organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Di­benzyl-N,N′-di­methyl-N′′-(p-tol­yl)phospho­ric tri­amide

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran, and bDepartment of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 7 September 2011; accepted 1 November 2011; online 9 November 2011)

The asymmetric unit of the title compound, C23H28N3OP, contains two independent mol­ecules with significant conformational differences. For example, the torsion angles N—C—C—C involving the N-benzyl moieties are 57.3 (7) and 11.6 (8)° in one mol­ecule and 76.5 (7) and 97.4 (7)° in the other. In each mol­ecule, the P atom exhibits a distorted tetra­hedral conformation [the bond angles at P are in the ranges 104.7 (2)–115.2 (2) and 105.1 (2)–115.1 (2)° in the two molecules], and the phosphoryl group and the N—H group adopt an anti orientation with respect to one another. In the crystal, mol­ecules are linked via N—H⋯O(P) hydrogen bonds, forming a chain parallel to the a axis.

Related literature

For background to the synthesis of related compounds, see: Toghraee et al., (2011[Toghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680-1690.]). For related structures, see: Gholivand & Mahzouni (2011[Gholivand, K. & Mahzouni, H. R. (2011). Acta Cryst. B67, 238-243.]); Pourayoubi et al. (2011[Pourayoubi, M., Fadaei, H. & Parvez, M. (2011). Acta Cryst. E67, o2046.]).

[Scheme 1]

Experimental

Crystal data
  • C23H28N3OP

  • Mr = 393.45

  • Monoclinic, P 21 /n

  • a = 9.9621 (3) Å

  • b = 14.8245 (5) Å

  • c = 28.8407 (10) Å

  • β = 98.2682 (14)°

  • V = 4215.0 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 173 K

  • 0.06 × 0.05 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer with APEXII detector

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.991, Tmax = 0.994

  • 13508 measured reflections

  • 7788 independent reflections

  • 4450 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.104

  • wR(F2) = 0.199

  • S = 1.15

  • 7788 reflections

  • 508 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O2i 0.88 2.05 2.846 (6) 149
N6—H6N⋯O1ii 0.88 2.00 2.799 (6) 151
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft. The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

In continuation of our investigations on the synthesis of new phosphoramidates (Toghraee et al., 2011; Pourayoubi et al., 2011) we now report the synthesis and crystal structure of the title phosphoric triamide.

The asymmetric unit of the title compound (Fig. 1) contains two independent molecules with significant conformational differences. The torsion angles N1–C2–C3–C4 and N2–C10–C11–C16 involving the N-benzyl moiety in one molecule are: 57.3 (7) and 11.6 (8)°, respectively, compared to the corresponding angles in the second molecule with values 76.5 (7) and 97.4 (7)° (for torsion angles N5–C33–C34–C35 and N4–C25–C26–C31, respectively). In each molecule, the P atom adopts a distorted tetrahedral coordination P(O)(N)(N)2 environment with the bond angles in the range of 104.7 (2)° to 115.2 (2)° for P1 and 105.1 (2)° to 115.1 (2)° for P2. The PO and P—N bond lengths and the P—N—C bond angles are within the expected values for analogous compounds reported in the literature (Gholivand et al., 2011). In both molecules, the P—N bond lengths of the P(O)[NHC6H4(4-CH3)] fragments (1.646 (5) Å and 1.653 (4) Å, respectively, for molecules labeled with P1 and P2) are between the values of the P—N bonds in the P(O)[N(CH3)(CH2C6H5)]2 moieties (P1: 1.639 (5) Å & 1.660 (5) Å and P2: 1.634 (5) Å & 1.661 (5) Å).

In the crystal packing, the molecules are hydrogen bonded to each other resulting in a chain along to the a axis in an alternating sequence (Fig. 2).

Related literature top

For background to the synthesis of related compounds, see: Toghraee et al., (2011). For related structures, see: Gholivand & Mahzouni (2011); Pourayoubi et al. (2011).

Experimental top

To a solution of 4-CH3—C6H4NHP(O)Cl2 in chloroform, a solution of N-methylbenzylamine in chloroform was added dropwise at 273 K. After stirring for 4 h, the solvent was evaporated at room temperature and the obtained solid was washed with distilled water to remove N-methylbenzylamine hydrochloride salt. Single crystals, suitable for X-ray crystallography, were obtained from a solution of title compound in chloroform after slow evaporation at room temperature.

Refinement top

The H-atoms were included at geometrically idealized positions with N—H distances 0.88 Å and C—H distances = 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene type H-atoms, respectively. The methyl H-atoms at C1 were disordered over six sites with equal site occupancy factors. The H-atoms were assigned Uiso = 1.5 times Ueq C1 atom and 1.2 times Ueq of the rest of the parent atoms (C/N). The ADSYMM option in Platon suggests a pseudo-translation in the direction of the c-axis. Indeed the structure can also be refined in the subcell which leads to a strong disorder of the phenyl rings and practically no improvement of the reliability factors. This is in agreement with the results of the structure determination of the supercell, which shows that the torsion of the phenyl rings is different. Therefore, we decided to perform the refinement in the supercell. In this context it is noted that the intensity of the super structure reflections is very low and therefore, only about 60% of all independent reflections are observed, which might also be responsible for the low reliability factors.

Structure description top

In continuation of our investigations on the synthesis of new phosphoramidates (Toghraee et al., 2011; Pourayoubi et al., 2011) we now report the synthesis and crystal structure of the title phosphoric triamide.

The asymmetric unit of the title compound (Fig. 1) contains two independent molecules with significant conformational differences. The torsion angles N1–C2–C3–C4 and N2–C10–C11–C16 involving the N-benzyl moiety in one molecule are: 57.3 (7) and 11.6 (8)°, respectively, compared to the corresponding angles in the second molecule with values 76.5 (7) and 97.4 (7)° (for torsion angles N5–C33–C34–C35 and N4–C25–C26–C31, respectively). In each molecule, the P atom adopts a distorted tetrahedral coordination P(O)(N)(N)2 environment with the bond angles in the range of 104.7 (2)° to 115.2 (2)° for P1 and 105.1 (2)° to 115.1 (2)° for P2. The PO and P—N bond lengths and the P—N—C bond angles are within the expected values for analogous compounds reported in the literature (Gholivand et al., 2011). In both molecules, the P—N bond lengths of the P(O)[NHC6H4(4-CH3)] fragments (1.646 (5) Å and 1.653 (4) Å, respectively, for molecules labeled with P1 and P2) are between the values of the P—N bonds in the P(O)[N(CH3)(CH2C6H5)]2 moieties (P1: 1.639 (5) Å & 1.660 (5) Å and P2: 1.634 (5) Å & 1.661 (5) Å).

In the crystal packing, the molecules are hydrogen bonded to each other resulting in a chain along to the a axis in an alternating sequence (Fig. 2).

For background to the synthesis of related compounds, see: Toghraee et al., (2011). For related structures, see: Gholivand & Mahzouni (2011); Pourayoubi et al. (2011).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. An ORTEP plot of the title molecule with labeling. Displacement ellipsoids are given at 50% probability level.
[Figure 2] Fig. 2. Part of the crystal packing with hydrogen bonds shown as dotted lines. The symmetrically independent molecules are shown as different colors. Only H atoms involved in hydrogen bonds are shown.
N,N'-Dibenzyl-N,N'-dimethyl-N''- (p-tolyl)phosphoric triamide top
Crystal data top
C23H28N3OPF(000) = 1680
Mr = 393.45Dx = 1.240 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6919 reflections
a = 9.9621 (3) Åθ = 1.0–26.0°
b = 14.8245 (5) ŵ = 0.15 mm1
c = 28.8407 (10) ÅT = 173 K
β = 98.2682 (14)°Prism, colorless
V = 4215.0 (2) Å30.06 × 0.05 × 0.04 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer with APEXII detector
7788 independent reflections
Radiation source: fine-focus sealed tube4450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ω and φ scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1212
Tmin = 0.991, Tmax = 0.994k = 1818
13508 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.104Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + 17.8P]
where P = (Fo2 + 2Fc2)/3
7788 reflections(Δ/σ)max = 0.002
508 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C23H28N3OPV = 4215.0 (2) Å3
Mr = 393.45Z = 8
Monoclinic, P21/nMo Kα radiation
a = 9.9621 (3) ŵ = 0.15 mm1
b = 14.8245 (5) ÅT = 173 K
c = 28.8407 (10) Å0.06 × 0.05 × 0.04 mm
β = 98.2682 (14)°
Data collection top
Nonius KappaCCD
diffractometer with APEXII detector
7788 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
4450 reflections with I > 2σ(I)
Tmin = 0.991, Tmax = 0.994Rint = 0.074
13508 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1040 restraints
wR(F2) = 0.199H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + 17.8P]
where P = (Fo2 + 2Fc2)/3
7788 reflectionsΔρmax = 0.32 e Å3
508 parametersΔρmin = 0.33 e Å3
Special details top

Experimental. IR (KBr, cm-1): 3178, 3014, 2913, 1610, 1451, 1326, 1187, 1005, 942, 817.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.79811 (14)0.81400 (11)0.52504 (5)0.0261 (3)
O10.9321 (4)0.7937 (3)0.51123 (14)0.0364 (10)
N10.7853 (4)0.9218 (3)0.53627 (16)0.0298 (11)
N20.7750 (4)0.7533 (3)0.57164 (15)0.0274 (11)
N30.6671 (4)0.7895 (3)0.48547 (15)0.0295 (11)
H3N0.61230.74640.49220.035*
C10.6567 (6)0.9707 (4)0.5311 (2)0.0381 (15)
H1A0.58200.92860.52150.057*0.50
H1B0.65711.01770.50720.057*0.50
H1C0.64490.99850.56100.057*0.50
H1D0.67401.03450.53830.057*0.50
H1E0.59890.94550.55260.057*0.50
H1F0.61110.96470.49880.057*0.50
C20.9044 (6)0.9791 (4)0.5503 (2)0.0349 (15)
H2A0.90461.02870.52730.042*
H2B0.98750.94290.54950.042*
C30.9086 (5)1.0190 (4)0.59821 (19)0.0270 (13)
C40.9063 (6)0.9621 (4)0.6366 (2)0.0386 (15)
H40.90310.89850.63240.046*
C50.9086 (7)0.9988 (4)0.6806 (2)0.0467 (17)
H50.90680.95990.70670.056*
C60.9135 (7)1.0905 (5)0.6874 (2)0.0464 (17)
H60.91551.11480.71800.056*
C70.9153 (6)1.1463 (5)0.6501 (2)0.0432 (17)
H70.91921.20980.65460.052*
C80.9116 (6)1.1112 (4)0.6054 (2)0.0340 (14)
H80.91111.15090.57950.041*
C90.7891 (6)0.6548 (4)0.5673 (2)0.0397 (16)
H9A0.80970.62800.59850.048*
H9B0.86280.64150.54920.048*
H9C0.70400.62950.55120.048*
C100.6726 (5)0.7793 (4)0.60118 (19)0.0323 (14)
H10A0.58840.74500.59080.039*
H10B0.65150.84410.59610.039*
C110.7145 (5)0.7634 (4)0.65308 (19)0.0278 (13)
C120.6183 (6)0.7749 (4)0.68242 (19)0.0328 (14)
H120.52730.78820.66950.039*
C130.6524 (6)0.7673 (4)0.7307 (2)0.0388 (15)
H130.58520.77600.75050.047*
C140.7856 (6)0.7468 (5)0.7501 (2)0.0447 (17)
H140.80990.74220.78310.054*
C150.8803 (6)0.7335 (4)0.7208 (2)0.0399 (16)
H150.97060.71800.73360.048*
C160.8458 (6)0.7424 (4)0.67252 (19)0.0308 (13)
H160.91320.73410.65270.037*
C170.6360 (5)0.8324 (4)0.44145 (19)0.0270 (13)
C180.7352 (6)0.8716 (4)0.4181 (2)0.0368 (15)
H180.82760.86950.43200.044*
C190.7010 (6)0.9127 (5)0.3758 (2)0.0420 (17)
H190.77060.93830.36060.050*
C200.5668 (6)0.9183 (4)0.3542 (2)0.0355 (15)
C210.4688 (6)0.8791 (4)0.3772 (2)0.0360 (15)
H210.37630.88180.36340.043*
C220.5024 (5)0.8364 (4)0.41954 (19)0.0277 (13)
H220.43300.80910.43410.033*
C230.5297 (7)0.9651 (5)0.3071 (2)0.0492 (18)
H23A0.43100.96460.29820.059*
H23B0.57230.93330.28320.059*
H23C0.56211.02760.30940.059*
P20.70017 (14)0.31166 (11)0.47176 (5)0.0258 (3)
O20.5670 (4)0.2915 (3)0.48617 (13)0.0315 (10)
N40.7215 (4)0.2499 (3)0.42532 (15)0.0286 (11)
N50.7131 (4)0.4189 (3)0.45992 (16)0.0286 (11)
N60.8327 (4)0.2883 (3)0.51137 (15)0.0277 (11)
H6N0.88840.24550.50500.033*
C240.6886 (6)0.1534 (4)0.4276 (2)0.0378 (15)
H24A0.64780.13240.39660.045*
H24B0.62440.14440.45000.045*
H24C0.77170.11920.43790.045*
C250.8327 (5)0.2691 (4)0.39825 (19)0.0323 (14)
H25A0.90890.22750.40850.039*
H25B0.86540.33140.40520.039*
C260.7919 (5)0.2594 (5)0.3457 (2)0.0330 (14)
C270.7932 (6)0.1764 (5)0.3239 (2)0.0428 (16)
H270.81910.12390.34180.051*
C280.7561 (7)0.1696 (6)0.2749 (2)0.058 (2)
H280.75600.11250.26000.070*
C290.7202 (7)0.2455 (8)0.2489 (3)0.067 (3)
H290.69540.24120.21600.080*
C300.7202 (7)0.3267 (7)0.2705 (2)0.064 (2)
H300.69560.37920.25240.076*
C310.7554 (6)0.3344 (5)0.3183 (2)0.0442 (17)
H310.75450.39200.33270.053*
C320.8413 (6)0.4676 (4)0.4625 (2)0.0408 (16)
H32A0.91690.42500.46910.061*0.50
H32B0.84710.51260.48760.061*0.50
H32C0.84610.49780.43260.061*0.50
H32D0.82320.53200.45710.061*0.50
H32E0.89290.44430.43860.061*0.50
H32F0.89400.45910.49360.061*0.50
C330.5917 (6)0.4758 (4)0.4501 (2)0.0359 (15)
H33A0.59930.52630.47280.043*
H33B0.51110.43970.45480.043*
C340.5701 (6)0.5140 (4)0.4010 (2)0.0313 (14)
C350.5201 (6)0.4618 (4)0.3632 (2)0.0389 (15)
H350.50000.40010.36770.047*
C360.4983 (7)0.4981 (5)0.3182 (2)0.0494 (19)
H360.46520.46090.29230.059*
C370.5248 (7)0.5884 (5)0.3113 (3)0.055 (2)
H370.50900.61370.28070.066*
C380.5743 (7)0.6414 (5)0.3492 (2)0.0494 (18)
H380.59310.70340.34500.059*
C390.5964 (6)0.6037 (4)0.3934 (2)0.0369 (15)
H390.63070.64060.41930.044*
C400.8616 (5)0.3334 (4)0.55505 (18)0.0261 (13)
C410.9962 (5)0.3371 (4)0.57746 (19)0.0268 (13)
H411.06680.31040.56320.032*
C421.0257 (6)0.3798 (4)0.6203 (2)0.0322 (14)
H421.11720.38130.63510.039*
C430.9261 (6)0.4207 (4)0.6426 (2)0.0350 (15)
C440.7931 (6)0.4161 (4)0.6199 (2)0.0389 (16)
H440.72260.44360.63390.047*
C450.7613 (6)0.3722 (4)0.5770 (2)0.0335 (14)
H450.66940.36880.56270.040*
C460.9598 (7)0.4691 (5)0.6886 (2)0.0507 (19)
H46A0.88400.46320.70660.061*
H46B0.97590.53310.68280.061*
H46C1.04160.44260.70630.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0268 (8)0.0310 (9)0.0199 (7)0.0050 (7)0.0011 (6)0.0013 (6)
O10.027 (2)0.050 (3)0.032 (2)0.011 (2)0.0028 (17)0.007 (2)
N10.025 (2)0.035 (3)0.028 (3)0.009 (2)0.001 (2)0.006 (2)
N20.035 (3)0.025 (3)0.021 (2)0.003 (2)0.001 (2)0.002 (2)
N30.030 (3)0.032 (3)0.025 (3)0.003 (2)0.001 (2)0.005 (2)
C10.041 (4)0.039 (4)0.034 (3)0.016 (3)0.003 (3)0.000 (3)
C20.032 (3)0.035 (4)0.038 (4)0.000 (3)0.007 (3)0.001 (3)
C30.020 (3)0.033 (3)0.029 (3)0.002 (2)0.006 (2)0.002 (3)
C40.053 (4)0.027 (3)0.033 (3)0.002 (3)0.004 (3)0.001 (3)
C50.069 (5)0.035 (4)0.032 (4)0.010 (3)0.004 (3)0.004 (3)
C60.058 (4)0.048 (4)0.031 (4)0.008 (4)0.000 (3)0.006 (3)
C70.051 (4)0.031 (4)0.046 (4)0.000 (3)0.002 (3)0.006 (3)
C80.037 (3)0.031 (4)0.034 (4)0.002 (3)0.007 (3)0.009 (3)
C90.047 (4)0.034 (4)0.038 (4)0.006 (3)0.005 (3)0.003 (3)
C100.028 (3)0.040 (4)0.027 (3)0.001 (3)0.002 (2)0.001 (3)
C110.031 (3)0.026 (3)0.026 (3)0.004 (3)0.003 (2)0.004 (3)
C120.031 (3)0.038 (4)0.029 (3)0.003 (3)0.004 (2)0.003 (3)
C130.044 (4)0.036 (4)0.039 (4)0.000 (3)0.012 (3)0.001 (3)
C140.054 (4)0.056 (4)0.023 (3)0.010 (4)0.003 (3)0.006 (3)
C150.033 (3)0.050 (4)0.033 (3)0.006 (3)0.007 (3)0.011 (3)
C160.033 (3)0.026 (3)0.033 (3)0.003 (3)0.003 (2)0.005 (3)
C170.026 (3)0.029 (3)0.025 (3)0.002 (3)0.001 (2)0.003 (3)
C180.025 (3)0.048 (4)0.037 (4)0.003 (3)0.003 (3)0.000 (3)
C190.046 (4)0.049 (4)0.031 (3)0.013 (3)0.003 (3)0.009 (3)
C200.043 (4)0.039 (4)0.023 (3)0.003 (3)0.003 (3)0.002 (3)
C210.036 (3)0.041 (4)0.027 (3)0.009 (3)0.007 (3)0.003 (3)
C220.026 (3)0.034 (3)0.025 (3)0.002 (3)0.010 (2)0.001 (3)
C230.064 (5)0.054 (5)0.028 (4)0.005 (4)0.001 (3)0.012 (3)
P20.0239 (7)0.0327 (9)0.0204 (7)0.0018 (7)0.0021 (6)0.0029 (7)
O20.026 (2)0.041 (3)0.027 (2)0.0002 (18)0.0027 (16)0.0055 (19)
N40.029 (3)0.036 (3)0.021 (2)0.007 (2)0.005 (2)0.002 (2)
N50.029 (3)0.031 (3)0.026 (3)0.000 (2)0.004 (2)0.004 (2)
N60.028 (3)0.029 (3)0.025 (2)0.004 (2)0.0017 (19)0.006 (2)
C240.042 (4)0.036 (4)0.036 (4)0.005 (3)0.007 (3)0.001 (3)
C250.025 (3)0.046 (4)0.026 (3)0.001 (3)0.001 (2)0.003 (3)
C260.022 (3)0.050 (4)0.027 (3)0.001 (3)0.002 (2)0.006 (3)
C270.037 (3)0.047 (4)0.047 (4)0.006 (3)0.015 (3)0.010 (3)
C280.050 (4)0.084 (6)0.043 (4)0.020 (4)0.016 (3)0.023 (4)
C290.047 (5)0.122 (8)0.032 (4)0.015 (5)0.006 (3)0.011 (5)
C300.042 (4)0.118 (8)0.032 (4)0.011 (5)0.010 (3)0.030 (5)
C310.031 (3)0.068 (5)0.039 (4)0.005 (3)0.022 (3)0.008 (3)
C320.033 (3)0.039 (4)0.051 (4)0.008 (3)0.005 (3)0.004 (3)
C330.039 (4)0.037 (4)0.032 (3)0.002 (3)0.009 (3)0.001 (3)
C340.032 (3)0.034 (4)0.029 (3)0.007 (3)0.007 (3)0.003 (3)
C350.048 (4)0.035 (4)0.032 (3)0.009 (3)0.001 (3)0.003 (3)
C360.058 (4)0.064 (5)0.025 (3)0.026 (4)0.002 (3)0.011 (3)
C370.060 (5)0.065 (5)0.041 (4)0.026 (4)0.016 (3)0.018 (4)
C380.056 (4)0.049 (5)0.045 (4)0.017 (4)0.013 (3)0.018 (4)
C390.037 (4)0.035 (4)0.037 (4)0.007 (3)0.004 (3)0.005 (3)
C400.034 (3)0.023 (3)0.019 (3)0.001 (2)0.003 (2)0.001 (2)
C410.027 (3)0.029 (3)0.025 (3)0.002 (3)0.006 (2)0.003 (3)
C420.032 (3)0.032 (4)0.031 (3)0.001 (3)0.001 (3)0.001 (3)
C430.046 (4)0.033 (4)0.025 (3)0.003 (3)0.001 (3)0.001 (3)
C440.045 (4)0.040 (4)0.032 (3)0.011 (3)0.009 (3)0.009 (3)
C450.031 (3)0.040 (4)0.029 (3)0.011 (3)0.005 (3)0.006 (3)
C460.067 (5)0.044 (4)0.039 (4)0.005 (4)0.001 (3)0.008 (3)
Geometric parameters (Å, º) top
P1—O11.478 (4)P2—O21.476 (4)
P1—N11.639 (5)P2—N51.634 (5)
P1—N31.646 (5)P2—N61.653 (4)
P1—N21.660 (5)P2—N41.661 (5)
N1—C11.460 (7)N4—C241.472 (7)
N1—C21.469 (7)N4—C251.472 (7)
N2—C101.472 (7)N5—C321.460 (7)
N2—C91.474 (7)N5—C331.469 (7)
N3—C171.414 (7)N6—C401.418 (7)
N3—H3N0.8800N6—H6N0.8800
C1—H1A0.9800C24—H24A0.9800
C1—H1B0.9800C24—H24B0.9800
C1—H1C0.9800C24—H24C0.9800
C1—H1D0.9800C25—C261.518 (7)
C1—H1E0.9800C25—H25A0.9900
C1—H1F0.9800C25—H25B0.9900
C2—C31.497 (8)C26—C311.382 (9)
C2—H2A0.9900C26—C271.383 (9)
C2—H2B0.9900C27—C281.410 (9)
C3—C81.383 (8)C27—H270.9500
C3—C41.394 (8)C28—C291.371 (11)
C4—C51.379 (8)C28—H280.9500
C4—H40.9500C29—C301.354 (12)
C5—C61.374 (9)C29—H290.9500
C5—H50.9500C30—C311.379 (9)
C6—C71.360 (9)C30—H300.9500
C6—H60.9500C31—H310.9500
C7—C81.385 (9)C32—H32A0.9800
C7—H70.9500C32—H32B0.9800
C8—H80.9500C32—H32C0.9800
C9—H9A0.9800C32—H32D0.9800
C9—H9B0.9800C32—H32E0.9800
C9—H9C0.9800C32—H32F0.9800
C10—C111.513 (7)C33—C341.510 (8)
C10—H10A0.9900C33—H33A0.9900
C10—H10B0.9900C33—H33B0.9900
C11—C121.378 (7)C34—C351.373 (8)
C11—C161.382 (7)C34—C391.379 (8)
C12—C131.389 (8)C35—C361.392 (8)
C12—H120.9500C35—H350.9500
C13—C141.397 (8)C36—C371.385 (10)
C13—H130.9500C36—H360.9500
C14—C151.368 (8)C37—C381.379 (10)
C14—H140.9500C37—H370.9500
C15—C161.391 (7)C38—C391.379 (8)
C15—H150.9500C38—H380.9500
C16—H160.9500C39—H390.9500
C17—C221.390 (7)C40—C451.384 (8)
C17—C181.399 (8)C40—C411.403 (7)
C18—C191.364 (8)C41—C421.381 (8)
C18—H180.9500C41—H410.9500
C19—C201.394 (8)C42—C431.397 (8)
C19—H190.9500C42—H420.9500
C20—C211.386 (8)C43—C441.393 (8)
C20—C231.524 (8)C43—C461.502 (8)
C21—C221.373 (8)C44—C451.393 (8)
C21—H210.9500C44—H440.9500
C22—H220.9500C45—H450.9500
C23—H23A0.9800C46—H46A0.9800
C23—H23B0.9800C46—H46B0.9800
C23—H23C0.9800C46—H46C0.9800
O1—P1—N1110.5 (3)O2—P2—N5110.9 (2)
O1—P1—N3115.2 (2)O2—P2—N6115.1 (2)
N1—P1—N3106.0 (2)N5—P2—N6105.6 (2)
O1—P1—N2110.1 (2)O2—P2—N4109.9 (2)
N1—P1—N2110.1 (2)N5—P2—N4110.1 (2)
N3—P1—N2104.7 (2)N6—P2—N4105.1 (2)
C1—N1—C2113.8 (5)C24—N4—C25113.7 (5)
C1—N1—P1123.7 (4)C24—N4—P2116.3 (4)
C2—N1—P1122.4 (4)C25—N4—P2121.0 (4)
C10—N2—C9113.0 (5)C32—N5—C33114.6 (5)
C10—N2—P1121.0 (4)C32—N5—P2124.4 (4)
C9—N2—P1116.2 (4)C33—N5—P2120.8 (4)
C17—N3—P1125.0 (4)C40—N6—P2123.7 (4)
C17—N3—H3N117.5C40—N6—H6N118.1
P1—N3—H3N117.5P2—N6—H6N118.1
N1—C1—H1A109.5N4—C24—H24A109.5
N1—C1—H1B109.5N4—C24—H24B109.5
H1A—C1—H1B109.5H24A—C24—H24B109.5
N1—C1—H1C109.5N4—C24—H24C109.5
H1A—C1—H1C109.5H24A—C24—H24C109.5
H1B—C1—H1C109.5H24B—C24—H24C109.5
N1—C1—H1D109.5N4—C25—C26113.4 (4)
H1A—C1—H1D141.1N4—C25—H25A108.9
H1B—C1—H1D56.3C26—C25—H25A108.9
H1C—C1—H1D56.3N4—C25—H25B108.9
N1—C1—H1E109.5C26—C25—H25B108.9
H1A—C1—H1E56.3H25A—C25—H25B107.7
H1B—C1—H1E141.1C31—C26—C27118.3 (6)
H1C—C1—H1E56.3C31—C26—C25120.3 (6)
H1D—C1—H1E109.5C27—C26—C25121.4 (6)
N1—C1—H1F109.5C26—C27—C28120.1 (7)
H1A—C1—H1F56.3C26—C27—H27119.9
H1B—C1—H1F56.3C28—C27—H27119.9
H1C—C1—H1F141.1C29—C28—C27119.9 (7)
H1D—C1—H1F109.5C29—C28—H28120.0
H1E—C1—H1F109.5C27—C28—H28120.0
N1—C2—C3113.4 (5)C30—C29—C28119.7 (7)
N1—C2—H2A108.9C30—C29—H29120.1
C3—C2—H2A108.9C28—C29—H29120.1
N1—C2—H2B108.9C29—C30—C31121.1 (8)
C3—C2—H2B108.9C29—C30—H30119.5
H2A—C2—H2B107.7C31—C30—H30119.5
C8—C3—C4118.8 (6)C30—C31—C26120.9 (7)
C8—C3—C2121.7 (5)C30—C31—H31119.5
C4—C3—C2119.4 (5)C26—C31—H31119.5
C5—C4—C3119.5 (6)N5—C32—H32A109.5
C5—C4—H4120.3N5—C32—H32B109.5
C3—C4—H4120.3H32A—C32—H32B109.5
C6—C5—C4121.2 (6)N5—C32—H32C109.5
C6—C5—H5119.4H32A—C32—H32C109.5
C4—C5—H5119.4H32B—C32—H32C109.5
C7—C6—C5119.5 (6)N5—C32—H32D109.5
C7—C6—H6120.2H32A—C32—H32D141.1
C5—C6—H6120.2H32B—C32—H32D56.3
C6—C7—C8120.5 (6)H32C—C32—H32D56.3
C6—C7—H7119.8N5—C32—H32E109.5
C8—C7—H7119.8H32A—C32—H32E56.3
C3—C8—C7120.5 (6)H32B—C32—H32E141.1
C3—C8—H8119.8H32C—C32—H32E56.3
C7—C8—H8119.8H32D—C32—H32E109.5
N2—C9—H9A109.5N5—C32—H32F109.5
N2—C9—H9B109.5H32A—C32—H32F56.3
H9A—C9—H9B109.5H32B—C32—H32F56.3
N2—C9—H9C109.5H32C—C32—H32F141.1
H9A—C9—H9C109.5H32D—C32—H32F109.5
H9B—C9—H9C109.5H32E—C32—H32F109.5
N2—C10—C11114.6 (4)N5—C33—C34113.5 (5)
N2—C10—H10A108.6N5—C33—H33A108.9
C11—C10—H10A108.6C34—C33—H33A108.9
N2—C10—H10B108.6N5—C33—H33B108.9
C11—C10—H10B108.6C34—C33—H33B108.9
H10A—C10—H10B107.6H33A—C33—H33B107.7
C12—C11—C16118.7 (5)C35—C34—C39118.1 (6)
C12—C11—C10118.1 (5)C35—C34—C33121.3 (6)
C16—C11—C10123.2 (5)C39—C34—C33120.5 (6)
C11—C12—C13120.9 (5)C34—C35—C36120.9 (6)
C11—C12—H12119.6C34—C35—H35119.6
C13—C12—H12119.6C36—C35—H35119.6
C12—C13—C14120.0 (6)C37—C36—C35120.1 (6)
C12—C13—H13120.0C37—C36—H36120.0
C14—C13—H13120.0C35—C36—H36120.0
C15—C14—C13118.9 (6)C38—C37—C36119.3 (7)
C15—C14—H14120.5C38—C37—H37120.3
C13—C14—H14120.5C36—C37—H37120.3
C14—C15—C16120.7 (6)C39—C38—C37119.6 (7)
C14—C15—H15119.7C39—C38—H38120.2
C16—C15—H15119.7C37—C38—H38120.2
C11—C16—C15120.7 (6)C38—C39—C34122.0 (7)
C11—C16—H16119.6C38—C39—H39119.0
C15—C16—H16119.6C34—C39—H39119.0
C22—C17—C18117.4 (5)C45—C40—C41118.6 (5)
C22—C17—N3120.0 (5)C45—C40—N6122.3 (5)
C18—C17—N3122.7 (5)C41—C40—N6119.1 (5)
C19—C18—C17120.9 (6)C42—C41—C40119.7 (5)
C19—C18—H18119.5C42—C41—H41120.1
C17—C18—H18119.5C40—C41—H41120.1
C18—C19—C20121.8 (6)C41—C42—C43122.5 (5)
C18—C19—H19119.1C41—C42—H42118.7
C20—C19—H19119.1C43—C42—H42118.7
C21—C20—C19117.3 (6)C44—C43—C42116.9 (5)
C21—C20—C23121.4 (6)C44—C43—C46121.0 (6)
C19—C20—C23121.3 (6)C42—C43—C46122.1 (6)
C22—C21—C20121.4 (5)C45—C44—C43121.3 (6)
C22—C21—H21119.3C45—C44—H44119.3
C20—C21—H21119.3C43—C44—H44119.3
C21—C22—C17121.3 (5)C40—C45—C44120.9 (5)
C21—C22—H22119.4C40—C45—H45119.5
C17—C22—H22119.4C44—C45—H45119.5
C20—C23—H23A109.5C43—C46—H46A109.5
C20—C23—H23B109.5C43—C46—H46B109.5
H23A—C23—H23B109.5H46A—C46—H46B109.5
C20—C23—H23C109.5C43—C46—H46C109.5
H23A—C23—H23C109.5H46A—C46—H46C109.5
H23B—C23—H23C109.5H46B—C46—H46C109.5
O1—P1—N1—C1152.6 (4)O2—P2—N4—C2447.0 (5)
N3—P1—N1—C127.2 (5)N5—P2—N4—C24169.4 (4)
N2—P1—N1—C185.5 (5)N6—P2—N4—C2477.3 (4)
O1—P1—N1—C224.2 (5)O2—P2—N4—C25168.0 (4)
N3—P1—N1—C2149.6 (4)N5—P2—N4—C2545.6 (5)
N2—P1—N1—C297.7 (5)N6—P2—N4—C2567.7 (5)
O1—P1—N2—C10160.9 (4)O2—P2—N5—C32155.0 (4)
N1—P1—N2—C1038.8 (5)N6—P2—N5—C3229.8 (5)
N3—P1—N2—C1074.8 (4)N4—P2—N5—C3283.2 (5)
O1—P1—N2—C955.5 (5)O2—P2—N5—C3318.8 (5)
N1—P1—N2—C9177.7 (4)N6—P2—N5—C33144.0 (4)
N3—P1—N2—C968.8 (4)N4—P2—N5—C33103.0 (4)
O1—P1—N3—C1765.8 (5)O2—P2—N6—C4065.4 (5)
N1—P1—N3—C1756.7 (5)N5—P2—N6—C4057.2 (5)
N2—P1—N3—C17173.2 (4)N4—P2—N6—C40173.7 (4)
C1—N1—C2—C365.1 (6)C24—N4—C25—C2673.7 (6)
P1—N1—C2—C3117.8 (5)P2—N4—C25—C26140.4 (5)
N1—C2—C3—C8121.2 (6)N4—C25—C26—C3197.4 (7)
N1—C2—C3—C457.3 (7)N4—C25—C26—C2784.2 (7)
C8—C3—C4—C50.7 (9)C31—C26—C27—C280.9 (9)
C2—C3—C4—C5179.3 (6)C25—C26—C27—C28179.3 (5)
C3—C4—C5—C60.2 (10)C26—C27—C28—C290.7 (10)
C4—C5—C6—C70.4 (11)C27—C28—C29—C300.2 (11)
C5—C6—C7—C80.4 (11)C28—C29—C30—C310.2 (11)
C4—C3—C8—C71.4 (9)C29—C30—C31—C260.1 (10)
C2—C3—C8—C7179.9 (5)C27—C26—C31—C300.5 (9)
C6—C7—C8—C31.3 (10)C25—C26—C31—C30178.9 (5)
C9—N2—C10—C1172.7 (6)C32—N5—C33—C3469.1 (7)
P1—N2—C10—C11142.7 (4)P2—N5—C33—C34116.5 (5)
N2—C10—C11—C12171.8 (5)N5—C33—C34—C3576.5 (7)
N2—C10—C11—C1611.6 (8)N5—C33—C34—C39105.6 (6)
C16—C11—C12—C131.1 (9)C39—C34—C35—C360.9 (9)
C10—C11—C12—C13175.7 (6)C33—C34—C35—C36178.8 (6)
C11—C12—C13—C140.6 (9)C34—C35—C36—C371.2 (10)
C12—C13—C14—C150.7 (10)C35—C36—C37—C380.8 (10)
C13—C14—C15—C161.6 (10)C36—C37—C38—C390.1 (10)
C12—C11—C16—C150.3 (9)C37—C38—C39—C340.1 (10)
C10—C11—C16—C15176.4 (6)C35—C34—C39—C380.3 (9)
C14—C15—C16—C111.1 (9)C33—C34—C39—C38178.2 (6)
P1—N3—C17—C22152.8 (5)P2—N6—C40—C4527.2 (8)
P1—N3—C17—C1827.5 (8)P2—N6—C40—C41154.3 (4)
C22—C17—C18—C190.6 (9)C45—C40—C41—C420.6 (8)
N3—C17—C18—C19179.7 (6)N6—C40—C41—C42179.2 (5)
C17—C18—C19—C200.6 (10)C40—C41—C42—C430.5 (9)
C18—C19—C20—C210.9 (10)C41—C42—C43—C440.6 (9)
C18—C19—C20—C23179.4 (6)C41—C42—C43—C46178.3 (6)
C19—C20—C21—C220.1 (9)C42—C43—C44—C450.4 (9)
C23—C20—C21—C22179.6 (6)C46—C43—C44—C45179.3 (6)
C20—C21—C22—C171.3 (9)C41—C40—C45—C441.6 (9)
C18—C17—C22—C211.5 (9)N6—C40—C45—C44179.8 (6)
N3—C17—C22—C21178.8 (5)C43—C44—C45—C401.6 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O2i0.882.052.846 (6)149
N6—H6N···O1ii0.882.002.799 (6)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H28N3OP
Mr393.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)9.9621 (3), 14.8245 (5), 28.8407 (10)
β (°) 98.2682 (14)
V3)4215.0 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.06 × 0.05 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer with APEXII detector
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.991, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
13508, 7788, 4450
Rint0.074
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.104, 0.199, 1.15
No. of reflections7788
No. of parameters508
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + 17.8P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.32, 0.33

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O2i0.882.052.846 (6)149.4
N6—H6N···O1ii0.882.002.799 (6)150.6
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
 

Acknowledgements

Support of this investigation by the Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGholivand, K. & Mahzouni, H. R. (2011). Acta Cryst. B67, 238–243.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft. The Netherlands.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPourayoubi, M., Fadaei, H. & Parvez, M. (2011). Acta Cryst. E67, o2046.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680–1690.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds