organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,8-Di­bromo-15-nitro-2,11-di­thia­[3.3]para­cyclo­phane

aKey Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: hufang5888@163.com

(Received 11 October 2011; accepted 15 November 2011; online 19 November 2011)

In the title compound [systematic name: 13,15-dibromo-6-nitro-3,10-dithia­tricyclo­[10.2.2.25,8]octa­deca-1(14),5,7,12,15,17-hexa­ene], C16H13Br2NO2S2, the dihedral angle between the two benzene rings is 0.93 (2)°. The crystal structure is stabilized by weak ππ inter­molecular inter­actions [centroid–centroid distance = 3.286 (5) Å]. One S atom and the H atoms on neighboring C atoms are disordered over two sets of sites (occupancy ratios: S = 0.91:0.09 and H = 0.93:0.07).

Related literature

For industrial applications of paracyclo­phanes, see: Xu et al. (2008[Xu, J. W., Wang, W. L., Lin, T. T., Sun, Z. & Lai, Y. H. (2008). Supramol. Chem. 20, 723-730.]). For the preparation of the title compound, see: Wang et al. (2006[Wang, W., Xu, J., Zhang, X. & Lai, Y. H. (2006). Macromol. Chem. 39, 7277-7285.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13Br2NO2S2

  • Mr = 475.21

  • Monoclinic, P 21 /n

  • a = 6.9200 (3) Å

  • b = 12.6556 (6) Å

  • c = 18.8743 (8) Å

  • β = 94.939 (2)°

  • V = 1646.81 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.18 mm−1

  • T = 298 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 11528 measured reflections

  • 3885 independent reflections

  • 2405 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.119

  • S = 0.99

  • 3885 reflections

  • 218 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Molecular building blocks associated with para-cyclophanes are widely used in chiral catalysis, optoelectronic (NLO) materials, polymer chemistry, materials science, molecular electronics and organic solar cells (Xu et al. 2008). Crystallographic studies on these types of complexes are relatively sparse when compared to the volume of synthesis research carried out in these areas. Herein, we report the crystal structure of the title complex, (I).

In the title compound, C16 H13 Br2N O2 S2, (I), the dihedral angle between the two benzene rings is 0.93 (2)° (Fig. 1). Crystal packing is stabilized by weak ππ intermolecular interactions (centroid-to-centroid distance = 3.286 (5) Å). The S2 atom ((0.91:0.09 for the major and minor components) and H15A, H15B (0.93) H15C, H15D (0.07), H16A, H16B (0.93), H16C, H16D (0.07) atoms are disordered over two sites.

Related literature top

For industrial applications of para-cyclophnes, see: Xu et al. (2008). For the preparation of the title compound, see: Wang et al. (2006).

Experimental top

A solution with equimolar amounts of 2,5-dibromo-1,4-bis(mercaptomethyl)benzene (3.26 g,10 mmol) and 1,4-dibromomethyl-2-nitrobenzene(3.10 g,10 mmol) in degassed THF (500 ml) was added dropwise under N2 over 12 h to a refluxing solution of potassium carbonate (6.9 g,50 mmol) in EtOH(1.5L). After 2 h at the reflux temperature, the mixture was cooled and the solvent removed. The resulting residue was treated with CH2Cl2 (300 ml) and water (300 ml). The aqueous was extracted with CH2Cl2 three times. The combined organic layers were dried over Na2SO4. The solvent was removed, and the resulting solid was chromatographed on silica gel using CH2Cl2/petroleum ether (1:1, v/v) as eluent. Colourless single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a dichloromethane/n-hexane(1:30) solution over a period of 5 days (Wang et al., 2006).

Refinement top

During refinement, all the H atoms were placed in calculated positions and allowed to ride, with CH = 0.93 Å; CH2 = 0.97Å and Uiso(H) = 1.2Ueq(C). The S2, C15 & C16 atoms with attached H atoms are disorderd over two sites (occupancies = S: 0.91:0.09; C & H: 0.93: 0.07 for the major and minor components).

Structure description top

Molecular building blocks associated with para-cyclophanes are widely used in chiral catalysis, optoelectronic (NLO) materials, polymer chemistry, materials science, molecular electronics and organic solar cells (Xu et al. 2008). Crystallographic studies on these types of complexes are relatively sparse when compared to the volume of synthesis research carried out in these areas. Herein, we report the crystal structure of the title complex, (I).

In the title compound, C16 H13 Br2N O2 S2, (I), the dihedral angle between the two benzene rings is 0.93 (2)° (Fig. 1). Crystal packing is stabilized by weak ππ intermolecular interactions (centroid-to-centroid distance = 3.286 (5) Å). The S2 atom ((0.91:0.09 for the major and minor components) and H15A, H15B (0.93) H15C, H15D (0.07), H16A, H16B (0.93), H16C, H16D (0.07) atoms are disordered over two sites.

For industrial applications of para-cyclophnes, see: Xu et al. (2008). For the preparation of the title compound, see: Wang et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate disorder in the S2 ((0.91:0.09), H15A, H15B (0.93) H15C, H15D (0.07), H16A, H16B (0.93), H16C, H16D (0.07) atoms disordered over two sites.
13,15-dibromo-6-nitro-3,10-dithiatricyclo[10.2.2.25,8]octadeca- 1(14),5,7,12,15,17-hexaene top
Crystal data top
C16H13Br2NO2S2F(000) = 936
Mr = 475.21Dx = 1.917 Mg m3
Dm = 1.917 Mg m3
Dm measured by not measured
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1981 reflections
a = 6.9200 (3) Åθ = 2.7–23.5°
b = 12.6556 (6) ŵ = 5.18 mm1
c = 18.8743 (8) ÅT = 298 K
β = 94.939 (2)°Block, colorless
V = 1646.81 (13) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2405 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 28.3°, θmin = 1.9°
Detector resolution: 14.63 pixels mm-1h = 68
phi and ω scansk = 1616
11528 measured reflectionsl = 2424
3885 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0561P)2]
where P = (Fo2 + 2Fc2)/3
3885 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.68 e Å3
10 restraintsΔρmin = 0.34 e Å3
Crystal data top
C16H13Br2NO2S2V = 1646.81 (13) Å3
Mr = 475.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9200 (3) ŵ = 5.18 mm1
b = 12.6556 (6) ÅT = 298 K
c = 18.8743 (8) Å0.20 × 0.10 × 0.10 mm
β = 94.939 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2405 reflections with I > 2σ(I)
11528 measured reflectionsRint = 0.046
3885 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04710 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 0.99Δρmax = 0.68 e Å3
3885 reflectionsΔρmin = 0.34 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.13008 (8)0.55071 (3)0.35467 (3)0.05578 (18)
Br20.15356 (8)0.04434 (3)0.41644 (3)0.06213 (19)
S10.44323 (16)0.30062 (8)0.21060 (5)0.0411 (3)
S20.34926 (19)0.28334 (11)0.59074 (6)0.0500 (3)0.91
S2'0.3416 (13)0.1428 (9)0.5658 (8)0.070 (4)0.09
O10.6200 (6)0.0274 (3)0.3297 (2)0.0847 (12)
O20.7893 (5)0.1268 (3)0.26556 (17)0.0686 (10)
N10.6927 (6)0.1124 (3)0.3165 (2)0.0526 (10)
C10.1908 (6)0.2278 (3)0.3351 (2)0.0373 (10)
H10.20780.17870.29960.045*
C20.1618 (5)0.1933 (3)0.4029 (2)0.0359 (9)
C30.1406 (6)0.2625 (3)0.4590 (2)0.0383 (10)
C40.1303 (6)0.3690 (3)0.4410 (2)0.0382 (10)
H40.10680.41820.47580.046*
C50.1538 (5)0.4037 (3)0.3736 (2)0.0329 (9)
C60.1946 (6)0.3345 (3)0.3197 (2)0.0351 (9)
C70.2498 (6)0.3724 (3)0.2476 (2)0.0461 (11)
H7A0.28740.44610.25190.055*
H7B0.13550.36870.21410.055*
C80.6582 (6)0.3413 (4)0.2651 (2)0.0490 (11)
H8A0.77140.31310.24470.059*
H8B0.66710.41780.26400.059*
C90.6617 (6)0.3057 (3)0.3415 (2)0.0388 (10)
C100.6674 (6)0.2011 (3)0.3653 (2)0.0399 (10)
C110.6354 (6)0.1726 (3)0.4341 (2)0.0414 (10)
H110.63640.10170.44700.050*
C120.6017 (5)0.2495 (4)0.4840 (2)0.0405 (10)
C130.6116 (6)0.3537 (3)0.4629 (2)0.0414 (10)
H130.59880.40670.49630.050*
C140.6398 (5)0.3814 (3)0.3939 (2)0.0406 (10)
H140.64430.45270.38200.049*
C150.5534 (6)0.2184 (4)0.5567 (2)0.0565 (13)
H15A0.66660.23140.58950.068*0.93
H15B0.52930.14290.55670.068*0.93
H15C0.54380.28200.58490.068*0.07
H15D0.66300.17850.57820.068*0.07
C160.1441 (6)0.2292 (4)0.5353 (2)0.0507 (12)
H16A0.14910.15270.53780.061*0.93
H16B0.02470.25180.55410.061*0.93
H16C0.02290.19340.54170.061*0.07
H16D0.14980.29140.56550.061*0.07
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0760 (4)0.0390 (2)0.0522 (3)0.0092 (2)0.0046 (3)0.0008 (2)
Br20.0733 (4)0.0420 (3)0.0746 (4)0.0017 (2)0.0269 (3)0.0120 (2)
S10.0484 (7)0.0486 (6)0.0270 (6)0.0011 (5)0.0074 (5)0.0040 (5)
S20.0590 (9)0.0652 (8)0.0267 (6)0.0065 (6)0.0086 (6)0.0006 (6)
S2'0.084 (8)0.076 (7)0.052 (7)0.002 (7)0.014 (6)0.020 (6)
O10.103 (3)0.061 (2)0.095 (3)0.026 (2)0.033 (2)0.029 (2)
O20.071 (3)0.082 (3)0.056 (2)0.0060 (19)0.0234 (19)0.0144 (18)
N10.048 (3)0.060 (3)0.051 (3)0.001 (2)0.006 (2)0.013 (2)
C10.036 (2)0.040 (2)0.036 (2)0.0027 (18)0.0072 (18)0.0042 (18)
C20.031 (2)0.039 (2)0.040 (2)0.0043 (17)0.0125 (18)0.0083 (19)
C30.028 (2)0.054 (2)0.034 (2)0.0013 (19)0.0103 (18)0.0036 (19)
C40.035 (2)0.048 (2)0.032 (2)0.0038 (19)0.0054 (18)0.0049 (19)
C50.028 (2)0.037 (2)0.035 (2)0.0006 (17)0.0042 (17)0.0004 (17)
C60.030 (2)0.043 (2)0.032 (2)0.0032 (17)0.0005 (17)0.0022 (17)
C70.054 (3)0.051 (3)0.034 (2)0.009 (2)0.007 (2)0.007 (2)
C80.047 (3)0.057 (3)0.045 (3)0.015 (2)0.012 (2)0.000 (2)
C90.023 (2)0.060 (3)0.033 (2)0.0078 (19)0.0046 (17)0.001 (2)
C100.031 (2)0.047 (2)0.041 (3)0.0025 (19)0.0004 (19)0.004 (2)
C110.029 (2)0.052 (3)0.043 (3)0.0052 (19)0.0017 (19)0.007 (2)
C120.020 (2)0.061 (3)0.039 (2)0.0014 (19)0.0037 (18)0.002 (2)
C130.033 (3)0.055 (2)0.036 (2)0.004 (2)0.0006 (19)0.010 (2)
C140.029 (2)0.048 (2)0.044 (3)0.0035 (19)0.0013 (19)0.001 (2)
C150.054 (3)0.082 (3)0.032 (2)0.008 (3)0.004 (2)0.011 (2)
C160.040 (3)0.070 (3)0.044 (3)0.000 (2)0.011 (2)0.013 (2)
Geometric parameters (Å, º) top
Br1—C51.899 (4)C7—H7A0.9700
Br2—C21.904 (4)C7—H7B0.9700
S1—C71.807 (4)C8—C91.509 (5)
S1—C81.809 (4)C8—H8A0.9700
S2—C151.800 (4)C8—H8B0.9700
S2—C161.823 (4)C9—C141.396 (6)
S2—H15C1.3601C9—C101.398 (5)
S2—H16D1.4245C10—C111.384 (6)
S2'—C151.771 (9)C11—C121.386 (6)
S2'—C161.806 (9)C11—H110.9300
O1—N11.222 (5)C12—C131.381 (6)
O2—N11.231 (5)C12—C151.493 (6)
N1—C101.472 (5)C13—C141.378 (5)
C1—C61.382 (5)C13—H130.9300
C1—C21.383 (5)C14—H140.9300
C1—H10.9300C15—H15A0.9700
C2—C31.392 (5)C15—H15B0.9700
C3—C41.390 (6)C15—H15C0.9700
C3—C161.499 (5)C15—H15D0.9700
C4—C51.369 (5)C16—H16A0.9700
C4—H40.9300C16—H16B0.9700
C5—C61.389 (5)C16—H16C0.9700
C6—C71.523 (6)C16—H16D0.9700
C7—S1—C8103.8 (2)C13—C12—C15122.5 (4)
C15—S2—C16102.7 (2)C11—C12—C15120.2 (4)
C16—S2—H15C132.5C14—C13—C12122.0 (4)
C15—S2—H16D132.9C14—C13—H13119.0
H15C—S2—H16D155.6C12—C13—H13119.0
C15—S2'—C16104.6 (5)C13—C14—C9121.8 (4)
O1—N1—O2123.4 (4)C13—C14—H14119.1
O1—N1—C10118.0 (4)C9—C14—H14119.1
O2—N1—C10118.6 (4)C12—C15—S2'119.0 (6)
C6—C1—C2120.7 (4)C12—C15—S2116.9 (3)
C6—C1—H1119.6S2'—C15—S262.0 (5)
C2—C1—H1119.6C12—C15—H15A108.1
C1—C2—C3122.5 (4)S2'—C15—H15A131.2
C1—C2—Br2116.4 (3)S2—C15—H15A108.1
C3—C2—Br2121.0 (3)C12—C15—H15B108.1
C4—C3—C2115.5 (4)S2'—C15—H15B47.5
C4—C3—C16120.3 (4)S2—C15—H15B108.1
C2—C3—C16124.0 (4)H15A—C15—H15B107.3
C5—C4—C3122.1 (4)C12—C15—H15C108.5
C5—C4—H4119.0S2'—C15—H15C107.4
C3—C4—H4119.0S2—C15—H15C48.1
C4—C5—C6121.7 (4)H15A—C15—H15C66.4
C4—C5—Br1118.3 (3)H15B—C15—H15C143.0
C6—C5—Br1120.0 (3)C12—C15—H15D107.0
C1—C6—C5116.9 (4)S2'—C15—H15D107.6
C1—C6—C7120.5 (4)S2—C15—H15D134.3
C5—C6—C7122.6 (4)H15B—C15—H15D67.4
C6—C7—S1116.0 (3)H15C—C15—H15D107.0
C6—C7—H7A108.3C3—C16—S2'115.2 (6)
S1—C7—H7A108.3C3—C16—S2113.1 (3)
C6—C7—H7B108.3S2'—C16—S260.9 (4)
S1—C7—H7B108.3C3—C16—H16A109.0
H7A—C7—H7B107.4S2'—C16—H16A50.0
C9—C8—S1113.8 (3)S2—C16—H16A109.0
C9—C8—H8A108.8C3—C16—H16B109.0
S1—C8—H8A108.8S2'—C16—H16B135.0
C9—C8—H8B108.8S2—C16—H16B109.0
S1—C8—H8B108.8H16A—C16—H16B107.8
H8A—C8—H8B107.7C3—C16—H16C108.0
C14—C9—C10115.1 (4)S2'—C16—H16C108.4
C14—C9—C8118.6 (4)S2—C16—H16C138.0
C10—C9—C8126.0 (4)H16A—C16—H16C63.6
C11—C10—C9123.1 (4)H16B—C16—H16C47.1
C11—C10—N1115.3 (4)C3—C16—H16D109.4
C9—C10—N1121.5 (4)S2'—C16—H16D108.2
C10—C11—C12120.3 (4)S2—C16—H16D50.8
C10—C11—H11119.9H16A—C16—H16D141.5
C12—C11—H11119.9H16B—C16—H16D62.6
C13—C12—C11117.3 (4)H16C—C16—H16D107.4
C6—C1—C2—C31.8 (6)O1—N1—C10—C9150.2 (4)
C6—C1—C2—Br2178.6 (3)O2—N1—C10—C931.4 (6)
C1—C2—C3—C46.4 (6)C9—C10—C11—C122.1 (6)
Br2—C2—C3—C4174.0 (3)N1—C10—C11—C12177.4 (3)
C1—C2—C3—C16168.8 (4)C10—C11—C12—C133.2 (6)
Br2—C2—C3—C1610.8 (6)C10—C11—C12—C15175.7 (4)
C2—C3—C4—C54.6 (6)C11—C12—C13—C144.5 (6)
C16—C3—C4—C5170.8 (4)C15—C12—C13—C14174.3 (4)
C3—C4—C5—C61.8 (6)C12—C13—C14—C90.6 (6)
C3—C4—C5—Br1178.4 (3)C10—C9—C14—C134.5 (6)
C2—C1—C6—C54.7 (6)C8—C9—C14—C13169.8 (4)
C2—C1—C6—C7172.8 (4)C13—C12—C15—S2'117.9 (6)
C4—C5—C6—C16.5 (6)C11—C12—C15—S2'60.9 (6)
Br1—C5—C6—C1173.7 (3)C13—C12—C15—S246.7 (5)
C4—C5—C6—C7171.0 (4)C11—C12—C15—S2132.2 (4)
Br1—C5—C6—C78.8 (5)C16—S2'—C15—C1265.4 (9)
C1—C6—C7—S138.9 (5)C16—S2'—C15—S241.5 (5)
C5—C6—C7—S1138.6 (3)C16—S2—C15—C1269.6 (4)
C8—S1—C7—C672.3 (4)C16—S2—C15—S2'40.6 (5)
C7—S1—C8—C965.9 (4)C4—C3—C16—S2'127.1 (6)
S1—C8—C9—C14109.7 (4)C2—C3—C16—S2'47.9 (7)
S1—C8—C9—C1064.0 (5)C4—C3—C16—S259.7 (5)
C14—C9—C10—C115.9 (6)C2—C3—C16—S2115.3 (4)
C8—C9—C10—C11168.0 (4)C15—S2'—C16—C362.2 (9)
C14—C9—C10—N1179.1 (4)C15—S2'—C16—S241.3 (5)
C8—C9—C10—N17.0 (6)C15—S2—C16—C366.9 (4)
O1—N1—C10—C1125.2 (6)C15—S2—C16—S2'40.2 (5)
O2—N1—C10—C11153.2 (4)

Experimental details

Crystal data
Chemical formulaC16H13Br2NO2S2
Mr475.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.9200 (3), 12.6556 (6), 18.8743 (8)
β (°) 94.939 (2)
V3)1646.81 (13)
Z4
Radiation typeMo Kα
µ (mm1)5.18
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11528, 3885, 2405
Rint0.046
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.119, 0.99
No. of reflections3885
No. of parameters218
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.34

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful to Professor Sheng-Hua Liu for technical assistance with the structure analysis and Dr Xiang-Gao Meng for the data collection.

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W., Xu, J., Zhang, X. & Lai, Y. H. (2006). Macromol. Chem. 39, 7277–7285.  CAS Google Scholar
First citationXu, J. W., Wang, W. L., Lin, T. T., Sun, Z. & Lai, Y. H. (2008). Supramol. Chem. 20, 723–730.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds