organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-4-tert-butyl-6-[(pyridin-2-yl­imino)­meth­yl]phenol

aAsthagiri Herbal Research Foundation, 162-A, Industrial Estate, Perungudi, Chennai 600 092, India, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Maraimalai Campus (Guindy Campus), Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 11 November 2011; accepted 22 November 2011; online 30 November 2011)

In the title compound, C16H17BrN2O, the pyridine and benzene rings are almost coplanar [dihedral angle = 1.3 (2)°]. An intra­molecular O—H⋯Br inter­action forms an S(5) ring motif.

Related literature

For the anti-bacterial and anti-tumor activity of substituted salicyl­aldehyde derivatives, see: Jesmin et al. (2010[Jesmin, M., Ali, M. M. & Khanam, J. A. (2010). Thai J. Pharm. Sci. 34, 20-31.]); Pelttari et al. (2007[Pelttari, E., Karhumäki, E., Langshaw, J., Peräkylä, H. & Elo, H. (2007). Z. Naturforsch. Teil C, 62, 487-497.]) and for the biological activity of 2-amino­pryidine derivatives, see: Hagmann et al. (2000[Hagmann, W. K., Caldwell, C. G., Chen, P., Durette, P. L., Esser, C. K., Lanza, T. J., Kopka, I. E., Guthikonda, R., Shah, S. K., MacCoss, M., Chabin, R. M., Fletcher, D., Grant, S. K., Green, B. G., Humes, J. L., Kelly, T. M., Luell, S., Meurer, R., Moore, V., Pacholok, S. G., Pavia, T., Williams, H. R. & Wong, K. K. (2000). Bioorg. Med. Chem. Lett. 10, 1975-1978.]). For related structures, see: Puthilibai et al. (2008[Puthilibai, G., Vasudhevan, S. & Rajagopal, G. (2008). Acta Cryst. E64, o1333.]); Phurat et al. (2010[Phurat, C., Teerawatananond, T. & Muangsin, N. (2010). Acta Cryst. E66, o2423.]); Wang et al.(2010[Wang, Y., Qiu, Z. & Liang, H. (2010). Acta Cryst. E66, o2218.]). For the synthesis, see: Pannerselvam et al. (2005[Pannerselvam, P., Nair, R. R., Vijayalakshmi, G., Subramanian, E. H. & Sridhar, S. K. (2005). Eur. J. Med. Chem. 40, 225-229.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17BrN2O

  • Mr = 333.23

  • Monoclinic, C c

  • a = 10.0241 (11) Å

  • b = 16.1355 (16) Å

  • c = 9.4308 (13) Å

  • β = 92.050 (6)°

  • V = 1524.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.69 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • 6913 measured reflections

  • 3051 independent reflections

  • 2564 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.081

  • S = 0.98

  • 3051 reflections

  • 184 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1147 Friedel pairs

  • Flack parameter: 0.009 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Br1 0.82 2.46 3.021 (3) 127

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The crystal structure determination of the title compound was undertaken as a part of the synthesis, structure and properties of new class of substituted salicylaldehyde derivatives.

In the crystal structure the pyridine ring and the substituted phenyl rings are essentially co-planar with a mean deviation of 0.0057Å and 0.0053Å, respectively, from the least square planes of the corresponding constituent ring atoms. Unlike the other structures, the N(1) atom of the pyridine ring aligns with the plane of the other atoms contributing the ring (C12—C13—C14—C15—C16). The dihedral angle between pyridine ring and the phenyl ring is 1.3 (2)°. The Br(1) atom is almost co-planar with the phenyl ring (C1 to C6) with a mean deviation of 0.025 (1)Å. An intramolecular O(1)—H···Br(1) hydrogen bond forms a S(5) ring motif. Intramolecular C(7)—H···N(2) weak interaction is also observed in the structure.

Related literature top

For the anti-bacterial and anti-tumor activity of substituted salicylaldehyde derivatives, see: Jesmin et al. (2010); Pelttari et al. (2007) and for the biological activity of 2-aminopryidine derivatives, see: Hagmann et al. (2000). For related structures, see: Puthilibai et al. (2008); Phurat et al. (2010); Wang et al.(2010). For the synthesis, see: Pannerselvam et al. (2005).

Experimental top

The synthesis of the title compound follows the modified method of Schiff's base prepartion described by Pannerselvam et al. (2005). The microwave-assisted condensation of 3-bromo-5-tert-btuyl-2-hydroxybenzaldehyde and 2-amino pyridine was carried out in a domestic oven, Samsung SMH9151BE. Equimolar concentrations of 3-bromo-5-tert-butyl-2-hydroxy benzaldehyde and 2-amino pyridine (3mmol each) were dissolved in anhydrous methanol (5mL) at ambient temperature in an 25mL Erlenmeyer flask. The mixture was subjected to microwave irradiation for an optimized time (8 mins) on the M-High setting (800W). It was then cooled and diluted with ice-cold water. The product yield was found to be 72% and the purity was checked using TLC. The compound was re-crystallized from methanol/water mixture at room temperature to yield single crystals.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.93Å and refined using the riding model approximation with a fixed isotropic displacement parameter of Uiso(H) = 1.6 Ueq(C).

Structure description top

The crystal structure determination of the title compound was undertaken as a part of the synthesis, structure and properties of new class of substituted salicylaldehyde derivatives.

In the crystal structure the pyridine ring and the substituted phenyl rings are essentially co-planar with a mean deviation of 0.0057Å and 0.0053Å, respectively, from the least square planes of the corresponding constituent ring atoms. Unlike the other structures, the N(1) atom of the pyridine ring aligns with the plane of the other atoms contributing the ring (C12—C13—C14—C15—C16). The dihedral angle between pyridine ring and the phenyl ring is 1.3 (2)°. The Br(1) atom is almost co-planar with the phenyl ring (C1 to C6) with a mean deviation of 0.025 (1)Å. An intramolecular O(1)—H···Br(1) hydrogen bond forms a S(5) ring motif. Intramolecular C(7)—H···N(2) weak interaction is also observed in the structure.

For the anti-bacterial and anti-tumor activity of substituted salicylaldehyde derivatives, see: Jesmin et al. (2010); Pelttari et al. (2007) and for the biological activity of 2-aminopryidine derivatives, see: Hagmann et al. (2000). For related structures, see: Puthilibai et al. (2008); Phurat et al. (2010); Wang et al.(2010). For the synthesis, see: Pannerselvam et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
2-Bromo-4-tert-butyl-6-[(pyridin-2-ylimino)methyl]phenol top
Crystal data top
C16H17BrN2OF(000) = 680
Mr = 333.23Dx = 1.452 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 3053 reflections
a = 10.0241 (11) Åθ = 2.4–28.3°
b = 16.1355 (16) ŵ = 2.69 mm1
c = 9.4308 (13) ÅT = 293 K
β = 92.050 (6)°Block, red
V = 1524.4 (3) Å30.2 × 0.2 × 0.2 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2564 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 28.3°, θmin = 2.4°
ω and φ scansh = 1313
6913 measured reflectionsk = 2121
3051 independent reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0327P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
3051 reflectionsΔρmax = 0.50 e Å3
184 parametersΔρmin = 0.37 e Å3
2 restraintsAbsolute structure: Flack (1983), 1147 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.009 (9)
Crystal data top
C16H17BrN2OV = 1524.4 (3) Å3
Mr = 333.23Z = 4
Monoclinic, CcMo Kα radiation
a = 10.0241 (11) ŵ = 2.69 mm1
b = 16.1355 (16) ÅT = 293 K
c = 9.4308 (13) Å0.2 × 0.2 × 0.2 mm
β = 92.050 (6)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2564 reflections with I > 2σ(I)
6913 measured reflectionsRint = 0.035
3051 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.081Δρmax = 0.50 e Å3
S = 0.98Δρmin = 0.37 e Å3
3051 reflectionsAbsolute structure: Flack (1983), 1147 Friedel pairs
184 parametersAbsolute structure parameter: 0.009 (9)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5566 (3)0.96379 (15)0.4642 (4)0.0358 (6)
C20.6217 (3)1.03392 (15)0.5239 (3)0.0349 (6)
C30.5803 (3)1.11292 (14)0.4782 (4)0.0391 (7)
H30.62331.15890.51780.047*
C40.4795 (3)1.12589 (15)0.3781 (4)0.0361 (6)
C50.4150 (3)1.05601 (17)0.3224 (4)0.0379 (7)
H50.34541.06230.25540.045*
C60.4536 (3)0.97694 (16)0.3657 (4)0.0388 (7)
C70.7280 (3)1.02509 (19)0.6298 (4)0.0421 (8)
H70.76761.07250.66840.051*
C80.8724 (4)0.94730 (17)0.7759 (5)0.0423 (7)
C90.9091 (3)0.8682 (2)0.8210 (5)0.0531 (9)
H90.86530.82190.78370.064*
C101.0103 (4)0.8595 (3)0.9207 (5)0.0653 (11)
H101.03670.80690.95100.078*
C111.0721 (4)0.9279 (3)0.9754 (5)0.0698 (11)
H111.14010.92351.04470.084*
C121.0307 (4)1.0042 (3)0.9248 (5)0.0695 (13)
H121.07341.05110.96150.083*
C130.4388 (3)1.2146 (2)0.3348 (4)0.0436 (8)
C140.3815 (4)1.2584 (2)0.4631 (5)0.0662 (10)
H14A0.35691.31400.43750.099*
H14B0.44751.25960.53940.099*
H14C0.30411.22890.49290.099*
C150.5606 (3)1.26226 (17)0.2862 (5)0.0564 (9)
H15A0.59821.23400.20740.085*
H15B0.62591.26560.36290.085*
H15C0.53421.31710.25760.085*
C160.3336 (4)1.2144 (3)0.2134 (6)0.0654 (12)
H16A0.37031.18960.13090.098*
H16B0.30711.27040.19210.098*
H16C0.25731.18320.24100.098*
Br10.36263 (5)0.884372 (16)0.28725 (6)0.06324 (14)
N10.7694 (2)0.95411 (16)0.6724 (3)0.0412 (6)
N20.9331 (3)1.01500 (19)0.8263 (4)0.0573 (8)
O10.5940 (2)0.88708 (9)0.5015 (3)0.0519 (7)
H10.54620.85330.45920.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0336 (12)0.0318 (11)0.0417 (18)0.0008 (10)0.0011 (12)0.0018 (12)
C20.0341 (12)0.0318 (11)0.0383 (18)0.0021 (10)0.0067 (12)0.0026 (12)
C30.0421 (14)0.0292 (12)0.0452 (19)0.0002 (10)0.0085 (14)0.0002 (12)
C40.0337 (12)0.0357 (13)0.0387 (18)0.0014 (10)0.0023 (13)0.0025 (13)
C50.0330 (13)0.0400 (14)0.0401 (18)0.0020 (10)0.0077 (12)0.0009 (13)
C60.0383 (14)0.0352 (12)0.0428 (19)0.0049 (11)0.0003 (13)0.0021 (13)
C70.0447 (16)0.0343 (13)0.047 (2)0.0019 (11)0.0068 (15)0.0023 (14)
C80.0405 (15)0.0473 (13)0.0388 (19)0.0049 (15)0.0022 (13)0.0061 (18)
C90.0532 (19)0.0542 (18)0.052 (2)0.0096 (13)0.0039 (16)0.0086 (16)
C100.060 (2)0.076 (2)0.059 (3)0.0227 (19)0.003 (2)0.026 (2)
C110.0523 (19)0.101 (3)0.055 (2)0.011 (2)0.0214 (17)0.015 (2)
C120.060 (2)0.081 (3)0.066 (3)0.0077 (19)0.024 (2)0.010 (2)
C130.0484 (17)0.0345 (15)0.047 (2)0.0037 (13)0.0061 (16)0.0045 (14)
C140.076 (2)0.0498 (18)0.074 (3)0.0211 (16)0.013 (2)0.0060 (18)
C150.067 (2)0.0377 (14)0.064 (3)0.0013 (13)0.0035 (18)0.0117 (15)
C160.067 (3)0.051 (2)0.077 (3)0.0112 (17)0.024 (2)0.011 (2)
Br10.0703 (2)0.04400 (16)0.0735 (3)0.01579 (16)0.02473 (16)0.0033 (2)
N10.0381 (12)0.0418 (13)0.0431 (17)0.0045 (10)0.0089 (11)0.0036 (11)
N20.0525 (15)0.0573 (16)0.060 (2)0.0037 (12)0.0218 (14)0.0070 (15)
O10.0612 (14)0.0255 (9)0.0679 (19)0.0005 (8)0.0146 (13)0.0030 (9)
Geometric parameters (Å, º) top
C1—O11.337 (3)C10—C111.359 (7)
C1—C61.380 (4)C10—H100.9300
C1—C21.413 (3)C11—C121.378 (6)
C2—C31.404 (3)C11—H110.9300
C2—C71.441 (5)C12—N21.336 (5)
C3—C41.373 (5)C12—H120.9300
C3—H30.9300C13—C161.529 (5)
C4—C51.393 (4)C13—C151.527 (5)
C4—C131.540 (4)C13—C141.531 (6)
C5—C61.390 (4)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—Br11.887 (3)C14—H14C0.9600
C7—N11.278 (4)C15—H15A0.9600
C7—H70.9300C15—H15B0.9600
C8—N21.330 (5)C15—H15C0.9600
C8—C91.390 (4)C16—H16A0.9600
C8—N11.399 (5)C16—H16B0.9600
C9—C101.366 (6)C16—H16C0.9600
C9—H90.9300O1—H10.8200
O1—C1—C6121.0 (3)C12—C11—H11121.1
O1—C1—C2121.0 (3)N2—C12—C11124.2 (4)
C6—C1—C2117.9 (2)N2—C12—H12117.9
C3—C2—C1118.5 (3)C11—C12—H12117.9
C3—C2—C7120.4 (3)C16—C13—C15108.3 (3)
C1—C2—C7121.1 (2)C16—C13—C14108.9 (4)
C4—C3—C2123.5 (2)C15—C13—C14109.4 (3)
C4—C3—H3118.3C16—C13—C4111.5 (3)
C2—C3—H3118.3C15—C13—C4110.0 (3)
C3—C4—C5117.1 (2)C14—C13—C4108.8 (3)
C3—C4—C13120.4 (3)C13—C14—H14A109.5
C5—C4—C13122.5 (3)C13—C14—H14B109.5
C6—C5—C4120.8 (3)H14A—C14—H14B109.5
C6—C5—H5119.6C13—C14—H14C109.5
C4—C5—H5119.6H14A—C14—H14C109.5
C1—C6—C5122.2 (3)H14B—C14—H14C109.5
C1—C6—Br1118.8 (2)C13—C15—H15A109.5
C5—C6—Br1119.1 (2)C13—C15—H15B109.5
N1—C7—C2122.0 (3)H15A—C15—H15B109.5
N1—C7—H7119.0C13—C15—H15C109.5
C2—C7—H7119.0H15A—C15—H15C109.5
N2—C8—C9122.1 (4)H15B—C15—H15C109.5
N2—C8—N1120.1 (3)C13—C16—H16A109.5
C9—C8—N1117.8 (3)C13—C16—H16B109.5
C10—C9—C8119.2 (4)H16A—C16—H16B109.5
C10—C9—H9120.4C13—C16—H16C109.5
C8—C9—H9120.4H16A—C16—H16C109.5
C9—C10—C11119.6 (4)H16B—C16—H16C109.5
C9—C10—H10120.2C7—N1—C8120.9 (3)
C11—C10—H10120.2C8—N2—C12117.1 (4)
C10—C11—C12117.8 (4)C1—O1—H1109.5
C10—C11—H11121.1
O1—C1—C2—C3178.5 (3)N2—C8—C9—C100.3 (6)
C6—C1—C2—C31.2 (4)N1—C8—C9—C10179.3 (3)
O1—C1—C2—C71.8 (4)C8—C9—C10—C110.9 (6)
C6—C1—C2—C7178.5 (3)C9—C10—C11—C121.2 (6)
C1—C2—C3—C40.1 (5)C10—C11—C12—N20.5 (7)
C7—C2—C3—C4179.8 (3)C3—C4—C13—C16175.1 (4)
C2—C3—C4—C51.1 (5)C5—C4—C13—C166.8 (5)
C2—C3—C4—C13179.4 (3)C3—C4—C13—C1555.0 (5)
C3—C4—C5—C61.0 (5)C5—C4—C13—C15126.9 (3)
C13—C4—C5—C6179.1 (3)C3—C4—C13—C1464.8 (4)
O1—C1—C6—C5178.3 (3)C5—C4—C13—C14113.3 (4)
C2—C1—C6—C51.4 (5)C2—C7—N1—C8179.8 (3)
O1—C1—C6—Br11.6 (4)N2—C8—N1—C73.3 (5)
C2—C1—C6—Br1178.7 (2)C9—C8—N1—C7177.7 (3)
C4—C5—C6—C10.3 (5)C9—C8—N2—C121.0 (6)
C4—C5—C6—Br1179.8 (2)N1—C8—N2—C12180.0 (3)
C3—C2—C7—N1179.1 (3)C11—C12—N2—C80.6 (6)
C1—C2—C7—N11.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Br10.822.463.021 (3)127
C7—H7···N20.932.382.723 (5)102

Experimental details

Crystal data
Chemical formulaC16H17BrN2O
Mr333.23
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)10.0241 (11), 16.1355 (16), 9.4308 (13)
β (°) 92.050 (6)
V3)1524.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.69
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6913, 3051, 2564
Rint0.035
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 0.98
No. of reflections3051
No. of parameters184
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.37
Absolute structureFlack (1983), 1147 Friedel pairs
Absolute structure parameter0.009 (9)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Br10.822.463.021 (3)127
C7—H7···N20.932.382.723 (5)102
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHagmann, W. K., Caldwell, C. G., Chen, P., Durette, P. L., Esser, C. K., Lanza, T. J., Kopka, I. E., Guthikonda, R., Shah, S. K., MacCoss, M., Chabin, R. M., Fletcher, D., Grant, S. K., Green, B. G., Humes, J. L., Kelly, T. M., Luell, S., Meurer, R., Moore, V., Pacholok, S. G., Pavia, T., Williams, H. R. & Wong, K. K. (2000). Bioorg. Med. Chem. Lett. 10, 1975–1978.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJesmin, M., Ali, M. M. & Khanam, J. A. (2010). Thai J. Pharm. Sci. 34, 20–31.  CAS Google Scholar
First citationPannerselvam, P., Nair, R. R., Vijayalakshmi, G., Subramanian, E. H. & Sridhar, S. K. (2005). Eur. J. Med. Chem. 40, 225–229.  Web of Science PubMed Google Scholar
First citationPelttari, E., Karhumäki, E., Langshaw, J., Peräkylä, H. & Elo, H. (2007). Z. Naturforsch. Teil C, 62, 487–497.  CAS Google Scholar
First citationPhurat, C., Teerawatananond, T. & Muangsin, N. (2010). Acta Cryst. E66, o2423.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPuthilibai, G., Vasudhevan, S. & Rajagopal, G. (2008). Acta Cryst. E64, o1333.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Qiu, Z. & Liang, H. (2010). Acta Cryst. E66, o2218.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds