metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­­(2-{[5-(pyridin-4-yl)-1,3,4-oxa­diazol-2-yl]sulfan­yl}acetato)­cobalt(II) monohydrate

aDepartment of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: yangguangrui@ncwu.edu.cn

(Received 8 October 2011; accepted 4 November 2011; online 12 November 2011)

In the title compound, [Co(C9H6N3O3S)2(H2O)4]·H2O, the two 2-{[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]sulfan­yl}acetate ligands are monodentate. One coordinates the metal atom via the pyridyl N atom whereas the other coordinates via the carboxyl­ate O atom. The CoII atom adopts a slightly distorted octa­hedral coordination geometry with four O atoms of the coordinated water mol­ecules located in the equatorial plane and the N and O atoms of the two POA ligands in axial positions. In the crystal, the components are connected through O—H⋯O and O—H⋯N hydrogen bonds into a three-dimensional framework.

Related literature

For metal-assisted transformation of N-benzoyl­dithio­carbazate to 5-phenyl-1,3,4-oxadiazole-2-thiol (pot) in the presence of ethyl­enediamine, and its transition metal complexes, see: Tripathi et al. (2007[Tripathi, P., Pal, A., Jancik, V., Pandey, A. K., Singh, J. & Singh, N. K. (2007). Polyhedron, 26, 2597-2602.]). For zinc and cadmium metal-organic polymers formed with 5-(4-pyrid­yl)-1,3,4-oxadiazole-2-thiol, see: Du et al. (2006[Du, M., Zhang, Z. H., Zhao, X.-J. & Xu, Q. (2006). Inorg. Chem. 45, 5785-5792.]). For the synthesis of 5-(4-pyrid­yl)-1,3,4-oxadiazole-2-thiol, see: Young & Wood (1955[Young, R. W. & Wood, K. H. (1955). J. Am. Chem. Soc. 77, 400-403.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C9H6N3O3S)2(H2O)4]·H2O

  • Mr = 621.47

  • Triclinic, [P \overline 1]

  • a = 7.393 (4) Å

  • b = 11.122 (6) Å

  • c = 16.014 (8) Å

  • α = 103.904 (6)°

  • β = 96.040 (6)°

  • γ = 103.017 (6)°

  • V = 1227.5 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 293 K

  • 0.40 × 0.25 × 0.15 mm

Data collection
  • Siemens SMART CCD diffractometer

  • 8804 measured reflections

  • 4234 independent reflections

  • 2975 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.182

  • S = 1.00

  • 4234 reflections

  • 373 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.51 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O8 2.074 (4)
Co1—O9 2.080 (4)
Co1—O10 2.083 (4)
Co1—O1 2.107 (3)
Co1—O7 2.135 (4)
Co1—N4 2.164 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10B⋯O2 0.84 (1) 1.77 (1) 2.608 (5) 172 (6)
O11—H11D⋯O7 0.88 (1) 2.04 (1) 2.886 (5) 163 (2)
O10—H10A⋯O11i 0.84 (1) 1.97 (1) 2.810 (6) 178 (6)
O7—H7A⋯O5ii 0.84 (1) 1.94 (2) 2.741 (5) 160 (5)
O8—H8A⋯O4ii 0.84 (1) 1.93 (2) 2.767 (5) 172 (6)
O9—H9B⋯O11iii 0.84 (1) 1.96 (1) 2.793 (5) 174 (6)
O7—H7B⋯O4iv 0.84 (1) 1.97 (3) 2.762 (5) 156 (6)
O8—H8B⋯O1v 0.84 (1) 1.87 (2) 2.677 (5) 163 (6)
O9—H9A⋯O5vi 0.84 (1) 1.93 (2) 2.761 (5) 170 (5)
O11—H11C⋯N3vii 0.83 (1) 1.98 (2) 2.785 (6) 165 (5)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+2; (iii) x+1, y, z; (iv) x, y, z-1; (v) -x+2, -y+1, -z+1; (vi) -x+2, -y+1, -z+2; (vii) -x+1, -y, -z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1994[Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, pyridyl-containing 1,3,4-oxadiazole-2-thiones have been systematically explored as promising bridging ligands in coordination chemistry (Du et al., 2006; Tripathi et al., 2007). Our contribution to these studies is synthesis of the multifunctional ligand ,{[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]sulfanyl}acetic acid (HPOA), and reported herein structure of a new complex [Co(POA)2(H2O)4].H2O (I).

As shown in Fig. 1 (I) is a mononuclear complex. The asymmetric unit consists of the complex molecule and one water of crystallization. In (I) the CoII center is ligated by four O atoms from four water molecules located in the equatorial plane, and two monodentate POA anions. One POA anion coordinates the metal center via the pyridyl N atom whereas the other via the carboxylate O atom. The CoII ion is in a slightly distorted octahedral coordination environement with the in-plane and axial-trans angles being 175.09 (15), 177.66 (14) and 178.54 (13)°, and the bond distances Co—O and Co—N ranging from 2.074 (4) to 2.164 (4) Å.

In (I) the hydrogen-bonding interactions result in a 3D supramolecular network as shown in Fig. 2. The 3D hydrogen-bonded network is stabilized through the intermolecular π···π interactions with a center-to-center distance of pyridyl groups being 3.662 Å and a center-to-center distance of oxadiazole groups being 3.375 Å, respectively. There are complicated hydrogen-bonding system in (I): each coordination water molecule forms two O—H···O hydrogen bonds while every uncoordinated carboxyl group of POA in one monomer adopts bridging and chelating coordination modes to links with two other monomers through the formed three O—H···O hydrogen bonds, and especially the lattice water O11 acting as a tetrahedral hydrogen-bonding connector binds with four monomers (1) through three O···O hydrogen bonds and one O···N hydrogen bond. In this way monomers of (I) are linked into the 3D supramolecular architecture.

Related literature top

For metal-assited transformation of N-benzoyldithiocarbazate to 5-phenyl-1,3,4-oxadiazole-2-thiol (pot) in the presence of ethylenediamine, and its transition metal complexes, see: Tripathi et al. (2007). For zinc(II) and cadmium(II) metal-organic polymers formed with 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol, see: Du et al. (2006). For the synthesis of 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol, see: Young & Wood (1955).

Experimental top

The sodium salt of 2-(5-(pyridin-4-yl)-1,3,4-oxadiazol-2-ylthio)acetic acid (HPOA) was synthesized in the following process. To a solution of sodium hydroxide (1.60 g, 40 mmol) and 95% alcohol (50 mL) was added 5-pyridyl-2-mercapto-1,3,4-oxadiazole (3.58 g, 20 mmol) and the resulting mixture was refluxed for half an hour. And then a solution of chloroactic acid (1.89 g, 20 mmol) and 95% alcohol (70 mL) was dropwise added to the mixture with continuous refluxing for 3 hours. Pale yellow precipitate was filtered. After recrystallized from alcohol/water (2:1), the obtained pure product was 2.76 g. Yield: 51%. Selected IR (cm-1, KBr pellet): 3489(w), 1598(s),

1464(m), 1402(s), 1220(m), 1190(m), 1084(m), 909(m), 835(m), 704(w), 519(m).

The title compound (1), was prepared according to the following process. A mixture of NaPOA (51.8 mg, 0.2 mmol), CoCl2.6H2O (23.8 mg, 0.1 mmol) and deionized water (20 ml) was stirred for 30 minutes and then filtered. The filtrate was allowed to evaporate at room temperature for a week, and then red block crystals were obtain in 57% yield. Selected IR (cm-1, KBr pellet): 3228(m), 1571(s), 1496(m), 1449(s), 142(m), 1390(s), 1226(s), 1197(m), 1062(m), 1004(s), 873(w), 841(m), 800(w), 710(s), 584(w), 523(w).

Refinement top

The H atoms of water molecules were located from difference Fourier maps and refined with restraints imposed on O-H and H···H distances and with Uiso(H) = 1.5Ueq(O). The remaining hydrogen atom positions were generated geometrically. All H atoms were allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C).

Structure description top

Recently, pyridyl-containing 1,3,4-oxadiazole-2-thiones have been systematically explored as promising bridging ligands in coordination chemistry (Du et al., 2006; Tripathi et al., 2007). Our contribution to these studies is synthesis of the multifunctional ligand ,{[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]sulfanyl}acetic acid (HPOA), and reported herein structure of a new complex [Co(POA)2(H2O)4].H2O (I).

As shown in Fig. 1 (I) is a mononuclear complex. The asymmetric unit consists of the complex molecule and one water of crystallization. In (I) the CoII center is ligated by four O atoms from four water molecules located in the equatorial plane, and two monodentate POA anions. One POA anion coordinates the metal center via the pyridyl N atom whereas the other via the carboxylate O atom. The CoII ion is in a slightly distorted octahedral coordination environement with the in-plane and axial-trans angles being 175.09 (15), 177.66 (14) and 178.54 (13)°, and the bond distances Co—O and Co—N ranging from 2.074 (4) to 2.164 (4) Å.

In (I) the hydrogen-bonding interactions result in a 3D supramolecular network as shown in Fig. 2. The 3D hydrogen-bonded network is stabilized through the intermolecular π···π interactions with a center-to-center distance of pyridyl groups being 3.662 Å and a center-to-center distance of oxadiazole groups being 3.375 Å, respectively. There are complicated hydrogen-bonding system in (I): each coordination water molecule forms two O—H···O hydrogen bonds while every uncoordinated carboxyl group of POA in one monomer adopts bridging and chelating coordination modes to links with two other monomers through the formed three O—H···O hydrogen bonds, and especially the lattice water O11 acting as a tetrahedral hydrogen-bonding connector binds with four monomers (1) through three O···O hydrogen bonds and one O···N hydrogen bond. In this way monomers of (I) are linked into the 3D supramolecular architecture.

For metal-assited transformation of N-benzoyldithiocarbazate to 5-phenyl-1,3,4-oxadiazole-2-thiol (pot) in the presence of ethylenediamine, and its transition metal complexes, see: Tripathi et al. (2007). For zinc(II) and cadmium(II) metal-organic polymers formed with 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol, see: Du et al. (2006). For the synthesis of 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol, see: Young & Wood (1955).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of of the title compound with 30% probability ellipsoids for all non-hydrogen atoms.
[Figure 2] Fig. 2. A complicated hydrogen-bond network in the title compound (1).
Tetraaquabis(2-{[5-(pyridin-4-yl)-1,3,4-oxadiazol-2- yl]sulfanyl}acetato)cobalt(II) monohydrate top
Crystal data top
[Co(C9H6N3O3S)2(H2O)4]·H2OZ = 2
Mr = 621.47F(000) = 638
Triclinic, P1Dx = 1.681 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.393 (4) ÅCell parameters from 2275 reflections
b = 11.122 (6) Åθ = 2.7–25.1°
c = 16.014 (8) ŵ = 0.94 mm1
α = 103.904 (6)°T = 293 K
β = 96.040 (6)°Block, red
γ = 103.017 (6)°0.40 × 0.25 × 0.15 mm
V = 1227.5 (11) Å3
Data collection top
Siemens SMART CCD
diffractometer
2975 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 25.0°, θmin = 2.7°
ω scanh = 88
8804 measured reflectionsk = 1313
4234 independent reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.1108P)2]
where P = (Fo2 + 2Fc2)/3
4234 reflections(Δ/σ)max < 0.001
373 parametersΔρmax = 1.51 e Å3
14 restraintsΔρmin = 0.82 e Å3
Crystal data top
[Co(C9H6N3O3S)2(H2O)4]·H2Oγ = 103.017 (6)°
Mr = 621.47V = 1227.5 (11) Å3
Triclinic, P1Z = 2
a = 7.393 (4) ÅMo Kα radiation
b = 11.122 (6) ŵ = 0.94 mm1
c = 16.014 (8) ÅT = 293 K
α = 103.904 (6)°0.40 × 0.25 × 0.15 mm
β = 96.040 (6)°
Data collection top
Siemens SMART CCD
diffractometer
2975 reflections with I > 2σ(I)
8804 measured reflectionsRint = 0.056
4234 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06514 restraints
wR(F2) = 0.182H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 1.51 e Å3
4234 reflectionsΔρmin = 0.82 e Å3
373 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.78325 (9)0.30500 (6)0.54979 (4)0.0341 (2)
S10.75640 (19)0.10713 (12)0.18118 (8)0.0428 (4)
S20.63708 (19)0.46656 (12)1.16857 (8)0.0440 (4)
O10.8385 (5)0.3050 (3)0.4234 (2)0.0402 (8)
O20.6631 (6)0.1130 (3)0.3422 (2)0.0572 (10)
O30.8313 (5)0.0864 (3)0.0228 (2)0.0405 (8)
O40.3915 (5)0.3743 (3)1.3574 (2)0.0462 (9)
O50.6136 (5)0.5403 (3)1.3476 (2)0.0497 (9)
O60.6559 (5)0.4033 (3)0.9999 (2)0.0424 (8)
O70.5077 (5)0.3243 (3)0.5123 (2)0.0389 (8)
O80.8788 (5)0.5034 (3)0.5868 (2)0.0457 (9)
O91.0481 (5)0.2784 (4)0.5833 (3)0.0483 (9)
O100.6705 (5)0.1073 (3)0.5044 (2)0.0452 (9)
O110.1925 (6)0.1010 (4)0.4736 (2)0.0570 (10)
N10.9855 (6)0.2754 (4)0.1118 (3)0.0473 (11)
N21.0274 (6)0.2712 (4)0.0278 (3)0.0481 (11)
N30.8966 (6)0.0086 (4)0.2939 (3)0.0492 (11)
N40.7224 (5)0.3085 (4)0.6795 (3)0.0362 (9)
N50.4802 (7)0.2040 (4)0.9494 (3)0.0505 (12)
N60.4768 (6)0.2448 (4)1.0384 (3)0.0487 (11)
C10.7812 (6)0.2151 (4)0.3525 (3)0.0350 (11)
C20.8695 (7)0.2403 (5)0.2745 (3)0.0399 (12)
H2A1.00650.24790.28560.048*
H2B0.85080.32110.26410.048*
C30.8697 (7)0.1655 (5)0.1053 (3)0.0363 (11)
C40.9354 (7)0.1611 (4)0.0218 (3)0.0370 (11)
C50.9225 (7)0.1068 (5)0.1155 (3)0.0379 (11)
C60.7994 (7)0.0095 (5)0.1589 (3)0.0436 (12)
H60.72210.05810.12850.052*
C70.7907 (7)0.0541 (5)0.2484 (3)0.0445 (12)
H70.70410.13390.27850.053*
C81.0126 (8)0.1215 (5)0.2516 (3)0.0477 (13)
H81.08510.16860.28450.057*
C91.0345 (7)0.1750 (5)0.1624 (3)0.0425 (12)
H91.12240.25510.13430.051*
C100.4996 (7)0.4344 (5)1.3167 (3)0.0376 (11)
C110.4767 (7)0.3688 (5)1.2190 (3)0.0377 (11)
H11A0.34550.35581.19080.045*
H11B0.50320.28371.21080.045*
C120.5816 (7)0.3609 (5)1.0651 (3)0.0381 (11)
C130.5860 (7)0.2988 (5)0.9296 (3)0.0391 (12)
C140.6358 (6)0.3042 (4)0.8441 (3)0.0332 (10)
C150.5456 (7)0.2050 (5)0.7710 (3)0.0412 (12)
H150.45290.13370.77600.049*
C160.5918 (7)0.2109 (5)0.6909 (3)0.0405 (12)
H160.52830.14260.64120.049*
C170.8101 (7)0.4028 (5)0.7512 (3)0.0398 (12)
H170.90440.47190.74460.048*
C180.7718 (7)0.4056 (5)0.8338 (3)0.0408 (12)
H180.83690.47530.88260.049*
H7B0.503 (8)0.355 (5)0.469 (2)0.061*
H7A0.471 (8)0.379 (4)0.548 (3)0.061*
H8A0.793 (6)0.540 (5)0.599 (4)0.061*
H9B1.087 (8)0.226 (4)0.547 (3)0.061*
H9A1.144 (5)0.340 (3)0.604 (4)0.061*
H8B0.966 (5)0.554 (4)0.573 (4)0.061*
H10A0.709 (8)0.044 (4)0.512 (4)0.061*
H11C0.163 (6)0.082 (5)0.4196 (8)0.061*
H10B0.657 (8)0.105 (6)0.4512 (12)0.061*
H11D0.3009 (12)0.1571 (12)0.481 (3)0.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0346 (4)0.0291 (4)0.0268 (4)0.0062 (3)0.0043 (3)0.0008 (3)
S10.0500 (8)0.0355 (7)0.0281 (6)0.0053 (6)0.0019 (6)0.0019 (5)
S20.0508 (8)0.0391 (7)0.0300 (7)0.0028 (6)0.0082 (6)0.0001 (5)
O10.044 (2)0.0313 (17)0.0313 (18)0.0080 (16)0.0090 (15)0.0019 (14)
O20.064 (2)0.044 (2)0.035 (2)0.025 (2)0.0006 (18)0.0034 (16)
O30.049 (2)0.0304 (18)0.0276 (17)0.0054 (16)0.0009 (15)0.0017 (14)
O40.057 (2)0.043 (2)0.0319 (18)0.0023 (18)0.0133 (17)0.0046 (16)
O50.045 (2)0.046 (2)0.0345 (19)0.0126 (18)0.0057 (16)0.0090 (16)
O60.052 (2)0.0395 (19)0.0273 (18)0.0007 (17)0.0102 (16)0.0036 (15)
O70.040 (2)0.039 (2)0.0289 (18)0.0010 (16)0.0042 (15)0.0029 (15)
O80.045 (2)0.0286 (19)0.052 (2)0.0057 (16)0.0163 (19)0.0014 (17)
O90.036 (2)0.045 (2)0.048 (2)0.0013 (17)0.0039 (17)0.0032 (18)
O100.058 (2)0.0292 (18)0.038 (2)0.0055 (17)0.0087 (18)0.0054 (17)
O110.062 (2)0.051 (2)0.040 (2)0.005 (2)0.0034 (19)0.0016 (18)
N10.051 (3)0.041 (2)0.035 (2)0.004 (2)0.008 (2)0.0046 (19)
N20.053 (3)0.042 (3)0.033 (2)0.005 (2)0.007 (2)0.002 (2)
N30.054 (3)0.049 (3)0.035 (2)0.002 (2)0.003 (2)0.005 (2)
N40.036 (2)0.031 (2)0.033 (2)0.0024 (18)0.0025 (17)0.0020 (17)
N50.060 (3)0.048 (3)0.031 (2)0.005 (2)0.010 (2)0.003 (2)
N60.056 (3)0.049 (3)0.031 (2)0.002 (2)0.013 (2)0.006 (2)
C10.033 (3)0.031 (3)0.029 (2)0.004 (2)0.001 (2)0.000 (2)
C20.046 (3)0.034 (3)0.027 (2)0.004 (2)0.006 (2)0.002 (2)
C30.038 (3)0.036 (3)0.024 (2)0.004 (2)0.000 (2)0.005 (2)
C40.035 (3)0.030 (3)0.039 (3)0.003 (2)0.003 (2)0.002 (2)
C50.040 (3)0.033 (3)0.035 (3)0.008 (2)0.001 (2)0.004 (2)
C60.048 (3)0.040 (3)0.033 (3)0.000 (3)0.004 (2)0.004 (2)
C70.040 (3)0.043 (3)0.038 (3)0.000 (2)0.001 (2)0.001 (2)
C80.051 (3)0.053 (3)0.036 (3)0.008 (3)0.007 (2)0.012 (3)
C90.044 (3)0.033 (3)0.041 (3)0.001 (2)0.001 (2)0.003 (2)
C100.042 (3)0.040 (3)0.027 (2)0.011 (2)0.004 (2)0.002 (2)
C110.039 (3)0.034 (3)0.029 (2)0.001 (2)0.003 (2)0.001 (2)
C120.040 (3)0.039 (3)0.029 (3)0.006 (2)0.003 (2)0.003 (2)
C130.046 (3)0.036 (3)0.028 (3)0.005 (2)0.006 (2)0.000 (2)
C140.036 (3)0.032 (2)0.030 (2)0.005 (2)0.008 (2)0.006 (2)
C150.045 (3)0.035 (3)0.033 (3)0.006 (2)0.008 (2)0.004 (2)
C160.046 (3)0.034 (3)0.028 (2)0.005 (2)0.003 (2)0.001 (2)
C170.041 (3)0.035 (3)0.032 (3)0.007 (2)0.006 (2)0.003 (2)
C180.044 (3)0.035 (3)0.028 (2)0.006 (2)0.001 (2)0.004 (2)
Geometric parameters (Å, º) top
Co1—O82.074 (4)N3—C71.322 (7)
Co1—O92.080 (4)N3—C81.325 (7)
Co1—O102.083 (4)N4—C171.340 (6)
Co1—O12.107 (3)N4—C161.343 (6)
Co1—O72.135 (4)N5—C131.291 (6)
Co1—N42.164 (4)N5—N61.394 (6)
S1—C31.718 (5)N6—C121.290 (7)
S1—C21.800 (5)C1—C21.525 (6)
S2—C121.732 (5)C2—H2A0.9900
S2—C111.812 (5)C2—H2B0.9900
O1—C11.277 (5)C4—C51.461 (7)
O2—C11.229 (6)C5—C61.375 (7)
O3—C31.359 (5)C5—C91.396 (7)
O3—C41.381 (6)C6—C71.389 (7)
O4—C101.261 (6)C6—H60.9500
O5—C101.236 (6)C7—H70.9500
O6—C121.361 (6)C8—C91.386 (7)
O6—C131.365 (6)C8—H80.9500
O7—H7B0.841 (10)C9—H90.9500
O7—H7A0.843 (10)C10—C111.532 (6)
O8—H8A0.839 (10)C11—H11A0.9900
O8—H8B0.837 (10)C11—H11B0.9900
O9—H9B0.840 (10)C13—C141.466 (6)
O9—H9A0.838 (11)C14—C151.385 (7)
O10—H10A0.842 (7)C14—C181.388 (7)
O10—H10B0.841 (10)C15—C161.373 (7)
O11—H11C0.831 (10)C15—H150.9500
O11—H11D0.875 (8)C16—H160.9500
N1—C31.298 (6)C17—C181.377 (6)
N1—N21.404 (6)C17—H170.9500
N2—C41.280 (6)C18—H180.9500
O8—Co1—O993.76 (15)N1—C3—S1131.2 (4)
O8—Co1—O10175.09 (15)O3—C3—S1116.2 (3)
O9—Co1—O1090.39 (15)N2—C4—O3112.4 (4)
O8—Co1—O188.89 (13)N2—C4—C5130.1 (5)
O9—Co1—O190.15 (14)O3—C4—C5117.5 (4)
O10—Co1—O188.47 (13)C6—C5—C9119.1 (5)
O8—Co1—O788.48 (14)C6—C5—C4121.3 (5)
O9—Co1—O7177.66 (14)C9—C5—C4119.6 (5)
O10—Co1—O787.35 (15)C5—C6—C7118.3 (5)
O1—Co1—O789.22 (13)C5—C6—H6120.8
O8—Co1—N490.21 (14)C7—C6—H6120.8
O9—Co1—N491.06 (15)N3—C7—C6123.4 (5)
O10—Co1—N492.35 (14)N3—C7—H7118.3
O1—Co1—N4178.54 (13)C6—C7—H7118.3
O7—Co1—N489.61 (14)N3—C8—C9123.9 (5)
C3—S1—C297.1 (2)N3—C8—H8118.1
C12—S2—C1196.7 (2)C9—C8—H8118.1
C1—O1—Co1128.8 (3)C8—C9—C5117.4 (5)
C3—O3—C4102.2 (4)C8—C9—H9121.3
C12—O6—C13102.0 (4)C5—C9—H9121.3
Co1—O7—H7B111 (4)O5—C10—O4126.2 (5)
Co1—O7—H7A116 (4)O5—C10—C11118.9 (4)
H7B—O7—H7A99 (5)O4—C10—C11114.8 (4)
Co1—O8—H8A113 (4)C10—C11—S2110.1 (3)
Co1—O8—H8B132 (4)C10—C11—H11A109.6
H8A—O8—H8B109 (5)S2—C11—H11A109.6
Co1—O9—H9B119 (4)C10—C11—H11B109.6
Co1—O9—H9A122 (4)S2—C11—H11B109.6
H9B—O9—H9A103 (6)H11A—C11—H11B108.2
Co1—O10—H10A133 (4)N6—C12—O6112.9 (4)
Co1—O10—H10B95 (4)N6—C12—S2129.8 (4)
H10A—O10—H10B110 (6)O6—C12—S2117.4 (4)
H11C—O11—H11D100.1 (15)N5—C13—O6112.5 (4)
C3—N1—N2106.1 (4)N5—C13—C14127.9 (4)
C4—N2—N1106.7 (4)O6—C13—C14119.6 (4)
C7—N3—C8117.7 (5)C15—C14—C18118.5 (4)
C17—N4—C16116.7 (4)C15—C14—C13119.4 (4)
C17—N4—Co1123.8 (3)C18—C14—C13122.1 (4)
C16—N4—Co1119.5 (3)C16—C15—C14119.2 (4)
C13—N5—N6106.5 (4)C16—C15—H15120.4
C12—N6—N5106.1 (4)C14—C15—H15120.4
O2—C1—O1126.2 (4)N4—C16—C15123.3 (4)
O2—C1—C2118.4 (4)N4—C16—H16118.4
O1—C1—C2115.3 (4)C15—C16—H16118.4
C1—C2—S1107.5 (3)N4—C17—C18124.1 (4)
C1—C2—H2A110.2N4—C17—H17118.0
S1—C2—H2A110.2C18—C17—H17118.0
C1—C2—H2B110.2C17—C18—C14118.3 (4)
S1—C2—H2B110.2C17—C18—H18120.9
H2A—C2—H2B108.5C14—C18—H18120.9
N1—C3—O3112.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10B···O20.84 (1)1.77 (1)2.608 (5)172 (6)
O11—H11D···O70.88 (1)2.04 (1)2.886 (5)163 (2)
O10—H10A···O11i0.84 (1)1.97 (1)2.810 (6)178 (6)
O7—H7A···O5ii0.84 (1)1.94 (2)2.741 (5)160 (5)
O8—H8A···O4ii0.84 (1)1.93 (2)2.767 (5)172 (6)
O9—H9B···O11iii0.84 (1)1.96 (1)2.793 (5)174 (6)
O7—H7B···O4iv0.84 (1)1.97 (3)2.762 (5)156 (6)
O8—H8B···O1v0.84 (1)1.87 (2)2.677 (5)163 (6)
O9—H9A···O5vi0.84 (1)1.93 (2)2.761 (5)170 (5)
O11—H11C···N3vii0.83 (1)1.98 (2)2.785 (6)165 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+2; (iii) x+1, y, z; (iv) x, y, z1; (v) x+2, y+1, z+1; (vi) x+2, y+1, z+2; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C9H6N3O3S)2(H2O)4]·H2O
Mr621.47
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.393 (4), 11.122 (6), 16.014 (8)
α, β, γ (°)103.904 (6), 96.040 (6), 103.017 (6)
V3)1227.5 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.40 × 0.25 × 0.15
Data collection
DiffractometerSiemens SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8804, 4234, 2975
Rint0.056
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.182, 1.00
No. of reflections4234
No. of parameters373
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.51, 0.82

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O82.074 (4)Co1—O12.107 (3)
Co1—O92.080 (4)Co1—O72.135 (4)
Co1—O102.083 (4)Co1—N42.164 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10B···O20.841 (10)1.773 (14)2.608 (5)172 (6)
O11—H11D···O70.875 (8)2.039 (8)2.886 (5)163 (2)
O10—H10A···O11i0.842 (7)1.968 (10)2.810 (6)178 (6)
O7—H7A···O5ii0.843 (10)1.94 (2)2.741 (5)160 (5)
O8—H8A···O4ii0.839 (10)1.933 (15)2.767 (5)172 (6)
O9—H9B···O11iii0.840 (10)1.956 (13)2.793 (5)174 (6)
O7—H7B···O4iv0.841 (10)1.97 (3)2.762 (5)156 (6)
O8—H8B···O1v0.837 (10)1.87 (2)2.677 (5)163 (6)
O9—H9A···O5vi0.838 (11)1.931 (15)2.761 (5)170 (5)
O11—H11C···N3vii0.831 (10)1.975 (18)2.785 (6)165 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+2; (iii) x+1, y, z; (iv) x, y, z1; (v) x+2, y+1, z+1; (vi) x+2, y+1, z+2; (vii) x+1, y, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China.

References

First citationDu, M., Zhang, Z. H., Zhao, X.-J. & Xu, Q. (2006). Inorg. Chem. 45, 5785–5792.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTripathi, P., Pal, A., Jancik, V., Pandey, A. K., Singh, J. & Singh, N. K. (2007). Polyhedron, 26, 2597–2602.  Web of Science CSD CrossRef CAS Google Scholar
First citationYoung, R. W. & Wood, K. H. (1955). J. Am. Chem. Soc. 77, 400–403.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds