metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-[(Bi­phenyl-4,4′-di­yl)bis­­(methyl­ene)]di-1H-imidazol-3-ium tetra­chlorido­mercurate(II)

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bEngineering Research Center of Pesticides of Heilongjiang University, Heilongjiang University, Harbin 150050, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 3 November 2011; accepted 9 November 2011; online 12 November 2011)

In the title compound, (C20H20N4)[HgCl4], the HgII ion is four-coordinated in a tetra­hedral environment defined by four chloride ions. The dihedral angle between the two phenyl rings is 32.83 (15)°. The protonated 1,1′-[(biphenyl-4,4′-di­yl)bis­(meth­yl­ene)]di-1H-imidazol-3-ium cations, showing a cis conformation, link the [HgCl4]2− anions into an R44(42) motif via N—H⋯Cl hydrogen bonds.

Related literature

For the synthesis of the ligand, see: Zhu et al. (2002[Zhu, H.-F., Zhao, W., Okamura, T., Fei, B.-L., Sun, W.-Y. & Ueyama, N. (2002). New J. Chem. 26, 1277-1279.]).

[Scheme 1]

Experimental

Crystal data
  • (C20H20N4)[HgCl4]

  • Mr = 658.79

  • Monoclinic, P 21 /c

  • a = 8.9318 (18) Å

  • b = 15.347 (3) Å

  • c = 16.840 (3) Å

  • β = 92.62 (3)°

  • V = 2306.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.15 mm−1

  • T = 293 K

  • 0.24 × 0.23 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.280, Tmax = 0.306

  • 22111 measured reflections

  • 5260 independent reflections

  • 3913 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.068

  • S = 1.03

  • 5260 reflections

  • 269 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯Cl1i 0.90 (1) 2.25 (2) 3.134 (5) 170 (7)
N4—H41⋯Cl3ii 0.90 (1) 2.45 (4) 3.168 (5) 137 (5)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

N-containing ligands with an arene center have been widely used as building blocks for constructing inorganic-organic supramolecular architectures. The title compound was synthesized at a low pH value condition, as an unexpected product during the process of preparing the ligand–Hg complex. Herein, we report its structure.

In the title compound, the HgII ion is four-coordinated in a tetrahedral environment defined by four Cl ions (Fig. 1). The protonated ligand shows a cis conformation, which links the [HgCl4]2- anions, forming a R44(42) motif via N—H···Cl hydrogen bonds (Fig. 2, Table 1).

Related literature top

For the synthesis of the ligand, see: Zhu et al. (2002).

Experimental top

The 4,4'-(dimethylenebiphenyl)diimidazol ligand was synthesized as the literature method (Zhu et al., 2002). HgCl2 (0.140 g, 0.5 mmol) and the ligand (0.160 g, 0.5 mmol) were dissolved in 10 ml ethanol under stirring to get white deposit. 1M HCl solution had been dropped to adjust the pH value until the deposit dissolved. The obtained solution was allowed to stand for several days. Colorless crystals of the title compound were obtained (yield: 28%) as salt-type adducts of the protonated ligand and [HgCl4]2- anion.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 (aromatic) and 0.97 (methylene) Å and with Uiso(H) = 1.2Ueq(C). N-bound H atoms were located in a differece Fourier map and refined with a restraint of N—H = 0.90 (1) Å and Uiso(H) = 1.5Ueq(N).

Structure description top

N-containing ligands with an arene center have been widely used as building blocks for constructing inorganic-organic supramolecular architectures. The title compound was synthesized at a low pH value condition, as an unexpected product during the process of preparing the ligand–Hg complex. Herein, we report its structure.

In the title compound, the HgII ion is four-coordinated in a tetrahedral environment defined by four Cl ions (Fig. 1). The protonated ligand shows a cis conformation, which links the [HgCl4]2- anions, forming a R44(42) motif via N—H···Cl hydrogen bonds (Fig. 2, Table 1).

For the synthesis of the ligand, see: Zhu et al. (2002).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A partial packing view, showing the hydrogen-bonded R44(42) motif.
1,1'-[(Biphenyl-4,4'-diyl)bis(methylene)]di-1H-imidazol-3-ium tetrachloridomercurate(II) top
Crystal data top
(C20H20N4)[HgCl4]F(000) = 1264
Mr = 658.79Dx = 1.898 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15195 reflections
a = 8.9318 (18) Åθ = 3.3–27.5°
b = 15.347 (3) ŵ = 7.15 mm1
c = 16.840 (3) ÅT = 293 K
β = 92.62 (3)°Block, colorless
V = 2306.0 (8) Å30.24 × 0.23 × 0.22 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5260 independent reflections
Radiation source: rotation anode3913 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scanθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1011
Tmin = 0.280, Tmax = 0.306k = 1918
22111 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0184P)2 + 2.3484P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5260 reflectionsΔρmax = 0.98 e Å3
269 parametersΔρmin = 0.94 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00514 (18)
Crystal data top
(C20H20N4)[HgCl4]V = 2306.0 (8) Å3
Mr = 658.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9318 (18) ŵ = 7.15 mm1
b = 15.347 (3) ÅT = 293 K
c = 16.840 (3) Å0.24 × 0.23 × 0.22 mm
β = 92.62 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5260 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3913 reflections with I > 2σ(I)
Tmin = 0.280, Tmax = 0.306Rint = 0.046
22111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0322 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.98 e Å3
5260 reflectionsΔρmin = 0.94 e Å3
269 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1318 (11)1.0186 (5)0.3528 (4)0.117 (3)
H10.05010.99470.38130.140*
C20.1321 (6)1.0519 (4)0.2798 (3)0.0855 (17)
H20.05061.05510.24740.103*
C30.3553 (6)1.0636 (3)0.3221 (3)0.0712 (14)
H30.45661.07650.32520.085*
C40.3225 (6)1.1204 (3)0.1864 (3)0.0621 (12)
H4A0.26781.17430.17950.074*
H4B0.42801.13470.18830.074*
C50.2996 (5)1.0618 (3)0.1164 (2)0.0489 (9)
C60.3775 (5)0.9845 (3)0.1082 (2)0.0494 (10)
H60.44050.96720.14780.059*
C70.3633 (4)0.9323 (2)0.0421 (2)0.0433 (9)
H70.41600.88010.03790.052*
C80.2708 (4)0.9572 (2)0.0182 (2)0.0395 (8)
C90.1902 (5)1.0336 (3)0.0087 (2)0.0517 (10)
H90.12571.05060.04760.062*
C100.2040 (5)1.0850 (3)0.0577 (3)0.0571 (11)
H100.14821.13600.06310.068*
C110.2651 (4)0.9048 (3)0.0920 (2)0.0409 (8)
C120.2847 (4)0.8145 (3)0.0914 (2)0.0481 (9)
H120.29860.78600.04350.058*
C130.2837 (4)0.7670 (3)0.1610 (3)0.0543 (11)
H130.29610.70690.15910.065*
C140.2648 (4)0.8067 (3)0.2333 (3)0.0555 (11)
C150.2461 (5)0.8959 (3)0.2345 (3)0.0575 (11)
H150.23400.92410.28270.069*
C160.2449 (4)0.9439 (3)0.1652 (2)0.0507 (10)
H160.23031.00390.16740.061*
C170.2680 (5)0.7536 (4)0.3091 (3)0.0738 (15)
H17A0.30610.69570.29860.089*
H17B0.33510.78090.34860.089*
C180.0065 (5)0.7105 (3)0.3035 (3)0.0578 (11)
H180.01150.68460.25350.069*
C190.1192 (6)0.7189 (3)0.3521 (3)0.0702 (13)
H190.21710.69960.34250.084*
C200.0762 (7)0.7775 (3)0.4100 (3)0.0679 (14)
H200.13800.80650.44720.082*
Cl10.69235 (14)0.46688 (7)0.05336 (7)0.0659 (3)
Cl20.58278 (14)0.62872 (8)0.22325 (7)0.0724 (3)
Cl30.94394 (12)0.67508 (8)0.09563 (7)0.0640 (3)
Cl40.58329 (12)0.71468 (7)0.02401 (7)0.0606 (3)
Hg10.67130 (2)0.626552 (12)0.089746 (11)0.06180 (9)
N10.2722 (4)1.0801 (2)0.26138 (18)0.0456 (7)
N20.2709 (9)1.0261 (3)0.3772 (3)0.1021 (19)
H210.294 (8)1.011 (5)0.4267 (18)0.153*
N30.1169 (4)0.7466 (2)0.34045 (19)0.0512 (8)
N40.0658 (6)0.7599 (3)0.4169 (3)0.0741 (12)
H410.116 (6)0.772 (4)0.461 (2)0.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.172 (8)0.099 (5)0.073 (5)0.059 (5)0.052 (5)0.018 (4)
C20.072 (3)0.117 (5)0.067 (4)0.037 (3)0.011 (3)0.019 (3)
C30.084 (3)0.083 (3)0.049 (3)0.012 (3)0.018 (3)0.015 (3)
C40.088 (3)0.055 (2)0.043 (2)0.022 (2)0.006 (2)0.005 (2)
C50.065 (3)0.047 (2)0.035 (2)0.010 (2)0.0025 (18)0.0011 (17)
C60.058 (2)0.059 (2)0.032 (2)0.003 (2)0.0072 (18)0.0039 (18)
C70.055 (2)0.0415 (19)0.033 (2)0.0007 (18)0.0055 (17)0.0010 (16)
C80.0410 (19)0.047 (2)0.0307 (19)0.0056 (17)0.0004 (15)0.0031 (16)
C90.061 (2)0.054 (2)0.040 (2)0.004 (2)0.0092 (19)0.0026 (19)
C100.079 (3)0.044 (2)0.049 (3)0.008 (2)0.001 (2)0.0016 (19)
C110.0353 (18)0.051 (2)0.036 (2)0.0043 (17)0.0016 (15)0.0027 (17)
C120.048 (2)0.054 (2)0.042 (2)0.0058 (19)0.0026 (17)0.0002 (19)
C130.047 (2)0.049 (2)0.066 (3)0.0046 (19)0.003 (2)0.015 (2)
C140.038 (2)0.083 (3)0.046 (3)0.003 (2)0.0025 (18)0.019 (2)
C150.053 (2)0.084 (3)0.036 (2)0.005 (2)0.0055 (18)0.004 (2)
C160.054 (2)0.061 (2)0.038 (2)0.003 (2)0.0090 (18)0.0001 (19)
C170.054 (3)0.104 (4)0.063 (3)0.001 (3)0.002 (2)0.037 (3)
C180.070 (3)0.064 (3)0.039 (2)0.009 (2)0.004 (2)0.001 (2)
C190.070 (3)0.072 (3)0.070 (4)0.009 (3)0.021 (3)0.015 (3)
C200.115 (4)0.053 (3)0.035 (2)0.015 (3)0.012 (3)0.006 (2)
Cl10.0927 (8)0.0514 (6)0.0534 (7)0.0033 (6)0.0018 (6)0.0077 (5)
Cl20.0760 (7)0.0845 (8)0.0583 (7)0.0128 (7)0.0199 (6)0.0173 (6)
Cl30.0560 (6)0.0860 (8)0.0501 (6)0.0079 (6)0.0026 (5)0.0116 (6)
Cl40.0604 (6)0.0569 (6)0.0644 (7)0.0064 (5)0.0020 (5)0.0076 (5)
Hg10.06837 (13)0.05743 (12)0.06077 (13)0.00271 (9)0.01554 (9)0.00682 (9)
N10.0541 (19)0.0468 (18)0.0357 (18)0.0079 (16)0.0010 (15)0.0042 (14)
N20.198 (6)0.069 (3)0.038 (3)0.018 (4)0.000 (4)0.001 (2)
N30.060 (2)0.064 (2)0.0296 (18)0.0103 (17)0.0025 (15)0.0118 (16)
N40.106 (4)0.066 (3)0.053 (3)0.000 (3)0.034 (2)0.011 (2)
Geometric parameters (Å, º) top
C1—N21.332 (9)C12—H120.9300
C1—C21.332 (9)C13—C141.379 (6)
C1—H10.9300C13—H130.9300
C2—N11.346 (6)C14—C151.379 (6)
C2—H20.9300C14—C171.513 (6)
C3—N21.302 (8)C15—C161.381 (6)
C3—N11.316 (5)C15—H150.9300
C3—H30.9300C16—H160.9300
C4—N11.459 (5)C17—N31.476 (5)
C4—C51.504 (5)C17—H17A0.9700
C4—H4A0.9700C17—H17B0.9700
C4—H4B0.9700C18—C191.332 (6)
C5—C61.379 (6)C18—N31.359 (5)
C5—C101.383 (6)C18—H180.9300
C6—C71.382 (5)C19—N41.329 (7)
C6—H60.9300C19—H190.9300
C7—C81.391 (5)C20—N41.307 (7)
C7—H70.9300C20—N31.329 (5)
C8—C91.382 (5)C20—H200.9300
C8—C111.484 (5)Cl1—Hg12.5350 (12)
C9—C101.378 (6)Cl2—Hg12.4173 (13)
C9—H90.9300Cl3—Hg12.5441 (12)
C10—H100.9300Cl4—Hg12.4452 (12)
C11—C161.389 (5)N2—H210.90 (1)
C11—C121.398 (6)N4—H410.90 (1)
C12—C131.380 (5)
N2—C1—C2106.8 (6)C15—C14—C13118.1 (4)
N2—C1—H1126.6C15—C14—C17121.4 (4)
C2—C1—H1126.6C13—C14—C17120.5 (4)
C1—C2—N1107.4 (6)C14—C15—C16120.9 (4)
C1—C2—H2126.3C14—C15—H15119.5
N1—C2—H2126.3C16—C15—H15119.5
N2—C3—N1108.1 (5)C15—C16—C11121.5 (4)
N2—C3—H3126.0C15—C16—H16119.3
N1—C3—H3126.0C11—C16—H16119.3
N1—C4—C5112.1 (3)N3—C17—C14111.0 (4)
N1—C4—H4A109.2N3—C17—H17A109.4
C5—C4—H4A109.2C14—C17—H17A109.4
N1—C4—H4B109.2N3—C17—H17B109.4
C5—C4—H4B109.2C14—C17—H17B109.4
H4A—C4—H4B107.9H17A—C17—H17B108.0
C6—C5—C10118.4 (4)C19—C18—N3107.4 (4)
C6—C5—C4120.5 (4)C19—C18—H18126.3
C10—C5—C4121.1 (4)N3—C18—H18126.3
C5—C6—C7121.0 (4)N4—C19—C18107.3 (5)
C5—C6—H6119.5N4—C19—H19126.3
C7—C6—H6119.5C18—C19—H19126.3
C6—C7—C8120.6 (4)N4—C20—N3108.1 (4)
C6—C7—H7119.7N4—C20—H20126.0
C8—C7—H7119.7N3—C20—H20126.0
C9—C8—C7118.2 (3)Cl2—Hg1—Cl4127.87 (4)
C9—C8—C11121.3 (3)Cl2—Hg1—Cl1105.61 (4)
C7—C8—C11120.5 (3)Cl4—Hg1—Cl1111.72 (4)
C10—C9—C8121.0 (4)Cl2—Hg1—Cl3108.24 (5)
C10—C9—H9119.5Cl4—Hg1—Cl398.13 (4)
C8—C9—H9119.5Cl1—Hg1—Cl3102.18 (4)
C9—C10—C5120.9 (4)C3—N1—C2108.1 (4)
C9—C10—H10119.5C3—N1—C4126.3 (4)
C5—C10—H10119.5C2—N1—C4125.6 (4)
C16—C11—C12117.2 (4)C3—N2—C1109.7 (5)
C16—C11—C8121.3 (3)C3—N2—H21129 (5)
C12—C11—C8121.5 (3)C1—N2—H21121 (5)
C13—C12—C11120.7 (4)C20—N3—C18107.5 (4)
C13—C12—H12119.6C20—N3—C17125.5 (4)
C11—C12—H12119.6C18—N3—C17127.0 (4)
C14—C13—C12121.5 (4)C20—N4—C19109.7 (4)
C14—C13—H13119.2C20—N4—H41123 (4)
C12—C13—H13119.2C19—N4—H41127 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···Cl1i0.90 (1)2.25 (2)3.134 (5)170 (7)
N4—H41···Cl3ii0.90 (1)2.45 (4)3.168 (5)137 (5)
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C20H20N4)[HgCl4]
Mr658.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.9318 (18), 15.347 (3), 16.840 (3)
β (°) 92.62 (3)
V3)2306.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)7.15
Crystal size (mm)0.24 × 0.23 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.280, 0.306
No. of measured, independent and
observed [I > 2σ(I)] reflections
22111, 5260, 3913
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.068, 1.03
No. of reflections5260
No. of parameters269
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.98, 0.94

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···Cl1i0.90 (1)2.245 (18)3.134 (5)170 (7)
N4—H41···Cl3ii0.90 (1)2.45 (4)3.168 (5)137 (5)
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x1, y+3/2, z+1/2.
 

Acknowledgements

The authors thank the Project of Innovation Service Platform of Heilongjiang Province (PG09J001) and Heilongjiang University for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H.-F., Zhao, W., Okamura, T., Fei, B.-L., Sun, W.-Y. & Ueyama, N. (2002). New J. Chem. 26, 1277–1279.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds