metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(Z)-1-({3-[(3-Amino­prop­yl)(2-nitro­benz­yl)amino]­prop­yl}imino­meth­yl)naphthalen-2-olato]copper(II) perchlorate

aDepartment of Chemistry, Payame Noor University, Hamedan, Iran, bDipartimento di Chimica Inorganica, Vill. S. Agata, Salita Sperone 31, Universita di Messina 98166 Messina, Italy, and cDepartment of Chemistry, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran
*Correspondence e-mail: r_azadbakht@yahoo.com

(Received 21 August 2011; accepted 31 October 2011; online 12 November 2011)

In the title compound, [Cu(C24H27N4O3)]ClO4, the CuII atom has a distorted square-planar coordination geometry and is surrounded by an N3O donor set composed of a secondary amine N, a primary amine H, an imino N and a naphthalen-2-olate O atom. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, mol­ecules are held together by inter­molecular N—H⋯O hydrogen bonds, leading to the formation of a three-dimensional network.

Related literature

For related structures, see: Atkins et al. (1993[Atkins, A. J., Blake, A. J. & Schröder, M. (1993). J. Chem. Soc. Chem. Commun. pp. 1662-1664.]); Matsumoto et al. (1989[Matsumoto, N., Inoue, K., Okawa, H. & Kida, S. (1989). Chem. Lett. pp. 1251-1254.]); Plieger et al. (2004[Plieger, P. G., Downard, A. J., Moubaraki, B., Murray, K. S. & Brooker, S. (2004). Dalton Trans. pp. 2157-2165.]); Vigato et al. (2007[Vigato, P. A., Tamburini, S. & Bertolo, L. (2007). Coord. Chem. Rev. 251, 1311-1492.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C24H27N4O3)]ClO4

  • Mr = 582.50

  • Monoclinic, P 21 /n

  • a = 8.1062 (4) Å

  • b = 19.2907 (8) Å

  • c = 16.0959 (7) Å

  • β = 102.072 (2)°

  • V = 2461.32 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 296 K

  • 0.51 × 0.49 × 0.32 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.706, Tmax = 0.747

  • 101979 measured reflections

  • 5377 independent reflections

  • 4605 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.117

  • S = 1.02

  • 5377 reflections

  • 342 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.82 (4) 2.46 (3) 2.948 (4) 119 (3)
N1—H2⋯O4 0.84 (3) 2.39 (4) 3.203 (5) 163 (3)
N1—H2⋯O5 0.84 (3) 2.82 (3) 3.249 (4) 114 (3)
N1—H1⋯O2i 0.82 (4) 2.51 (3) 3.031 (3) 122 (3)
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XPW (Siemens, 1996[Siemens (1996). XPW. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Schiff bases have attracted increasing interest owing to their role in the understanding of molecular processes occurring in biochemistry, material science, catalysis, encapsulation, activation, transport and separation phenomena, hydrometallurgy, etc. (Vigato et al., 2007). We report here the crystal structure of the title compound, Cu(C24H27N4O3)×ClO4 consists of discrete [Cu(L)]+ cations and perchlorate anions. The closest distance between Cu and O5 of ClO4 is 3.039 (1)Å that implies a weak coordination of oxygen to copper. The molecular structure of title compound is shown in Fig. 1. The organic ligand, L, coordinates in a tetradentate manner via three nitrogen atoms and one oxygen atom, providing a distorted square–planar arrangement about copper. The two trans angles at the CuII atom are about 151.48 (8)° and 158.55 (11)° and the other angles subtended at the CuII atom are close to 90°, varying from 86.12 (9)° to 99.07 (9)°. The sum of the angles subtended by the donor atoms at Cu is 369.75°.

Related literature top

For related structures, see: Atkins et al. (1993); Matsumoto et al. (1989); Plieger et al. (2004); Vigato et al. (2007).

Experimental top

A solution of NaOH (1.5 mmol) in methanol (10 cm3) was added to a suspension of the appropriate N-(2-nitrobenzyl)-N-(3-aminopropyl)-propane-1,3- diaminetrishydrochloride (0.5 mmol) in methanol (10 cm3). The mixture was stirred at room temperature for a few minutes then filtered, and the precipitate was washed well with methanol (10 cm3). The washings and the filtrate were combined and to this solution, copper perchlorate (0.5 mmol) and 2-hydroxy-1-naphthaldehyde (0.5 mmol) in methanol (50 cm3), was added. The reaction was carried out for 6 h at room temperature. The solution volume was then reduced to 10 cm3 by roto–evaporation and a precipitate formed on addition of a small amount of diethyl ether, which was filtered off, washed with ether, and dried under vacuo.

Refinement top

The C–based H atoms were positioned geometrically (C—H = 0.93Å and 0.97Å for CH and CH2 groups, respectively) and constrained to ride on their parent atoms; Uiso(H) = 1.2Ueq(C). The N–based H atoms were found from difference Fourier map and refined isotropically.

Structure description top

Schiff bases have attracted increasing interest owing to their role in the understanding of molecular processes occurring in biochemistry, material science, catalysis, encapsulation, activation, transport and separation phenomena, hydrometallurgy, etc. (Vigato et al., 2007). We report here the crystal structure of the title compound, Cu(C24H27N4O3)×ClO4 consists of discrete [Cu(L)]+ cations and perchlorate anions. The closest distance between Cu and O5 of ClO4 is 3.039 (1)Å that implies a weak coordination of oxygen to copper. The molecular structure of title compound is shown in Fig. 1. The organic ligand, L, coordinates in a tetradentate manner via three nitrogen atoms and one oxygen atom, providing a distorted square–planar arrangement about copper. The two trans angles at the CuII atom are about 151.48 (8)° and 158.55 (11)° and the other angles subtended at the CuII atom are close to 90°, varying from 86.12 (9)° to 99.07 (9)°. The sum of the angles subtended by the donor atoms at Cu is 369.75°.

For related structures, see: Atkins et al. (1993); Matsumoto et al. (1989); Plieger et al. (2004); Vigato et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XPW (Siemens, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title molecule with numbering of the atoms. Displacement ellipsoids are drawn at 30% probability level. The H atoms are shown as small spheres of arbitrary radius. The H2 atom is overlapped by N1 ellipsoid.
[(Z)-1-({3-[(3-Aminopropyl)(2- nitrobenzyl)amino]propyl}iminomethyl)naphthalen-2-olato]copper(II) perchlorate top
Crystal data top
[Cu(C24H27N4O3)]ClO4F(000) = 1204
Mr = 582.50Dx = 1.572 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9603 reflections
a = 8.1062 (4) Åθ = 2.6–29.2°
b = 19.2907 (8) ŵ = 1.05 mm1
c = 16.0959 (7) ÅT = 296 K
β = 102.072 (2)°Block, black
V = 2461.32 (19) Å30.51 × 0.49 × 0.32 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5377 independent reflections
Radiation source: fine–focus sealed tube4605 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
φ and ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.706, Tmax = 0.747k = 2424
101979 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0736P)2 + 1.1383P]
where P = (Fo2 + 2Fc2)/3
5377 reflections(Δ/σ)max = 0.001
342 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Cu(C24H27N4O3)]ClO4V = 2461.32 (19) Å3
Mr = 582.50Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1062 (4) ŵ = 1.05 mm1
b = 19.2907 (8) ÅT = 296 K
c = 16.0959 (7) Å0.51 × 0.49 × 0.32 mm
β = 102.072 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5377 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4605 reflections with I > 2σ(I)
Tmin = 0.706, Tmax = 0.747Rint = 0.061
101979 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.59 e Å3
5377 reflectionsΔρmin = 0.52 e Å3
342 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σF2 is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.32009 (3)0.856784 (13)0.361933 (15)0.03852 (11)
N10.4800 (3)0.84797 (14)0.47232 (15)0.0544 (5)
C10.6353 (4)0.80578 (18)0.4829 (2)0.0719 (8)
H1A0.60690.75730.48790.086*
H1B0.71200.81920.53510.086*
C20.7232 (4)0.81433 (19)0.4092 (2)0.0741 (8)
H2A0.74190.86330.40130.089*
H2B0.83270.79200.42360.089*
C30.6275 (4)0.78479 (16)0.3269 (2)0.0660 (7)
H3A0.70510.77970.28890.079*
H3B0.58940.73870.33800.079*
N20.4785 (2)0.82515 (10)0.28176 (12)0.0464 (4)
C40.3820 (4)0.78081 (14)0.21083 (17)0.0600 (6)
H4A0.32790.81060.16450.072*
H4B0.46070.75110.18970.072*
C50.2511 (4)0.73681 (13)0.23789 (18)0.0627 (7)
H5A0.29440.72030.29520.075*
H5B0.22880.69670.20090.075*
C60.0886 (3)0.77510 (13)0.23556 (17)0.0546 (6)
H6A0.03030.78120.17690.065*
H6B0.01670.74770.26400.065*
N30.1174 (2)0.84326 (9)0.27678 (11)0.0406 (4)
C70.0059 (3)0.89113 (11)0.25349 (13)0.0399 (4)
H70.07850.88180.20610.048*
C80.0007 (3)0.95679 (11)0.29327 (13)0.0390 (4)
C170.1169 (3)1.00936 (11)0.25241 (14)0.0407 (4)
C160.2083 (3)1.00439 (14)0.16799 (15)0.0498 (5)
H160.19430.96560.13580.060*
C150.3186 (3)1.05619 (15)0.13210 (17)0.0569 (6)
H150.37811.05160.07640.068*
C140.3413 (3)1.11485 (15)0.1783 (2)0.0608 (7)
H140.41621.14920.15370.073*
C130.2539 (3)1.12185 (14)0.25950 (19)0.0559 (6)
H130.26951.16130.29020.067*
C120.1396 (3)1.07032 (12)0.29802 (16)0.0465 (5)
C110.0439 (3)1.07871 (13)0.38245 (17)0.0535 (6)
H110.06061.11800.41310.064*
C100.0696 (3)1.03129 (13)0.41882 (15)0.0514 (5)
H100.13131.03900.47360.062*
C90.0979 (3)0.96920 (12)0.37529 (14)0.0422 (5)
O10.2131 (2)0.92738 (9)0.41511 (10)0.0530 (4)
C180.5462 (3)0.88515 (14)0.23958 (15)0.0494 (5)
H18A0.59440.86740.19350.059*
H18B0.63670.90660.28050.059*
C190.4182 (3)0.94026 (13)0.20450 (14)0.0457 (5)
C240.3379 (4)0.93601 (15)0.11856 (16)0.0585 (6)
H240.36290.89880.08660.070*
C230.2235 (4)0.98488 (18)0.07963 (18)0.0684 (8)
H230.17090.97960.02280.082*
C220.1872 (4)1.04122 (17)0.1245 (2)0.0702 (8)
H220.10951.07410.09850.084*
C210.2654 (4)1.04867 (14)0.2073 (2)0.0623 (7)
H210.24211.08710.23780.075*
C200.3800 (3)0.99919 (12)0.24637 (15)0.0479 (5)
N40.4641 (3)1.01508 (12)0.33436 (14)0.0576 (5)
O30.5511 (3)0.97071 (12)0.37640 (13)0.0770 (6)
O20.4446 (4)1.07214 (12)0.36190 (16)0.0890 (7)
Cl0.19969 (9)0.70592 (4)0.51751 (4)0.06081 (18)
O40.2496 (4)0.76098 (17)0.57398 (17)0.1104 (10)
O50.2004 (5)0.72505 (17)0.43448 (15)0.1153 (11)
O60.0406 (7)0.6830 (4)0.5193 (3)0.240 (4)
O70.3086 (9)0.6533 (2)0.5438 (3)0.216 (3)
H10.517 (4)0.8868 (19)0.487 (2)0.068 (10)*
H20.419 (4)0.8333 (18)0.504 (2)0.064 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.04088 (16)0.03732 (16)0.03504 (15)0.00157 (9)0.00268 (11)0.00284 (9)
N10.0597 (13)0.0547 (13)0.0434 (11)0.0018 (10)0.0021 (10)0.0004 (10)
C10.0653 (17)0.0725 (19)0.0671 (17)0.0133 (14)0.0109 (14)0.0159 (14)
C20.0511 (15)0.085 (2)0.080 (2)0.0195 (14)0.0004 (14)0.0092 (17)
C30.0604 (16)0.0568 (15)0.0821 (19)0.0214 (13)0.0182 (14)0.0061 (14)
N20.0489 (10)0.0414 (10)0.0487 (10)0.0063 (8)0.0097 (8)0.0082 (8)
C40.0767 (17)0.0516 (14)0.0525 (14)0.0014 (12)0.0156 (12)0.0157 (11)
C50.0880 (19)0.0361 (12)0.0606 (15)0.0022 (12)0.0082 (14)0.0118 (11)
C60.0595 (14)0.0393 (12)0.0583 (14)0.0091 (10)0.0028 (11)0.0071 (10)
N30.0423 (9)0.0380 (9)0.0398 (9)0.0053 (7)0.0051 (7)0.0034 (7)
C70.0350 (10)0.0452 (11)0.0384 (10)0.0032 (8)0.0054 (8)0.0007 (8)
C80.0372 (10)0.0418 (11)0.0399 (10)0.0015 (8)0.0124 (8)0.0008 (8)
C170.0364 (10)0.0428 (11)0.0456 (11)0.0014 (8)0.0147 (8)0.0067 (9)
C160.0475 (12)0.0529 (13)0.0498 (12)0.0025 (10)0.0120 (10)0.0054 (10)
C150.0500 (13)0.0642 (16)0.0556 (14)0.0036 (11)0.0090 (11)0.0163 (12)
C140.0560 (14)0.0513 (14)0.0769 (18)0.0111 (11)0.0180 (13)0.0212 (13)
C130.0568 (14)0.0421 (12)0.0725 (17)0.0059 (11)0.0221 (13)0.0081 (11)
C120.0455 (11)0.0411 (11)0.0572 (13)0.0003 (9)0.0205 (10)0.0062 (10)
C110.0610 (14)0.0434 (12)0.0595 (14)0.0028 (10)0.0206 (11)0.0075 (10)
C100.0573 (13)0.0536 (14)0.0444 (12)0.0003 (11)0.0132 (10)0.0089 (10)
C90.0416 (11)0.0454 (11)0.0417 (11)0.0015 (9)0.0131 (8)0.0012 (9)
O10.0584 (10)0.0587 (10)0.0380 (8)0.0146 (8)0.0013 (7)0.0091 (7)
C180.0466 (12)0.0594 (14)0.0459 (12)0.0032 (10)0.0183 (10)0.0025 (10)
C190.0483 (12)0.0503 (12)0.0419 (11)0.0017 (10)0.0171 (9)0.0020 (9)
C240.0666 (16)0.0669 (16)0.0443 (12)0.0028 (13)0.0168 (11)0.0004 (11)
C230.0700 (17)0.083 (2)0.0499 (14)0.0015 (15)0.0079 (13)0.0171 (14)
C220.0640 (17)0.0654 (18)0.083 (2)0.0069 (13)0.0186 (15)0.0270 (16)
C210.0673 (16)0.0453 (13)0.0804 (19)0.0004 (12)0.0294 (14)0.0091 (13)
C200.0533 (12)0.0439 (12)0.0516 (12)0.0081 (10)0.0221 (10)0.0020 (10)
N40.0713 (14)0.0498 (12)0.0566 (12)0.0154 (10)0.0244 (11)0.0069 (10)
O30.1088 (17)0.0651 (13)0.0520 (11)0.0091 (12)0.0052 (11)0.0036 (10)
O20.122 (2)0.0594 (13)0.0867 (16)0.0078 (13)0.0250 (14)0.0305 (12)
Cl0.0796 (4)0.0619 (4)0.0372 (3)0.0102 (3)0.0036 (3)0.0037 (2)
O40.142 (3)0.103 (2)0.0761 (16)0.0126 (18)0.0001 (16)0.0345 (15)
O50.172 (3)0.122 (2)0.0487 (12)0.050 (2)0.0170 (15)0.0102 (13)
O60.198 (5)0.412 (9)0.109 (3)0.198 (6)0.029 (3)0.016 (4)
O70.366 (8)0.121 (3)0.116 (3)0.115 (4)0.054 (4)0.030 (2)
Geometric parameters (Å, º) top
Cu—O11.9104 (16)C16—C151.384 (3)
Cu—N31.9245 (18)C16—H160.9300
Cu—N11.976 (2)C15—C141.387 (4)
Cu—N22.0925 (19)C15—H150.9300
N1—C11.479 (4)C14—C131.357 (4)
N1—H10.82 (4)C14—H140.9300
N1—H20.84 (3)C13—C121.411 (3)
C1—C21.515 (5)C13—H130.9300
C1—H1A0.9700C12—C111.426 (4)
C1—H1B0.9700C11—C101.342 (4)
C2—C31.500 (5)C11—H110.9300
C2—H2A0.9700C10—C91.430 (3)
C2—H2B0.9700C10—H100.9300
C3—N21.492 (3)C9—O11.297 (3)
C3—H3A0.9700C18—C191.510 (3)
C3—H3B0.9700C18—H18A0.9700
N2—C181.503 (3)C18—H18B0.9700
N2—C41.508 (3)C19—C201.389 (3)
C4—C51.493 (4)C19—C241.402 (3)
C4—H4A0.9700C24—C231.378 (4)
C4—H4B0.9700C24—H240.9300
C5—C61.504 (4)C23—C221.371 (5)
C5—H5A0.9700C23—H230.9300
C5—H5B0.9700C22—C211.358 (4)
C6—N31.469 (3)C22—H220.9300
C6—H6A0.9700C21—C201.388 (4)
C6—H6B0.9700C21—H210.9300
N3—C71.292 (3)C20—N41.470 (3)
C7—C81.425 (3)N4—O21.209 (3)
C7—H70.9300N4—O31.220 (3)
C8—C91.413 (3)Cl—O71.354 (4)
C8—C171.445 (3)Cl—O61.369 (4)
C17—C161.408 (3)Cl—O51.388 (2)
C17—C121.419 (3)Cl—O41.402 (3)
O1—Cu—N390.91 (7)C7—C8—C17120.07 (19)
O1—Cu—N186.12 (9)C16—C17—C12117.2 (2)
N3—Cu—N1158.55 (11)C16—C17—C8123.6 (2)
O1—Cu—N2151.48 (8)C12—C17—C8119.3 (2)
N3—Cu—N293.65 (8)C15—C16—C17121.1 (2)
N1—Cu—N299.07 (9)C15—C16—H16119.4
C1—N1—Cu122.3 (2)C17—C16—H16119.4
C1—N1—H1103 (2)C16—C15—C14120.8 (2)
Cu—N1—H1108 (2)C16—C15—H15119.6
C1—N1—H2110 (2)C14—C15—H15119.6
Cu—N1—H2103 (2)C13—C14—C15119.7 (2)
H1—N1—H2111 (3)C13—C14—H14120.1
N1—C1—C2112.2 (2)C15—C14—H14120.1
N1—C1—H1A109.2C14—C13—C12121.1 (3)
C2—C1—H1A109.2C14—C13—H13119.5
N1—C1—H1B109.2C12—C13—H13119.5
C2—C1—H1B109.2C13—C12—C17120.1 (2)
H1A—C1—H1B107.9C13—C12—C11121.0 (2)
C3—C2—C1114.1 (3)C17—C12—C11118.9 (2)
C3—C2—H2A108.7C10—C11—C12121.7 (2)
C1—C2—H2A108.7C10—C11—H11119.2
C3—C2—H2B108.7C12—C11—H11119.2
C1—C2—H2B108.7C11—C10—C9121.5 (2)
H2A—C2—H2B107.6C11—C10—H10119.2
N2—C3—C2116.6 (2)C9—C10—H10119.2
N2—C3—H3A108.1O1—C9—C8124.3 (2)
C2—C3—H3A108.1O1—C9—C10116.8 (2)
N2—C3—H3B108.1C8—C9—C10118.8 (2)
C2—C3—H3B108.1C9—O1—Cu124.70 (14)
H3A—C3—H3B107.3N2—C18—C19115.07 (18)
C3—N2—C18106.7 (2)N2—C18—H18A108.5
C3—N2—C4108.2 (2)C19—C18—H18A108.5
C18—N2—C4105.99 (19)N2—C18—H18B108.5
C3—N2—Cu112.97 (17)C19—C18—H18B108.5
C18—N2—Cu112.54 (13)H18A—C18—H18B107.5
C4—N2—Cu110.16 (16)C20—C19—C24115.0 (2)
C5—C4—N2112.9 (2)C20—C19—C18126.9 (2)
C5—C4—H4A109.0C24—C19—C18117.9 (2)
N2—C4—H4A109.0C23—C24—C19122.5 (3)
C5—C4—H4B109.0C23—C24—H24118.7
N2—C4—H4B109.0C19—C24—H24118.7
H4A—C4—H4B107.8C22—C23—C24120.1 (3)
C4—C5—C6112.7 (2)C22—C23—H23120.0
C4—C5—H5A109.1C24—C23—H23120.0
C6—C5—H5A109.1C21—C22—C23119.6 (3)
C4—C5—H5B109.1C21—C22—H22120.2
C6—C5—H5B109.1C23—C22—H22120.2
H5A—C5—H5B107.8C22—C21—C20120.2 (3)
N3—C6—C5111.9 (2)C22—C21—H21119.9
N3—C6—H6A109.2C20—C21—H21119.9
C5—C6—H6A109.2C21—C20—C19122.6 (2)
N3—C6—H6B109.2C21—C20—N4115.2 (2)
C5—C6—H6B109.2C19—C20—N4122.2 (2)
H6A—C6—H6B107.9O2—N4—O3122.7 (3)
C7—N3—C6118.23 (19)O2—N4—C20118.3 (3)
C7—N3—Cu123.45 (15)O3—N4—C20119.1 (2)
C6—N3—Cu118.33 (15)O7—Cl—O6107.8 (5)
N3—C7—C8126.47 (19)O7—Cl—O5111.5 (3)
N3—C7—H7116.8O6—Cl—O5107.4 (2)
C8—C7—H7116.8O7—Cl—O4106.5 (2)
C9—C8—C7120.22 (19)O6—Cl—O4112.2 (3)
C9—C8—C17119.6 (2)O5—Cl—O4111.4 (2)
O1—Cu—N1—C1170.5 (3)C16—C15—C14—C130.4 (4)
N3—Cu—N1—C1106.9 (3)C15—C14—C13—C120.0 (4)
N2—Cu—N1—C118.7 (3)C14—C13—C12—C171.2 (4)
Cu—N1—C1—C241.3 (4)C14—C13—C12—C11178.1 (2)
N1—C1—C2—C367.9 (4)C16—C17—C12—C131.9 (3)
C1—C2—C3—N275.1 (4)C8—C17—C12—C13179.3 (2)
C2—C3—N2—C1877.0 (3)C16—C17—C12—C11177.4 (2)
C2—C3—N2—C4169.4 (3)C8—C17—C12—C111.4 (3)
C2—C3—N2—Cu47.2 (3)C13—C12—C11—C10177.6 (2)
O1—Cu—N2—C3118.2 (2)C17—C12—C11—C101.7 (4)
N3—Cu—N2—C3143.12 (18)C12—C11—C10—C91.3 (4)
N1—Cu—N2—C319.6 (2)C7—C8—C9—O18.8 (3)
O1—Cu—N2—C182.7 (2)C17—C8—C9—O1175.4 (2)
N3—Cu—N2—C1896.00 (16)C7—C8—C9—C10170.5 (2)
N1—Cu—N2—C18101.32 (17)C17—C8—C9—C105.2 (3)
O1—Cu—N2—C4120.71 (19)C11—C10—C9—O1178.4 (2)
N3—Cu—N2—C422.04 (17)C11—C10—C9—C82.2 (4)
N1—Cu—N2—C4140.64 (18)C8—C9—O1—Cu19.6 (3)
C3—N2—C4—C589.5 (3)C10—C9—O1—Cu161.05 (17)
C18—N2—C4—C5156.4 (2)N3—Cu—O1—C932.2 (2)
Cu—N2—C4—C534.4 (3)N1—Cu—O1—C9169.1 (2)
N2—C4—C5—C683.4 (3)N2—Cu—O1—C967.2 (3)
C4—C5—C6—N347.7 (3)C3—N2—C18—C19168.7 (2)
C5—C6—N3—C7154.6 (2)C4—N2—C18—C1976.2 (2)
C5—C6—N3—Cu25.0 (3)Cu—N2—C18—C1944.3 (2)
O1—Cu—N3—C726.90 (18)N2—C18—C19—C2091.4 (3)
N1—Cu—N3—C7108.6 (3)N2—C18—C19—C2494.6 (3)
N2—Cu—N3—C7124.94 (18)C20—C19—C24—C233.0 (4)
O1—Cu—N3—C6153.60 (18)C18—C19—C24—C23177.8 (3)
N1—Cu—N3—C671.9 (3)C19—C24—C23—C221.6 (5)
N2—Cu—N3—C654.57 (18)C24—C23—C22—C210.4 (5)
C6—N3—C7—C8170.9 (2)C23—C22—C21—C200.7 (4)
Cu—N3—C7—C89.6 (3)C22—C21—C20—C191.0 (4)
N3—C7—C8—C914.2 (3)C22—C21—C20—N4176.4 (2)
N3—C7—C8—C17170.1 (2)C24—C19—C20—C212.7 (3)
C9—C8—C17—C16173.8 (2)C18—C19—C20—C21176.9 (2)
C7—C8—C17—C1610.4 (3)C24—C19—C20—N4174.5 (2)
C9—C8—C17—C124.9 (3)C18—C19—C20—N40.3 (4)
C7—C8—C17—C12170.84 (19)C21—C20—N4—O29.1 (3)
C12—C17—C16—C151.5 (3)C19—C20—N4—O2168.3 (2)
C8—C17—C16—C15179.7 (2)C21—C20—N4—O3171.4 (2)
C17—C16—C15—C140.4 (4)C19—C20—N4—O311.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.82 (4)2.46 (3)2.948 (4)119 (3)
N1—H2···O40.84 (3)2.39 (4)3.203 (5)163 (3)
N1—H2···O50.84 (3)2.82 (3)3.249 (4)114 (3)
N1—H1···O2i0.82 (4)2.51 (3)3.031 (3)122 (3)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C24H27N4O3)]ClO4
Mr582.50
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.1062 (4), 19.2907 (8), 16.0959 (7)
β (°) 102.072 (2)
V3)2461.32 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.51 × 0.49 × 0.32
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.706, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
101979, 5377, 4605
Rint0.061
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.117, 1.02
No. of reflections5377
No. of parameters342
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.52

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XPW (Siemens, 1996), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.82 (4)2.46 (3)2.948 (4)119 (3)
N1—H2···O40.84 (3)2.39 (4)3.203 (5)163 (3)
N1—H2···O50.84 (3)2.82 (3)3.249 (4)114 (3)
N1—H1···O2i0.82 (4)2.51 (3)3.031 (3)122 (3)
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

We are grateful to Payame Noor University (PNU) for financial support.

References

First citationAtkins, A. J., Blake, A. J. & Schröder, M. (1993). J. Chem. Soc. Chem. Commun. pp. 1662–1664.  CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMatsumoto, N., Inoue, K., Okawa, H. & Kida, S. (1989). Chem. Lett. pp. 1251–1254.  CrossRef Web of Science Google Scholar
First citationPlieger, P. G., Downard, A. J., Moubaraki, B., Murray, K. S. & Brooker, S. (2004). Dalton Trans. pp. 2157–2165.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XPW. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationVigato, P. A., Tamburini, S. & Bertolo, L. (2007). Coord. Chem. Rev. 251, 1311–1492.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds