intermolecular interactions (Table 1, Fig. 2). N2—H2···O1 intramolecular hydrogen bonds are also observed (Table 1).

Related literature top

For the biological activity of thiourea in medicinal chemistry, see: Saeed et al. (2009, 2010a,b); Maddani & Prabhu (2010). For the use of thiourea derivatives in organocatalysis, see: Jung & Kim (2008) and for their use as curing agents for epoxy resins, see: Saeed et al. (2011). For the use of thioureas as a ligand in coordination chemistry, see: Burrows et al. (1999); Henderson et al. (2002); Schuster et al. (1990). For the pesticidal activity of acyl thioureas, see: Che et al. (1999). For standard bond lengths, see Allen et al. (1987).

Experimental top

A solution of benzoyl chloride (0.01 mol) in anhydrous acetone (80 ml) and 3% tetrabutylammonium bromide (TBAB) as a phase-transfer catalyst (PTC) in anhydrous acetone was added dropwise to a suspension of dry ammonium thiocyanate (0.01 mol) in acetone (50 ml) and the reaction mixture was refluxed for 45 min. After cooling to room temperature, a solution of 1-naphthylamine (0.01 mol) in anhydrous acetone (25 ml) was added dropwise and the resulting mixture refluxed for 2.5 h. Hydrochloric acid (0.1 N, 300 ml) was added, and the solution was filtered. The solid product was washed with water and purified by re-crystallization from ethanol.

Refinement top

All H atoms were positioned with idealized geometry using a riding model, [C—H = 0.95Å and Uiso = 1.2Ueq(C,N)]. H(N) positions were refined freely.

Structure description top

Thioureas are the subject of significant interest because of their usefulness in medicinal chemistry due to their biological activity as fungicides (Saeed et al., 2010a), anticancer (Saeed et al., 2010b),herbicides, rodenticides and phenoloxidase enzymatic inhibitors (Maddani & Prabhu, 2010). Recently, thiourea derivatives have found use in organocatalysis (Jung & Kim, 2008). Amino-thiourea derivatives (Saeed et al., 2009) and their transition metal complexes are used as curing agents for epoxy resins (Saeed et al., 2011). Thioureas have a long history as a ligand in coordination chemistry and coordinate readily to a metal via sulfur and oxygen (Burrows et al., 1999). These hard and soft donor atoms provide a multitude of bonding possibilities (Henderson et al., 2002). Hydrogen bonding behavior of some thioureas have been investigated and it is found that intramolecular hydrogen bonds between the carbonyl oxygen and a nitrogen atom is common. The complexing capacity of thiourea derivatives has been reported (Schuster et al., 1990). Also, some acyl thioureas have been found to possess pesticidal activities and promote plant growth while others have been shown to have a notable positive effect on the germination of maize seeds and on the chlorophyll contents in seedling leaves (Che et al., 1999). With the simultaneous presence of S, N and O electron donors, the versalitility and behavior of acylthioureas as building blocks in polydentate ligands for metal ions have become a recent topic of interest. Substituted acylthiourea ligands might act as monodentate sulfur donors, bidentate oxygen and nitrogen donors. In continuation of our research program concerned with structural modification of biologically active thiourea derivatives and their transition metal complexes, we aim to incorporate the aliphatic and aromatic moieties in the substituted phenyl nucleus with thiourea functionality to obtain new functions in an attempt to improve the antimicrobial profile of these compounds. In view of the importance of thiourea derivatives, the crystal structure of the title compound, C18H14N2OS, (I), is reported.

In the title compound, (I), the dihedral angle between the mean planes of the 3-naphthyl and 1-benzoyl rings is 20.7 (1)° (Fig. 1). Crystal packing is stabilized by weak N1—H1···S1 intermolecular interactions (Table 1, Fig. 2). N2—H2···O1 intramolecular hydrogen bonds are also observed (Table 1).

For the biological activity of thiourea in medicinal chemistry, see: Saeed et al. (2009, 2010a,b); Maddani & Prabhu (2010). For the use of thiourea derivatives in organocatalysis, see: Jung & Kim (2008) and for their use as curing agents for epoxy resins, see: Saeed et al. (2011). For the use of thioureas as a ligand in coordination chemistry, see: Burrows et al. (1999); Henderson et al. (2002); Schuster et al. (1990). For the pesticidal activity of acyl thioureas, see: Che et al. (1999). For standard bond lengths, see Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Dashed lines indicate weak N1—H1···S1 intermolecular interactions.
1-Benzoyl-3-(naphthalen-1-yl)thiourea top
Crystal data top
C18H14N2OSF(000) = 640
Mr = 306.37Dx = 1.398 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1307 reflections
a = 9.7368 (14) Åθ = 3.5–32.3°
b = 5.2256 (10) ŵ = 0.23 mm1
c = 28.619 (4) ÅT = 173 K
β = 92.126 (12)°Rod, colourless
V = 1455.2 (4) Å30.35 × 0.08 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3460 independent reflections
Radiation source: Enhance (Mo) X-ray Source2206 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
Detector resolution: 16.1500 pixels mm-1θmax = 27.9°, θmin = 4.0°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 66
Tmin = 0.925, Tmax = 0.982l = 3437
12731 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.1745P]
where P = (Fo2 + 2Fc2)/3
3460 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.25 e Å3
2 restraintsΔρmin = 0.36 e Å3
Crystal data top
C18H14N2OSV = 1455.2 (4) Å3
Mr = 306.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7368 (14) ŵ = 0.23 mm1
b = 5.2256 (10) ÅT = 173 K
c = 28.619 (4) Å0.35 × 0.08 × 0.08 mm
β = 92.126 (12)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3460 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
2206 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.982Rint = 0.082
12731 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0622 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.25 e Å3
3460 reflectionsΔρmin = 0.36 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger..

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.63172 (7)0.32704 (17)0.54848 (3)0.0446 (2)
O10.28206 (18)0.5576 (4)0.63936 (6)0.0395 (5)
N10.4117 (2)0.5657 (4)0.57512 (7)0.0300 (5)
H10.423 (3)0.632 (5)0.5480 (7)0.036*
N20.4889 (2)0.2542 (4)0.62654 (7)0.0280 (5)
H20.421 (2)0.315 (5)0.6413 (9)0.034*
C10.2515 (3)1.0084 (5)0.54374 (9)0.0313 (6)
H1A0.33670.98250.52930.038*
C20.1632 (3)1.1966 (5)0.52738 (10)0.0413 (7)
H2A0.18721.29930.50160.050*
C30.0399 (3)1.2359 (6)0.54847 (11)0.0427 (7)
H3A0.02161.36420.53690.051*
C40.0059 (3)1.0899 (6)0.58617 (10)0.0407 (7)
H4A0.07841.11950.60100.049*
C50.0929 (3)0.9015 (5)0.60260 (10)0.0364 (7)
H5A0.06850.80100.62870.044*
C60.2167 (2)0.8566 (5)0.58122 (8)0.0257 (5)
C70.3049 (2)0.6496 (5)0.60124 (8)0.0272 (6)
C80.5082 (2)0.3745 (5)0.58638 (9)0.0292 (6)
C90.5611 (2)0.0543 (5)0.64982 (9)0.0268 (6)
C100.6612 (2)0.0889 (5)0.62991 (9)0.0331 (6)
H10A0.68760.05260.59900.040*
C110.7248 (3)0.2889 (6)0.65515 (10)0.0395 (7)
H11A0.79640.38330.64150.047*
C120.6859 (3)0.3498 (5)0.69861 (10)0.0379 (7)
H12A0.72890.48900.71470.046*
C130.5827 (2)0.2094 (5)0.72029 (9)0.0297 (6)
C140.5195 (2)0.0002 (5)0.69628 (8)0.0261 (5)
C150.4192 (2)0.1399 (5)0.71991 (9)0.0306 (6)
H15A0.37580.28180.70480.037*
C160.3832 (3)0.0759 (5)0.76395 (9)0.0354 (7)
H16A0.31590.17400.77910.043*
C170.4444 (3)0.1323 (5)0.78703 (9)0.0371 (7)
H17A0.41810.17700.81760.045*
C180.5413 (3)0.2703 (5)0.76558 (9)0.0339 (6)
H18A0.58260.41190.78150.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0376 (4)0.0694 (6)0.0275 (4)0.0166 (4)0.0126 (3)0.0087 (4)
O10.0407 (11)0.0504 (12)0.0283 (11)0.0153 (10)0.0124 (8)0.0099 (9)
N10.0283 (11)0.0381 (13)0.0239 (12)0.0030 (10)0.0044 (9)0.0055 (10)
N20.0248 (11)0.0373 (13)0.0223 (11)0.0044 (10)0.0066 (9)0.0002 (9)
C10.0320 (14)0.0316 (15)0.0304 (15)0.0021 (12)0.0043 (11)0.0020 (12)
C20.0535 (18)0.0349 (16)0.0356 (16)0.0020 (14)0.0032 (14)0.0069 (13)
C30.0403 (16)0.0390 (17)0.0485 (19)0.0075 (14)0.0042 (14)0.0044 (14)
C40.0312 (15)0.0450 (18)0.0460 (18)0.0060 (14)0.0049 (13)0.0053 (14)
C50.0315 (14)0.0396 (17)0.0384 (16)0.0038 (13)0.0063 (12)0.0069 (13)
C60.0249 (13)0.0277 (14)0.0245 (13)0.0005 (11)0.0015 (10)0.0014 (11)
C70.0261 (13)0.0317 (14)0.0241 (13)0.0010 (11)0.0055 (10)0.0017 (11)
C80.0233 (13)0.0381 (16)0.0260 (14)0.0033 (12)0.0009 (10)0.0009 (12)
C90.0237 (12)0.0276 (14)0.0289 (14)0.0001 (11)0.0003 (10)0.0024 (11)
C100.0285 (14)0.0390 (16)0.0319 (15)0.0033 (12)0.0017 (11)0.0021 (12)
C110.0312 (15)0.0408 (17)0.0463 (18)0.0070 (13)0.0002 (13)0.0087 (14)
C120.0376 (15)0.0348 (16)0.0409 (17)0.0019 (13)0.0050 (13)0.0004 (13)
C130.0276 (13)0.0270 (14)0.0340 (15)0.0040 (11)0.0040 (11)0.0003 (11)
C140.0258 (13)0.0260 (13)0.0263 (14)0.0058 (11)0.0010 (10)0.0011 (10)
C150.0305 (14)0.0312 (14)0.0301 (14)0.0025 (12)0.0022 (11)0.0024 (11)
C160.0394 (15)0.0372 (16)0.0302 (15)0.0005 (13)0.0074 (12)0.0024 (12)
C170.0410 (16)0.0426 (17)0.0279 (15)0.0078 (14)0.0029 (12)0.0076 (13)
C180.0381 (15)0.0286 (14)0.0342 (15)0.0080 (13)0.0083 (12)0.0053 (12)
Geometric parameters (Å, º) top
S1—C81.667 (2)C6—C71.483 (3)
O1—C71.220 (3)C9—C101.370 (3)
N1—C71.375 (3)C9—C141.433 (3)
N1—C81.401 (3)C10—C111.401 (4)
N1—H10.859 (16)C10—H10A0.9500
N2—C81.329 (3)C11—C121.351 (4)
N2—C91.412 (3)C11—H11A0.9500
N2—H20.861 (16)C12—C131.407 (4)
C1—C21.377 (4)C12—H12A0.9500
C1—C61.386 (3)C13—C181.408 (4)
C1—H1A0.9500C13—C141.419 (3)
C2—C31.379 (4)C14—C151.413 (3)
C2—H2A0.9500C15—C161.362 (3)
C3—C41.372 (4)C15—H15A0.9500
C3—H3A0.9500C16—C171.395 (4)
C4—C51.370 (4)C16—H16A0.9500
C4—H4A0.9500C17—C181.353 (4)
C5—C61.392 (3)C17—H17A0.9500
C5—H5A0.9500C18—H18A0.9500
C7—N1—C8128.1 (2)C10—C9—N2123.9 (2)
C7—N1—H1119.1 (18)C10—C9—C14120.5 (2)
C8—N1—H1112.8 (18)N2—C9—C14115.6 (2)
C8—N2—C9132.4 (2)C9—C10—C11120.0 (3)
C8—N2—H2112.6 (18)C9—C10—H10A120.0
C9—N2—H2115.0 (18)C11—C10—H10A120.0
C2—C1—C6120.3 (2)C12—C11—C10121.1 (3)
C2—C1—H1A119.9C12—C11—H11A119.5
C6—C1—H1A119.9C10—C11—H11A119.5
C1—C2—C3120.1 (3)C11—C12—C13120.8 (3)
C1—C2—H2A120.0C11—C12—H12A119.6
C3—C2—H2A120.0C13—C12—H12A119.6
C4—C3—C2120.0 (3)C12—C13—C18121.4 (2)
C4—C3—H3A120.0C12—C13—C14119.5 (2)
C2—C3—H3A120.0C18—C13—C14119.1 (2)
C5—C4—C3120.4 (3)C15—C14—C13117.5 (2)
C5—C4—H4A119.8C15—C14—C9124.4 (2)
C3—C4—H4A119.8C13—C14—C9118.1 (2)
C4—C5—C6120.3 (3)C16—C15—C14121.4 (2)
C4—C5—H5A119.9C16—C15—H15A119.3
C6—C5—H5A119.9C14—C15—H15A119.3
C1—C6—C5119.0 (2)C15—C16—C17120.7 (3)
C1—C6—C7124.2 (2)C15—C16—H16A119.7
C5—C6—C7116.8 (2)C17—C16—H16A119.7
O1—C7—N1121.8 (2)C18—C17—C16119.6 (3)
O1—C7—C6120.7 (2)C18—C17—H17A120.2
N1—C7—C6117.5 (2)C16—C17—H17A120.2
N2—C8—N1114.9 (2)C17—C18—C13121.7 (3)
N2—C8—S1128.4 (2)C17—C18—H18A119.2
N1—C8—S1116.76 (19)C13—C18—H18A119.2
C6—C1—C2—C30.4 (4)C14—C9—C10—C110.6 (4)
C1—C2—C3—C40.9 (5)C9—C10—C11—C122.2 (4)
C2—C3—C4—C51.1 (5)C10—C11—C12—C131.7 (4)
C3—C4—C5—C60.1 (4)C11—C12—C13—C18179.9 (2)
C2—C1—C6—C51.5 (4)C11—C12—C13—C140.5 (4)
C2—C1—C6—C7180.0 (2)C12—C13—C14—C15178.2 (2)
C4—C5—C6—C11.2 (4)C18—C13—C14—C151.2 (3)
C4—C5—C6—C7179.9 (2)C12—C13—C14—C92.0 (3)
C8—N1—C7—O10.4 (4)C18—C13—C14—C9178.6 (2)
C8—N1—C7—C6180.0 (2)C10—C9—C14—C15178.8 (2)
C1—C6—C7—O1165.4 (3)N2—C9—C14—C153.5 (4)
C5—C6—C7—O113.2 (4)C10—C9—C14—C131.5 (3)
C1—C6—C7—N115.0 (4)N2—C9—C14—C13176.2 (2)
C5—C6—C7—N1166.4 (2)C13—C14—C15—C160.5 (4)
C9—N2—C8—N1179.7 (2)C9—C14—C15—C16179.2 (2)
C9—N2—C8—S10.6 (4)C14—C15—C16—C170.4 (4)
C7—N1—C8—N23.1 (4)C15—C16—C17—C180.7 (4)
C7—N1—C8—S1176.7 (2)C16—C17—C18—C130.0 (4)
C8—N2—C9—C1010.9 (4)C12—C13—C18—C17178.4 (3)
C8—N2—C9—C14171.5 (3)C14—C13—C18—C170.9 (4)
N2—C9—C10—C11178.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.86 (2)1.85 (2)2.600 (3)144 (2)
N1—H1···S1i0.86 (2)2.80 (2)3.591 (2)153 (2)
C15—H15A···O10.952.513.411 (3)159
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H14N2OS
Mr306.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)9.7368 (14), 5.2256 (10), 28.619 (4)
β (°) 92.126 (12)
V3)1455.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.35 × 0.08 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.925, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
12731, 3460, 2206
Rint0.082
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.135, 1.05
No. of reflections3460
No. of parameters205
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.36

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861 (16)1.85 (2)2.600 (3)144 (2)
N1—H1···S1i0.859 (16)2.80 (2)3.591 (2)153 (2)
C15—H15A···O10.952.513.411 (3)158.9
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No·CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBurrows, A. D., Colman, M. D. & Mahon, M. F. (1999). Polyhedron, 18, 2665–2671.  Web of Science CSD CrossRef CAS Google Scholar
First citationChe, D.-J., Li, G., Yao, X.-L., Wu, Q.-J., Wang, W.-L. & Zhu, Y. (1999). J. Organomet. Chem. 584, 190–196.  Web of Science CSD CrossRef CAS Google Scholar
First citationHenderson, W., Nicholson, B. K., Dinger, M. B. & Bennett, R. L. (2002). Inorg. Chim. Acta, 338, 210–218.  Web of Science CSD CrossRef CAS Google Scholar
First citationJung, S. H. & Kim, D. Y. (2008). Tetrahedron Lett. 49, 5527–5530.  Web of Science CrossRef CAS Google Scholar
First citationMaddani, M. R. & Prabhu, K. R. (2010). J. Org. Chem. 75, 2327–2332.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaeed, S., Rashid, N., Hussain, R. & Jones, P. G. (2011). Eur. J. Chem. 2, 77–82.  CSD CrossRef CAS Google Scholar
First citationSaeed, S., Rashid, N., Hussain, R., Jones, P. G. & Bhatti, M. H. (2010b). Cent. Eur. J. Chem. 8, 550–558.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010a). Eur. J. Med. Chem. 45, 1323–1331.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSaeed, S., Rashid, N., Tahir, A. & Jones, P. G. (2009). Acta Cryst. E65, o1870–o1871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchuster, M., Kugler, B. & Konig, K. H. (1990). Fresenius J. Anal. Chem. 338, 717–720.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds