metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­lithium]-μ-[rac-cis-(2-carb­­oxy­cyclo­hexane-1-carboxyl­ato-κ2O1:O2]]

aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bSchool of Biomolecular and Physical Sciences, Griffith University, Nathan, 4111, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 27 October 2011; accepted 27 October 2011; online 5 November 2011)

In the structure of the title compound, [Li(C8H11O4)(H2O)2]n, the distorted tetra­hadral LiO4 coordination sphere comprises two water mol­ecules and two carboxyl O-atom donors from separate bridging cis-2-carb­oxy­cyclo­hexane-1-carboxyl­ate monoanions [Li—O = 1.887 (4)–1.946 (3) Å], giving chain substructures which extend along [010]. Water–water and water–carboxyl O—H⋯O hydrogen bonds stabilize these chain structures and provide inter­chain links, resulting in a two-dimensional layered structure extending parallel to (100).

Related literature

For the structure of an NiII complex derived from racemic cis-cyclo­hexane-1,2-dicarb­oxy­lic acid, see: Zheng et al. (2008[Zheng, Y.-Z., Xue, W., Tong, M.-L., Chen, X.-M. & Zheng, S.-L. (2008). Inorg. Chem. 47, 11202-11211.]) and for the structure of the corresponding Sr2+ complex, see: Robertson & Harrison (2010[Robertson, K. A. & Harrison, W. T. A. (2010). Acta Cryst. C66, m194-m196.]). For the structure of lithium 3,5-dinitro­benzoate, see: Yang & Ng (2007[Yang, G. & Ng, S. W. (2007). Cryst. Res. Technol. 42, 201-206.]) and for lithium hydrogenterephthalate pseudopolymorphs, see: Küppers (1978[Küppers, H. (1978). Acta Cryst. B34, 3763-3765.]); Gonschorek & Küppers (1975[Gonschorek, W. & Küppers, H. (1975). Acta Cryst. B31, 1068-1072.]); Adiwidjaja & Küppers (1978[Adiwidjaja, G. & Küppers, H. (1978). Acta Cryst. B34, 2003-2005.]).

[Scheme 1]

Experimental

Crystal data
  • [Li(C8H11O4)(H2O)2]

  • Mr = 214.14

  • Monoclinic, P 21 /c

  • a = 16.2749 (5) Å

  • b = 5.4568 (2) Å

  • c = 12.0438 (5) Å

  • β = 97.533 (3)°

  • V = 1060.37 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 200 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.97, Tmax = 0.99

  • 5758 measured reflections

  • 2084 independent reflections

  • 1550 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.134

  • S = 1.04

  • 2084 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O11i 0.99 1.77 2.739 (2) 163
O1W—H12W⋯O1Wii 0.90 2.26 3.164 (3) 180
O2W—H21W⋯O12iii 0.90 1.89 2.7913 (19) 179
O2W—H22W⋯O11iv 0.87 2.13 2.936 (2) 153
O2W—H22W⋯O12iv 0.87 2.54 3.228 (2) 136
O22—H22⋯O11v 0.90 1.70 2.5958 (17) 174
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x, -y+1, -z+1; (iv) x, y+1, z; (v) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The structures of metal complexes with cis-cyclohexane-1,2-dicarboxylic acid (cis-CHDC) are not common in the crystallographic literature with examples largely involving metals of the first-row transition series, e.g. NiII (Zheng et al., 2008), and also with Sr (Robertson & Harrison, 2010). In these complexes the cis-CHDC ligand is usually in the dianionic form. Our 1:1 stoichiometric reaction of cis-CHDC anhydride with lithium carbonate in 50% ethanol–water solution provided minor crystals of the title compound, [C8H11LiO4(H2O)2]n in which the ligand is in the monoanionic form and the structure is reported here.

In this complex (Fig. 1), the LiO4 stereochemistry is distorted tetrahedral, involving two water molecules and two O-donors from separate carboxyl groups of the monoanions in a bridging mode [Li—O range, 1.887 (4)–1.946 (3) Å]. This coordination mode is usual for Li carboxylate complexes, e.g., the analogous pseudopolymorphs of lithium hydrogen phthalate (the monohydrate, the dihydrate and the methanol monosolvate: Gonschorek & Küppers, 1975; Küppers, 1978; Adiwidjaja & Küppers, 1978) and with lithium 3,5-dinitrobenzoate (Yang & Ng, 2007). In the title compound, the complex units form one-dimensional chain substructures which extend along [010] (Fig. 2). Within the chains, water–water and water–carboxyl hydrogen bonds, including a three-centre OH···Ocarboxyl cyclic interaction involving O2W and infinite water chains involving O1W (Table 1), stabilize the structure. In addition, a strong carboxylic acid–carboxyl O—H···O hydrogen bond and water–carboxyl hydrogen bonds from both water donors link the chains, resulting in a two-dimensional layered structure extending parallel to (100) (Fig. 3).

Related literature top

For the structure of an NiII complex with racemic cis-cyclohexane-1,2-dicarboxylic acid, see: Zheng et al. (2008) and for the structure of the Sr complex with the acid, see: Robertson & Harrison (2010). For the structure of Li 3,5-dinitrobenzoate, see: Yang & Ng (2007) and for Li hydrogen terephthalate pseudopolymorphs, see: Küppers (1978); Gonschorek & Küppers (1975); Adiwidjaja & Küppers (1978).

Experimental top

The title compound was synthesized by heating under reflux for 10 min. a solution of 1 mmol of cyclohexane-1,2-dicarboxylic anhydride and 1 mmol of lithium carbonate in 50 ml of 1:1 ethanol–water. After concentration to ca 30 ml the filtered solution was allowed to evaporate at room temperature, giving finally a residual viscous oil in which minor well-formed colourless crystals of the title compound were found.

Refinement top

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference-Fourier methods and their positional parameters were allowed to ride with Uiso(H) = 1.5Ueq(O). Other hydrogen atoms were included in the refinement at calculated positions [C—H = 0.97–0.98 Å] with Uiso(H) = 1.5Ueq(C)]. The residual positive electron density in the refinement (0.823 e Å-3) is unusually large for this structure and is located 1.02 Å from H12W.

Structure description top

The structures of metal complexes with cis-cyclohexane-1,2-dicarboxylic acid (cis-CHDC) are not common in the crystallographic literature with examples largely involving metals of the first-row transition series, e.g. NiII (Zheng et al., 2008), and also with Sr (Robertson & Harrison, 2010). In these complexes the cis-CHDC ligand is usually in the dianionic form. Our 1:1 stoichiometric reaction of cis-CHDC anhydride with lithium carbonate in 50% ethanol–water solution provided minor crystals of the title compound, [C8H11LiO4(H2O)2]n in which the ligand is in the monoanionic form and the structure is reported here.

In this complex (Fig. 1), the LiO4 stereochemistry is distorted tetrahedral, involving two water molecules and two O-donors from separate carboxyl groups of the monoanions in a bridging mode [Li—O range, 1.887 (4)–1.946 (3) Å]. This coordination mode is usual for Li carboxylate complexes, e.g., the analogous pseudopolymorphs of lithium hydrogen phthalate (the monohydrate, the dihydrate and the methanol monosolvate: Gonschorek & Küppers, 1975; Küppers, 1978; Adiwidjaja & Küppers, 1978) and with lithium 3,5-dinitrobenzoate (Yang & Ng, 2007). In the title compound, the complex units form one-dimensional chain substructures which extend along [010] (Fig. 2). Within the chains, water–water and water–carboxyl hydrogen bonds, including a three-centre OH···Ocarboxyl cyclic interaction involving O2W and infinite water chains involving O1W (Table 1), stabilize the structure. In addition, a strong carboxylic acid–carboxyl O—H···O hydrogen bond and water–carboxyl hydrogen bonds from both water donors link the chains, resulting in a two-dimensional layered structure extending parallel to (100) (Fig. 3).

For the structure of an NiII complex with racemic cis-cyclohexane-1,2-dicarboxylic acid, see: Zheng et al. (2008) and for the structure of the Sr complex with the acid, see: Robertson & Harrison (2010). For the structure of Li 3,5-dinitrobenzoate, see: Yang & Ng (2007) and for Li hydrogen terephthalate pseudopolymorphs, see: Küppers (1978); Gonschorek & Küppers (1975); Adiwidjaja & Küppers (1978).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom naming scheme for the complex unit in the title compound with displacement ellipsoids drawn at the 40% probability level. For symmetry code (i), see Table 1.
[Figure 2] Fig. 2. The hydrogen-bonded complex chain substructure of the title compound and its extension along [010]. Hydrogen bonds are shown as dashed lines and non-associative H atoms are omitted.
[Figure 3] Fig. 3. A view down the a axis of the unit cell showing the sheet structure extending parallel to (100). For symmetry codes, see Table 1.
catena-Poly[[diaqualithium]-µ-[rac-cis-(2-carboxycyclohexane-1- carboxylato-κ2O1:O2]] top
Crystal data top
[Li(C8H11O4)(H2O)2]F(000) = 456
Mr = 214.14Dx = 1.341 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2836 reflections
a = 16.2749 (5) Åθ = 3.2–28.7°
b = 5.4568 (2) ŵ = 0.11 mm1
c = 12.0438 (5) ÅT = 200 K
β = 97.533 (3)°Block, colourless
V = 1060.37 (7) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2084 independent reflections
Radiation source: Enhance (Mo) X-ray source1550 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 1920
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 66
Tmin = 0.97, Tmax = 0.99l = 1314
5758 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.085P)2]
where P = (Fo2 + 2Fc2)/3
2084 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Li(C8H11O4)(H2O)2]V = 1060.37 (7) Å3
Mr = 214.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.2749 (5) ŵ = 0.11 mm1
b = 5.4568 (2) ÅT = 200 K
c = 12.0438 (5) Å0.30 × 0.25 × 0.20 mm
β = 97.533 (3)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2084 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1550 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.99Rint = 0.023
5758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.04Δρmax = 0.82 e Å3
2084 reflectionsΔρmin = 0.39 e Å3
136 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.04966 (10)0.4570 (4)0.75941 (13)0.0617 (7)
O2W0.03531 (8)0.7437 (3)0.53796 (16)0.0527 (6)
O110.17016 (8)0.0191 (2)0.43846 (11)0.0318 (5)
O120.13158 (8)0.2623 (2)0.55259 (11)0.0297 (4)
O210.19747 (8)0.2424 (2)0.69312 (11)0.0265 (4)
O220.23639 (9)0.0915 (2)0.86385 (11)0.0366 (5)
C10.27299 (10)0.1392 (3)0.58486 (14)0.0208 (5)
C20.27190 (10)0.1422 (3)0.71265 (14)0.0198 (5)
C30.36052 (11)0.1758 (3)0.77421 (16)0.0270 (6)
C40.41960 (11)0.0170 (4)0.73895 (17)0.0331 (6)
C50.42078 (12)0.0142 (4)0.61278 (18)0.0362 (7)
C60.33353 (11)0.0509 (3)0.54969 (16)0.0265 (6)
C110.18554 (11)0.1254 (3)0.52073 (14)0.0211 (5)
C210.23163 (10)0.0844 (3)0.75461 (14)0.0204 (5)
Li10.10696 (18)0.5409 (6)0.6350 (3)0.0278 (9)
H10.295000.299000.566200.0310*
H20.239200.284400.730300.0300*
H11W0.091600.446000.827100.0930*
H12W0.021200.314600.754000.0930*
H21W0.018700.742200.509900.0790*
H220.213500.231200.884800.0550*
H22W0.062500.851300.503400.0790*
H310.380700.337500.758100.0410*
H320.359300.164600.854400.0410*
H410.475000.014000.776600.0500*
H420.402600.177800.761600.0500*
H510.456900.143500.592400.0540*
H520.442900.141100.591000.0540*
H610.335600.037700.469800.0400*
H620.314000.214000.564800.0400*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0409 (9)0.1113 (15)0.0325 (9)0.0244 (10)0.0032 (7)0.0115 (9)
O2W0.0242 (8)0.0398 (9)0.0898 (14)0.0014 (7)0.0090 (7)0.0226 (9)
O110.0366 (8)0.0306 (8)0.0258 (8)0.0077 (6)0.0050 (6)0.0094 (6)
O120.0245 (7)0.0301 (7)0.0325 (8)0.0082 (6)0.0034 (5)0.0086 (6)
O210.0291 (7)0.0253 (7)0.0244 (7)0.0085 (6)0.0005 (5)0.0021 (5)
O220.0573 (10)0.0320 (8)0.0197 (8)0.0171 (7)0.0016 (6)0.0011 (6)
C10.0213 (9)0.0184 (9)0.0227 (10)0.0009 (8)0.0029 (7)0.0018 (7)
C20.0199 (9)0.0170 (9)0.0214 (9)0.0011 (7)0.0018 (7)0.0017 (7)
C30.0224 (9)0.0258 (10)0.0309 (11)0.0058 (8)0.0038 (7)0.0010 (8)
C40.0187 (9)0.0363 (11)0.0420 (13)0.0012 (9)0.0042 (8)0.0001 (9)
C50.0211 (10)0.0431 (13)0.0451 (13)0.0046 (9)0.0071 (8)0.0002 (10)
C60.0239 (9)0.0295 (10)0.0268 (10)0.0048 (8)0.0061 (7)0.0006 (8)
C110.0250 (9)0.0194 (9)0.0180 (9)0.0014 (8)0.0004 (7)0.0010 (7)
C210.0184 (8)0.0210 (9)0.0210 (9)0.0039 (7)0.0000 (7)0.0004 (7)
Li10.0223 (15)0.0305 (17)0.0303 (17)0.0018 (14)0.0029 (12)0.0068 (13)
Geometric parameters (Å, º) top
O1W—Li11.921 (4)C2—C31.544 (2)
O2W—Li11.896 (4)C2—C211.517 (2)
O12—Li11.887 (4)C3—C41.523 (3)
O21—Li1i1.946 (3)C4—C51.522 (3)
O11—C111.265 (2)C5—C61.533 (3)
O12—C111.251 (2)C1—H10.9800
O21—C211.222 (2)C2—H20.9800
O22—C211.308 (2)C3—H310.9700
O1W—H11W0.9900C3—H320.9700
O1W—H12W0.9000C4—H410.9700
O2W—H21W0.9000C4—H420.9700
O2W—H22W0.8700C5—H510.9700
O22—H220.9000C5—H520.9700
C1—C21.542 (2)C6—H610.9700
C1—C111.530 (2)C6—H620.9700
C1—C61.528 (2)
C11—O12—Li1148.04 (15)C1—C2—H2108.00
C21—O21—Li1i155.44 (16)C21—C2—H2108.00
Li1—O1W—H11W108.00C2—C3—H32109.00
Li1—O1W—H12W116.00C2—C3—H31109.00
H11W—O1W—H12W107.00C4—C3—H32109.00
Li1—O2W—H21W136.00H31—C3—H32108.00
Li1—O2W—H22W112.00C4—C3—H31109.00
H21W—O2W—H22W111.00C3—C4—H41109.00
C21—O22—H22110.00C5—C4—H41109.00
C2—C1—C6112.09 (14)C5—C4—H42109.00
C2—C1—C11111.90 (13)C3—C4—H42109.00
C6—C1—C11114.69 (14)H41—C4—H42108.00
C1—C2—C3110.39 (14)C6—C5—H52109.00
C1—C2—C21112.71 (14)H51—C5—H52108.00
C3—C2—C21110.74 (14)C6—C5—H51109.00
C2—C3—C4111.61 (15)C4—C5—H51109.00
C3—C4—C5111.25 (17)C4—C5—H52109.00
C4—C5—C6111.18 (16)C1—C6—H61109.00
C1—C6—C5111.27 (15)C1—C6—H62109.00
O12—C11—C1117.38 (15)C5—C6—H61109.00
O11—C11—O12122.52 (16)H61—C6—H62108.00
O11—C11—C1120.10 (15)C5—C6—H62109.00
O21—C21—C2123.74 (15)O1W—Li1—O12112.12 (18)
O21—C21—O22123.43 (15)O1W—Li1—O21ii106.63 (18)
O22—C21—C2112.83 (14)O2W—Li1—O21ii104.03 (17)
C11—C1—H1106.00O12—Li1—O21ii118.41 (16)
C6—C1—H1106.00O2W—Li1—O12107.57 (19)
C2—C1—H1106.00O1W—Li1—O2W107.32 (16)
C3—C2—H2108.00
Li1—O12—C11—O11161.8 (3)C11—C1—C6—C5176.49 (15)
Li1—O12—C11—C117.7 (4)C2—C1—C11—O11135.69 (16)
C11—O12—Li1—O1W115.3 (3)C2—C1—C11—O1244.8 (2)
C11—O12—Li1—O2W126.9 (3)C6—C1—C11—O116.6 (2)
C11—O12—Li1—O21ii9.5 (4)C6—C1—C11—O12173.93 (15)
Li1i—O21—C21—O2251.7 (4)C1—C2—C3—C454.63 (19)
Li1i—O21—C21—C2127.4 (3)C21—C2—C3—C470.90 (19)
C21—O21—Li1i—O1Wi32.5 (4)C1—C2—C21—O215.8 (2)
C21—O21—Li1i—O2Wi80.8 (4)C1—C2—C21—O22174.98 (14)
C21—O21—Li1i—O12i159.9 (3)C3—C2—C21—O21130.05 (17)
C6—C1—C2—C353.79 (18)C3—C2—C21—O2250.76 (19)
C6—C1—C2—C2170.61 (18)C2—C3—C4—C556.5 (2)
C11—C1—C2—C3175.75 (13)C3—C4—C5—C656.5 (2)
C11—C1—C2—C2159.85 (18)C4—C5—C6—C155.4 (2)
C2—C1—C6—C554.49 (19)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O11iii0.991.772.739 (2)163
O1W—H12W···O1Wiv0.902.263.164 (3)180
O2W—H21W···O12v0.901.892.7913 (19)179
O2W—H22W···O11ii0.872.132.936 (2)153
O2W—H22W···O12ii0.872.543.228 (2)136
O22—H22···O11vi0.901.702.5958 (17)174
C3—H32···O220.972.452.819 (2)102
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z+3/2; (v) x, y+1, z+1; (vi) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Li(C8H11O4)(H2O)2]
Mr214.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)16.2749 (5), 5.4568 (2), 12.0438 (5)
β (°) 97.533 (3)
V3)1060.37 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.97, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
5758, 2084, 1550
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.134, 1.04
No. of reflections2084
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.39

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O11i0.991.772.739 (2)163
O1W—H12W···O1Wii0.902.263.164 (3)180
O2W—H21W···O12iii0.901.892.7913 (19)179
O2W—H22W···O11iv0.872.132.936 (2)153
O2W—H22W···O12iv0.872.543.228 (2)136
O22—H22···O11v0.901.702.5958 (17)174
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+3/2; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology and the University Library, Queensland University of Technology and Griffith University.

References

First citationAdiwidjaja, G. & Küppers, H. (1978). Acta Cryst. B34, 2003–2005.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGonschorek, W. & Küppers, H. (1975). Acta Cryst. B31, 1068–1072.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKüppers, H. (1978). Acta Cryst. B34, 3763–3765.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRobertson, K. A. & Harrison, W. T. A. (2010). Acta Cryst. C66, m194–m196.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, G. & Ng, S. W. (2007). Cryst. Res. Technol. 42, 201–206.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, Y.-Z., Xue, W., Tong, M.-L., Chen, X.-M. & Zheng, S.-L. (2008). Inorg. Chem. 47, 11202–11211.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds