organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl­hydrazinium picrate

aNo. 503 Faculty, Xi'an Research Institute of High Technology, Hongqing Town, Xi'an 710025, People's Republic of China
*Correspondence e-mail: zhouliyou111@163.com

(Received 7 November 2011; accepted 16 November 2011; online 19 November 2011)

In the title salt, CH7N2+·C6H2N3O7, the dihedral angles between the three nitro groups and the plane of the benzene ring are 22.4 (2), 35.3 (2) and 2.8 (2)°. In the crystal, the components are linked by N—H⋯O and N—H⋯N hydrogen bonds into a two-dimensional network parallel to (10[\overline{1}]).

Related literature

For related structures, see: Yang et al. (2002[Yang, L., Zhang, J.-G. & Zhang, T.-L. (2002). Chin. J. Explos. Propel. 3, 66-68.]); Mu et al. (2011[Mu, X.-G., Wang, X.-J., Liu, X.-X., Cui, H. & Wang, H. (2011). Acta Cryst. E67, o2749.]).

[Scheme 1]

Experimental

Crystal data
  • CH7N2+·C6H2N3O7

  • Mr = 275.19

  • Monoclinic, P 21 /n

  • a = 11.766 (3) Å

  • b = 6.785 (2) Å

  • c = 14.420 (4) Å

  • β = 110.526 (4)°

  • V = 1078.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 296 K

  • 0.33 × 0.25 × 0.14 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.952, Tmax = 0.979

  • 5196 measured reflections

  • 1907 independent reflections

  • 1562 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.103

  • S = 1.08

  • 1907 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O3i 0.88 2.03 2.7807 (19) 142
N4—H4A⋯O2i 0.88 2.25 2.963 (2) 138
N4—H4B⋯N5ii 0.85 2.13 2.954 (2) 161
N5—H5A⋯O3iii 0.87 2.36 3.156 (2) 151
N5—H5B⋯O4iv 0.90 2.59 3.377 (2) 146
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x, y, z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The molecular structure of the title compound is shown in Fig. 1. The dihedral angles between the three nitro groups and the plane of the benzene ring are 22.4 (2), 35.3 (2) and 2.8 (2)° for the groups containing N1, N2 and N3. In the crystal, the components are linked by N—H···O hydrogen bonds into a two-dimensional network paralell to (101).

Related literature top

For related structures, see: Yang et al. (2002); Mu et al. (2011).

Experimental top

1-methylhydrazine (0.02 mol) was added to a solution of picric acid (0.02 mol) in 30 ml ethanol at room temperature, the mixture was stirred for 0.6 h to afford the title compound. Single crystals suitable for X-ray structural analysis was obtained by slowly evaporating from distilled water at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.96 Å; N—H = 0.85-0.90 Å and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Structure description top

The molecular structure of the title compound is shown in Fig. 1. The dihedral angles between the three nitro groups and the plane of the benzene ring are 22.4 (2), 35.3 (2) and 2.8 (2)° for the groups containing N1, N2 and N3. In the crystal, the components are linked by N—H···O hydrogen bonds into a two-dimensional network paralell to (101).

For related structures, see: Yang et al. (2002); Mu et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
1-Methylhydrazinium 2,4,6-trinitrophenolate top
Crystal data top
CH7N2+·C6H2N3O7F(000) = 568
Mr = 275.19Dx = 1.696 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1614 reflections
a = 11.766 (3) Åθ = 2.8–26.1°
b = 6.785 (2) ŵ = 0.15 mm1
c = 14.420 (4) ÅT = 296 K
β = 110.526 (4)°Block, yellow
V = 1078.0 (5) Å30.33 × 0.25 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
1907 independent reflections
Radiation source: fine-focus sealed tube1562 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1214
Tmin = 0.952, Tmax = 0.979k = 87
5196 measured reflectionsl = 1712
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.153P]
where P = (Fo2 + 2Fc2)/3
1907 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
CH7N2+·C6H2N3O7V = 1078.0 (5) Å3
Mr = 275.19Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.766 (3) ŵ = 0.15 mm1
b = 6.785 (2) ÅT = 296 K
c = 14.420 (4) Å0.33 × 0.25 × 0.14 mm
β = 110.526 (4)°
Data collection top
Bruker APEXII
diffractometer
1907 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1562 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.979Rint = 0.023
5196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.08Δρmax = 0.15 e Å3
1907 reflectionsΔρmin = 0.26 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.52167 (12)0.1473 (2)0.41558 (10)0.0358 (4)
N20.31795 (13)0.0736 (2)0.04968 (10)0.0359 (4)
N30.08521 (12)0.1090 (2)0.26709 (11)0.0353 (4)
N40.26648 (12)0.1526 (2)0.69636 (10)0.0335 (4)
H4A0.32780.08140.69430.040*
H4B0.28080.27640.70140.040*
N50.24219 (13)0.0849 (2)0.78250 (11)0.0361 (4)
H5A0.18240.15760.78570.043*
H5B0.30890.11020.83610.043*
O10.50471 (11)0.2240 (2)0.48615 (9)0.0523 (4)
O20.62224 (11)0.0934 (3)0.41872 (10)0.0575 (4)
O30.53492 (10)0.09419 (19)0.22096 (8)0.0365 (3)
O40.39264 (12)0.1642 (3)0.02613 (10)0.0612 (5)
O50.23853 (12)0.0268 (2)0.00860 (9)0.0536 (4)
O60.00559 (11)0.0933 (2)0.19306 (11)0.0578 (4)
O70.08063 (12)0.1317 (2)0.34954 (11)0.0568 (4)
C10.41718 (13)0.1197 (2)0.32599 (11)0.0268 (4)
C20.43426 (14)0.1013 (2)0.23195 (12)0.0266 (4)
C30.31911 (14)0.0895 (2)0.15092 (11)0.0275 (4)
C40.20832 (14)0.0859 (2)0.16195 (12)0.0281 (4)
H40.13770.07190.10700.034*
C50.20249 (14)0.1034 (2)0.25554 (12)0.0274 (4)
C60.30624 (14)0.1220 (2)0.33767 (12)0.0285 (4)
H60.30130.13590.40030.034*
C80.16207 (17)0.1100 (3)0.60533 (14)0.0435 (5)
H8A0.14260.02780.60320.065*
H8B0.18250.14370.54840.065*
H8C0.09330.18620.60520.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0281 (8)0.0469 (10)0.0311 (8)0.0041 (6)0.0089 (6)0.0046 (7)
N20.0319 (8)0.0462 (9)0.0298 (8)0.0034 (7)0.0111 (7)0.0037 (7)
N30.0277 (8)0.0379 (9)0.0427 (9)0.0019 (6)0.0155 (7)0.0004 (6)
N40.0337 (8)0.0286 (8)0.0433 (9)0.0012 (6)0.0200 (7)0.0013 (6)
N50.0365 (8)0.0383 (9)0.0383 (8)0.0033 (6)0.0192 (7)0.0011 (6)
O10.0407 (7)0.0773 (11)0.0365 (7)0.0070 (7)0.0104 (6)0.0241 (7)
O20.0246 (7)0.1020 (13)0.0408 (8)0.0096 (7)0.0051 (6)0.0088 (8)
O30.0244 (6)0.0512 (8)0.0367 (7)0.0023 (5)0.0142 (5)0.0039 (5)
O40.0478 (8)0.1007 (13)0.0388 (8)0.0176 (8)0.0196 (7)0.0114 (8)
O50.0514 (8)0.0733 (11)0.0330 (7)0.0126 (8)0.0111 (6)0.0139 (7)
O60.0231 (7)0.0945 (12)0.0524 (9)0.0012 (7)0.0092 (6)0.0003 (8)
O70.0425 (8)0.0867 (12)0.0515 (9)0.0072 (7)0.0294 (7)0.0082 (8)
C10.0229 (8)0.0294 (9)0.0260 (8)0.0015 (6)0.0057 (6)0.0015 (6)
C20.0249 (8)0.0224 (9)0.0329 (9)0.0000 (6)0.0105 (7)0.0015 (6)
C30.0301 (9)0.0281 (9)0.0243 (8)0.0009 (7)0.0094 (7)0.0028 (6)
C40.0235 (8)0.0279 (9)0.0294 (8)0.0006 (6)0.0050 (7)0.0028 (7)
C50.0228 (8)0.0253 (9)0.0361 (9)0.0008 (6)0.0127 (7)0.0018 (7)
C60.0304 (9)0.0277 (9)0.0291 (8)0.0002 (7)0.0126 (7)0.0013 (7)
C80.0428 (11)0.0478 (12)0.0381 (10)0.0078 (9)0.0118 (9)0.0004 (8)
Geometric parameters (Å, º) top
N1—O11.2200 (18)N5—H5B0.9046
N1—O21.2240 (18)O3—C21.2498 (19)
N1—C11.450 (2)C1—C61.374 (2)
N2—O41.2143 (19)C1—C21.444 (2)
N2—O51.2216 (19)C2—C31.448 (2)
N2—C31.459 (2)C3—C41.368 (2)
N3—O71.2186 (19)C4—C51.380 (2)
N3—O61.2217 (19)C4—H40.9300
N3—C51.447 (2)C5—C61.376 (2)
N4—N51.4439 (19)C6—H60.9300
N4—C81.478 (2)C8—H8A0.9600
N4—H4A0.8777C8—H8B0.9600
N4—H4B0.8546C8—H8C0.9600
N5—H5A0.8732
O1—N1—O2122.36 (14)O3—C2—C1124.91 (14)
O1—N1—C1117.56 (14)O3—C2—C3123.77 (15)
O2—N1—C1120.08 (14)C1—C2—C3111.31 (13)
O4—N2—O5122.94 (15)C4—C3—C2124.57 (15)
O4—N2—C3119.25 (15)C4—C3—N2116.12 (14)
O5—N2—C3117.77 (14)C2—C3—N2119.28 (14)
O7—N3—O6122.63 (15)C3—C4—C5119.24 (15)
O7—N3—C5119.05 (14)C3—C4—H4120.4
O6—N3—C5118.31 (15)C5—C4—H4120.4
N5—N4—C8110.36 (14)C6—C5—C4121.05 (14)
N5—N4—H4A105.5C6—C5—N3119.50 (15)
C8—N4—H4A107.4C4—C5—N3119.41 (14)
N5—N4—H4B109.4C1—C6—C5119.20 (15)
C8—N4—H4B110.2C1—C6—H6120.4
H4A—N4—H4B113.8C5—C6—H6120.4
N4—N5—H5A105.7N4—C8—H8A109.5
N4—N5—H5B107.5N4—C8—H8B109.5
H5A—N5—H5B108.8H8A—C8—H8B109.5
C6—C1—C2124.55 (14)N4—C8—H8C109.5
C6—C1—N1115.77 (14)H8A—C8—H8C109.5
C2—C1—N1119.61 (14)H8B—C8—H8C109.5
O1—N1—C1—C620.3 (2)O4—N2—C3—C237.3 (2)
O2—N1—C1—C6159.30 (16)O5—N2—C3—C2144.91 (16)
O1—N1—C1—C2156.85 (16)C2—C3—C4—C53.1 (3)
O2—N1—C1—C223.5 (2)N2—C3—C4—C5178.99 (14)
C6—C1—C2—O3178.15 (16)C3—C4—C5—C60.8 (2)
N1—C1—C2—O34.9 (2)C3—C4—C5—N3177.12 (15)
C6—C1—C2—C31.2 (2)O7—N3—C5—C60.6 (2)
N1—C1—C2—C3175.74 (14)O6—N3—C5—C6179.60 (15)
O3—C2—C3—C4176.18 (16)O7—N3—C5—C4177.37 (15)
C1—C2—C3—C43.1 (2)O6—N3—C5—C41.7 (2)
O3—C2—C3—N21.7 (2)C2—C1—C6—C50.8 (2)
C1—C2—C3—N2178.99 (14)N1—C1—C6—C5177.81 (14)
O4—N2—C3—C4144.66 (17)C4—C5—C6—C11.1 (2)
O5—N2—C3—C433.1 (2)N3—C5—C6—C1178.97 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O3i0.882.032.7807 (19)142
N4—H4A···O2i0.882.252.963 (2)138
N4—H4B···N5ii0.852.132.954 (2)161
N5—H5A···O3iii0.872.363.156 (2)151
N5—H5B···O4iv0.902.593.377 (2)146
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x1/2, y+1/2, z+1/2; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaCH7N2+·C6H2N3O7
Mr275.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.766 (3), 6.785 (2), 14.420 (4)
β (°) 110.526 (4)
V3)1078.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.33 × 0.25 × 0.14
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.952, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
5196, 1907, 1562
Rint0.023
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.08
No. of reflections1907
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.26

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O3i0.882.032.7807 (19)142.3
N4—H4A···O2i0.882.252.963 (2)137.8
N4—H4B···N5ii0.852.132.954 (2)160.8
N5—H5A···O3iii0.872.363.156 (2)151.1
N5—H5B···O4iv0.902.593.377 (2)145.6
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x1/2, y+1/2, z+1/2; (iv) x, y, z+1.
 

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMu, X.-G., Wang, X.-J., Liu, X.-X., Cui, H. & Wang, H. (2011). Acta Cryst. E67, o2749.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Zhang, J.-G. & Zhang, T.-L. (2002). Chin. J. Explos. Propel. 3, 66–68.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds