organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N4,N6-Di­methyl-N4,N6-di­phenyl­pyrimidine-4,5,6-tri­amine

aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China, and bSchool of Bioscience and Technology, Changchun University, Changchun 130012, People's Republic of China
*Correspondence e-mail: fly012345@sohu.com

(Received 28 October 2011; accepted 5 November 2011; online 9 November 2011)

In the title compound, C18H19N5, the pyrimidine ring makes dihedral angles of 56.49 (9) and 70.88 (9)° with the phenyl rings. The dihedral angle between the two phenyl rings is 72.45 (9)°. No significant inter­molecular inter­actions are observed in the crystal structure.

Related literature

For applications and the biological activity of pyrimidine triamines, see: Barillari et al. (2001[Barillari, C., Barlocco, D. & Raveglia, L. (2001). Eur. J. Org. Chem. pp. 4737-4741.]); Itoh et al. (2004[Itoh, T., Sato, K. & Mase, T. (2004). Adv. Synth. Catal. 346, 1859-1867.]); Koppel & Robins (1958[Koppel, H. & Robins, R. (1958). J. Org. Chem. 23, 1457-1460.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19N5

  • Mr = 305.38

  • Orthorhombic, P b c a

  • a = 8.8859 (18) Å

  • b = 14.360 (3) Å

  • c = 25.121 (5) Å

  • V = 3205.4 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.32 × 0.28 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.975, Tmax = 0.983

  • 28152 measured reflections

  • 3664 independent reflections

  • 2119 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.137

  • S = 1.03

  • 3664 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrimidine triamines not only exhibit a wide range of biological activities (Barillari et al., 2001), but also are important intermediate products (Koppel & Robins, 1958; Itoh et al., 2004). Here, the crystal structure of N4,N6-dimethyl-N4,N6- diphenylpyrimidine-4,5,6-triamine is reported.

Related literature top

For applications and the biological activity of pyrimidine triamines, see: Barillari et al. (2001); Itoh et al. (2004); Koppel & Robins (1958).

Experimental top

N4,N6-dimethyl-5-nitro-N4,N6 -diphenylpyrimidine-4, 6-diamine (502.5 mg, 1.5 mmol) was dissolved in a mixture of ethanol (16 mL) and water (4 mL). Then, iron powder (504 mg, 9 mmol) and NH4Cl (96.3 mg, 1.8 mmol) were added. The mixture was then stirred in reflux for 6 h, cooled to room temperature, and filtered through a pad of celite. The filtrate was concentrated in vacuo. The residue was extracted with EtOAc, and the organic extract was washed with saturated NaHCO3, water, and brine and dried over anhydrous MgSO4. It was then filtered and concentrated in vacuo to the crude product which was purified by flash chromatography (elution with 9% EtOAc in petroleum ether followed by 20% EtOAc in petroleum ether) to give N4,N6-dimethyl-N4,N6- diphenylpyrimidine-4,5,6-triamine (colorless solid, 310 mg, 67.8%, 88.6-90.6 °C).

Refinement top

All H atoms were located from difference Fourier maps and then were treated as riding, with C—H = 0.93–0.96 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C or N) or 1.5Ueq(methyl C).

Structure description top

Pyrimidine triamines not only exhibit a wide range of biological activities (Barillari et al., 2001), but also are important intermediate products (Koppel & Robins, 1958; Itoh et al., 2004). Here, the crystal structure of N4,N6-dimethyl-N4,N6- diphenylpyrimidine-4,5,6-triamine is reported.

For applications and the biological activity of pyrimidine triamines, see: Barillari et al. (2001); Itoh et al. (2004); Koppel & Robins (1958).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoid are shown at the 50% probability level.
N4,N6-Dimethyl-N4,N6- diphenylpyrimidine-4,5,6-triamine top
Crystal data top
C18H19N5F(000) = 1296
Mr = 305.38Dx = 1.266 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1000 reflections
a = 8.8859 (18) Åθ = 3.2–27.5°
b = 14.360 (3) ŵ = 0.08 mm1
c = 25.121 (5) ÅT = 293 K
V = 3205.4 (11) Å3Block, colorless
Z = 80.32 × 0.28 × 0.22 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3664 independent reflections
Radiation source: fine-focus sealed tube2119 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 1110
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1818
Tmin = 0.975, Tmax = 0.983l = 3232
28152 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0693P)2]
where P = (Fo2 + 2Fc2)/3
3664 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C18H19N5V = 3205.4 (11) Å3
Mr = 305.38Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.8859 (18) ŵ = 0.08 mm1
b = 14.360 (3) ÅT = 293 K
c = 25.121 (5) Å0.32 × 0.28 × 0.22 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3664 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2119 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.065
28152 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.03Δρmax = 0.13 e Å3
3664 reflectionsΔρmin = 0.18 e Å3
210 parameters
Special details top

Experimental. 1H NMR (CDCl3, 400 Hz), δ: 8.38 (s, 1H), 7.27 (t, J = 7.6Hz, 4H), 7.00(t, J = 7.2Hz, 2H), 6.90(d, J = 8.0Hz, 4H), 3.50 (s, 6H); 2.90 (s, 2H). 13C NMR (CDCl3, 100 Hz), δ: 151.1, 148.0, 145.7, 129.3, 122.8, 122.7, 120.0, 39.7. ES-MS: 336.1 [(M + H+)].

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0279 (3)0.46280 (13)0.41196 (8)0.0660 (6)
H10.08330.51280.42490.079*
C20.0751 (2)0.32120 (11)0.42746 (6)0.0483 (4)
C30.15006 (19)0.32587 (11)0.37827 (6)0.0460 (4)
C40.1152 (2)0.40201 (11)0.34631 (6)0.0484 (4)
C50.1622 (2)0.34917 (11)0.25472 (6)0.0480 (4)
C60.0766 (2)0.26882 (12)0.26084 (7)0.0563 (5)
H60.02870.25730.29310.068*
C70.0620 (2)0.20590 (13)0.21954 (8)0.0626 (5)
H70.00590.15190.22450.075*
C80.1296 (2)0.22228 (16)0.17087 (8)0.0689 (6)
H80.12050.17950.14330.083*
C90.2099 (2)0.30237 (15)0.16412 (8)0.0679 (6)
H90.25340.31480.13120.082*
C100.2278 (2)0.36518 (14)0.20496 (7)0.0586 (5)
H100.28420.41890.19940.070*
C110.0814 (2)0.15421 (10)0.44409 (6)0.0478 (4)
C120.1647 (2)0.08195 (13)0.46579 (7)0.0612 (5)
H120.23690.09430.49170.073*
C130.1404 (3)0.00819 (13)0.44895 (9)0.0713 (6)
H130.19490.05660.46420.086*
C140.0367 (3)0.02727 (13)0.40991 (9)0.0732 (6)
H140.02230.08820.39830.088*
C150.0447 (3)0.04322 (13)0.38829 (8)0.0688 (6)
H150.11500.03050.36190.083*
C160.0238 (2)0.13385 (12)0.40531 (7)0.0570 (5)
H160.08100.18150.39050.068*
C170.2467 (3)0.50505 (12)0.28371 (9)0.0743 (6)
H17A0.34820.49770.27130.111*
H17B0.24640.54300.31520.111*
H17C0.18740.53450.25660.111*
C180.0744 (4)0.26304 (14)0.51905 (7)0.0931 (9)
H18A0.11060.32360.52900.140*
H18B0.12570.21630.53950.140*
H18C0.03180.25930.52580.140*
N10.02716 (19)0.47211 (9)0.36360 (6)0.0593 (4)
N20.01344 (19)0.39000 (10)0.44460 (6)0.0602 (4)
N30.18291 (19)0.41347 (9)0.29607 (6)0.0578 (4)
N40.25718 (18)0.26103 (9)0.36391 (6)0.0583 (4)
H4A0.30490.26690.33430.070*
H4B0.27620.21470.38450.070*
N50.1029 (2)0.24762 (9)0.46223 (5)0.0568 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0737 (15)0.0553 (10)0.0688 (13)0.0106 (10)0.0113 (11)0.0102 (9)
C20.0550 (11)0.0480 (9)0.0419 (9)0.0040 (8)0.0006 (8)0.0048 (7)
C30.0475 (10)0.0451 (8)0.0454 (9)0.0010 (8)0.0001 (8)0.0040 (7)
C40.0528 (11)0.0448 (8)0.0475 (10)0.0015 (8)0.0008 (8)0.0016 (7)
C50.0473 (10)0.0530 (9)0.0437 (9)0.0073 (8)0.0007 (7)0.0038 (7)
C60.0542 (11)0.0653 (11)0.0493 (10)0.0004 (9)0.0027 (9)0.0004 (8)
C70.0603 (13)0.0644 (11)0.0631 (12)0.0040 (10)0.0090 (10)0.0071 (9)
C80.0674 (14)0.0877 (14)0.0517 (12)0.0182 (12)0.0070 (10)0.0156 (10)
C90.0669 (14)0.0877 (14)0.0492 (11)0.0198 (12)0.0063 (10)0.0004 (10)
C100.0547 (12)0.0690 (11)0.0522 (11)0.0099 (9)0.0064 (9)0.0093 (9)
C110.0520 (10)0.0490 (9)0.0425 (9)0.0001 (8)0.0037 (8)0.0017 (7)
C120.0571 (12)0.0726 (12)0.0540 (11)0.0066 (10)0.0002 (9)0.0098 (9)
C130.0785 (16)0.0578 (11)0.0776 (14)0.0206 (11)0.0180 (12)0.0118 (10)
C140.0905 (18)0.0519 (11)0.0770 (15)0.0024 (11)0.0167 (13)0.0077 (10)
C150.0737 (15)0.0623 (12)0.0703 (13)0.0102 (11)0.0048 (11)0.0086 (10)
C160.0578 (12)0.0547 (10)0.0585 (11)0.0006 (9)0.0063 (9)0.0003 (8)
C170.0932 (17)0.0561 (11)0.0734 (14)0.0147 (11)0.0105 (12)0.0092 (9)
C180.164 (3)0.0758 (13)0.0391 (11)0.0086 (15)0.0004 (13)0.0048 (9)
N10.0656 (11)0.0511 (8)0.0611 (10)0.0072 (8)0.0001 (8)0.0028 (7)
N20.0707 (11)0.0551 (8)0.0548 (9)0.0016 (8)0.0109 (8)0.0073 (7)
N30.0740 (12)0.0528 (8)0.0466 (8)0.0090 (8)0.0073 (7)0.0052 (6)
N40.0607 (10)0.0602 (9)0.0542 (9)0.0132 (8)0.0116 (8)0.0062 (7)
N50.0807 (12)0.0530 (8)0.0366 (8)0.0063 (8)0.0048 (7)0.0014 (6)
Geometric parameters (Å, º) top
C1—N11.316 (2)C11—C161.381 (2)
C1—N21.335 (2)C11—C121.386 (2)
C1—H10.9300C11—N51.429 (2)
C2—N21.334 (2)C12—C131.379 (3)
C2—N51.393 (2)C12—H120.9300
C2—C31.406 (2)C13—C141.374 (3)
C3—N41.379 (2)C13—H130.9300
C3—C41.391 (2)C14—C151.357 (3)
C4—N11.347 (2)C14—H140.9300
C4—N31.408 (2)C15—C161.383 (2)
C5—C61.391 (2)C15—H150.9300
C5—C101.398 (2)C16—H160.9300
C5—N31.402 (2)C17—N31.465 (2)
C6—C71.382 (2)C17—H17A0.9600
C6—H60.9300C17—H17B0.9600
C7—C81.382 (3)C17—H17C0.9600
C7—H70.9300C18—N51.466 (2)
C8—C91.364 (3)C18—H18A0.9600
C8—H80.9300C18—H18B0.9600
C9—C101.375 (3)C18—H18C0.9600
C9—H90.9300N4—H4A0.8600
C10—H100.9300N4—H4B0.8600
N1—C1—N2127.64 (17)C14—C13—C12120.75 (19)
N1—C1—H1116.2C14—C13—H13119.6
N2—C1—H1116.2C12—C13—H13119.6
N2—C2—N5117.64 (15)C15—C14—C13119.64 (19)
N2—C2—C3121.86 (15)C15—C14—H14120.2
N5—C2—C3120.22 (15)C13—C14—H14120.2
N4—C3—C4122.23 (15)C14—C15—C16120.4 (2)
N4—C3—C2121.66 (15)C14—C15—H15119.8
C4—C3—C2116.04 (15)C16—C15—H15119.8
N1—C4—C3122.05 (15)C11—C16—C15120.57 (17)
N1—C4—N3116.75 (14)C11—C16—H16119.7
C3—C4—N3120.91 (16)C15—C16—H16119.7
C6—C5—C10117.61 (16)N3—C17—H17A109.5
C6—C5—N3122.42 (15)N3—C17—H17B109.5
C10—C5—N3119.97 (16)H17A—C17—H17B109.5
C7—C6—C5120.74 (17)N3—C17—H17C109.5
C7—C6—H6119.6H17A—C17—H17C109.5
C5—C6—H6119.6H17B—C17—H17C109.5
C6—C7—C8120.78 (19)N5—C18—H18A109.5
C6—C7—H7119.6N5—C18—H18B109.5
C8—C7—H7119.6H18A—C18—H18B109.5
C9—C8—C7118.74 (18)N5—C18—H18C109.5
C9—C8—H8120.6H18A—C18—H18C109.5
C7—C8—H8120.6H18B—C18—H18C109.5
C8—C9—C10121.40 (19)C1—N1—C4115.94 (15)
C8—C9—H9119.3C2—N2—C1116.00 (16)
C10—C9—H9119.3C5—N3—C4122.09 (14)
C9—C10—C5120.70 (19)C5—N3—C17118.99 (15)
C9—C10—H10119.7C4—N3—C17117.41 (14)
C5—C10—H10119.7C3—N4—H4A120.0
C16—C11—C12118.70 (16)C3—N4—H4B120.0
C16—C11—N5120.91 (15)H4A—N4—H4B120.0
C12—C11—N5120.38 (16)C2—N5—C11119.23 (13)
C13—C12—C11119.90 (19)C2—N5—C18117.72 (15)
C13—C12—H12120.0C11—N5—C18115.39 (14)
C11—C12—H12120.0

Experimental details

Crystal data
Chemical formulaC18H19N5
Mr305.38
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)8.8859 (18), 14.360 (3), 25.121 (5)
V3)3205.4 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.28 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
28152, 3664, 2119
Rint0.065
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.137, 1.03
No. of reflections3664
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.18

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000).

 

Acknowledgements

The project was sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars, the State Education Ministry (20071108) and the Scientific Research Foundation for the Returned Overseas Team, Chinese Education Ministry.

References

First citationBarillari, C., Barlocco, D. & Raveglia, L. (2001). Eur. J. Org. Chem. pp. 4737–4741.  CrossRef Google Scholar
First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationItoh, T., Sato, K. & Mase, T. (2004). Adv. Synth. Catal. 346, 1859–1867.  Web of Science CrossRef CAS Google Scholar
First citationKoppel, H. & Robins, R. (1958). J. Org. Chem. 23, 1457–1460.  CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds