metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[N-(pyridin-2-ylcarbon­yl)pyridine-2-carboximidato-κ3N,N′,N′′]iron(III) tris­­(cyanido-κC)[N-(pyridin-2-ylcarbon­yl)pyridine-2-carboximidato-κ3N,N′,N′′]ferrate(III) monohydrate

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China, and bState Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: xiaopingshen@163.com

(Received 6 October 2011; accepted 6 November 2011; online 9 November 2011)

In the title compound, [Fe(C12H8N3O2)2][Fe(C12H8N3O2)(CN)3]·H2O, the Fe3+ ions in the cation and anion each lie in a slightly distorted octa­hedral coordination environment. The solvent water mol­ecule is disordered over three positions with occupancies of 0.401 (7), 0.322 (7) and 0.277 (6). The water content was confirmed by thermogravimetric data.

Related literature

For the background to cyanide-bridged low-dimensional systems, see: Lescouëzec et al. (2005[Lescouëzec, R., Toma, L. M., Vaissermann, J., Verdaguer, M., Delgado, F. S., Ruiz-Pérez, C., Lloret, F. & Julve, M. (2005). Coord. Chem. Rev. 249, 2691-2729.]). For related structures, see: Lescouëzec et al. (2004[Lescouëzec, R., Vaissermann, J., Toma, L. M., Carrasco, R., Lloret, F. & Julve, M. (2004). Inorg. Chem. 43, 2234-2236.]); Wen et al. (2006[Wen, H. R., Wang, C. F., Zuo, J. L., Song, Y., Zeng, X. R. & You, X. Z. (2006). Inorg. Chem. 45, 582-590.]); Wu (2009[Wu, D. (2009). Acta Cryst. E65, m1340.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C12H8N3O2)2][Fe(C12H8N3O2)(CN)3]·H2O

  • Mr = 886.42

  • Triclinic, [P \overline 1]

  • a = 9.6116 (12) Å

  • b = 14.2025 (13) Å

  • c = 15.1032 (16) Å

  • α = 98.154 (2)°

  • β = 99.645 (3)°

  • γ = 104.558 (2)°

  • V = 1930.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 291 K

  • 0.28 × 0.24 × 0.22 mm

Data collection
  • Rigaku CCD area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Coporation, Tokyo, Japan.]) Tmin = 0.803, Tmax = 0.840

  • 18046 measured reflections

  • 6943 independent reflections

  • 6052 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.132

  • S = 1.10

  • 6943 reflections

  • 562 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In recent years, have been developed new synthetic strategies to prepare cyano-bridged low-dimensional systems by using modified cyanometalates, [M(L)y(CN)x](x-m)- (M = first row transition metal ions and L = organic polydentate ligands), as multidentate ligands (Lescouëzec et al., 2005), because these cyano-bridged bimetallic low-dimensional assemblies possess extraordinary magnetic properties such as SMM (single molecule magnets) and SCM (single chain magnets). For example, it was found that [Fe(bpca)(CN)3]- {bpca = [N-(2-pyridylcarbonyl)pyridine-2-carboximidate} can coordinate to transition metal ions to form various polynuclear and one-dimensional structures with interesting magnetic behaviors (Lescouëzec et al., 2004; Wen et al., 2006). Recently, we had expected to obtain such low-dimensional systems using [Fe(bpca)(CN)3]- and lanthanide metal ion like Tb3+ as the building blocks. However, an unexpected ion-paired compound of [FeIII(bpca)2][FeIII(bpca)(CN)3] instead of any [Fe(bpca)(CN)3]-/Tb3+ cyano-bridged assembly was obtained. Herein, the crystal structure of the prepared complex is presented.

The asymmetric unit of the title complex consists of a [FeIII(bpca)2]+ cation, a [FeIII(bpca)(CN)3]- anion and one H2O molecule (Fig. 1). In [FeIII(bpca)2]+cation, the FeIII ion is coordinated by six nitrogen atoms from two tridentate bpca ligands in a mer–mode, and exhibits a distorted octahedral coordination configuration. The Fe1—N bond lengths are in the range of 1.910 (3)–1.979 (3) Å, which is consistent with the values 1.900–1.977 Å reported for [FeIII(bpca)2]ClO4.CH3OH (Wu, 2009). In [FeIII(bpca)(CN)3]- anion, the FeIII ion is coordinated by three carbon atoms of cyanide groups and three N atoms from bpca ligand in a mer-arrangement, which results in a distorted octahedral environment around the FeIII ion. The Fe2—N(bpca) bond distances vary in the range of 1.898 (3)–1.977 (3) Å, which are close to those (1.893 (2)–1.959 (2) Å) found in the complex of PPh4[FeIII(bpca)(CN)3].H2O (Lescouëzec et al., 2004). The Fe2—C(cyano) bond lengths (1.922 (4)–2.000 (4) Å) are slightly longer than those (1.937 (3)–1.951 (3) Å) reported for PPh4[FeIII(bpca)(CN)3].H2O. The interstitial water molecule in the structure was found to be severely disordered and has been refined as disordered over three positions with occupancies of 0.401 (7), 0.322 (7) and 0.277 (6) for O7, O8 and O9, respectively.

Related literature top

For the background to cyanide-bridged low-dimensional systems, see: Lescouëzec et al. (2005). For related structures, see: Lescouëzec et al. (2004); Wen et al. (2006); Wu (2009).

Experimental top

A solution of Tb(NO3)3.6H2O (0.05 mmol) in water (10 ml) was added to a solution of Bu4N[FeIII(bpca)(CN)3] (0.05 mmol) in MeCN/H2O [4/1(V/V), 10 ml] mixture. The resulting solution was filtered and the filtrate was allowed to slow evaporation in dark at room temperature. Red block-shaped crystals suitable for single-crystal X-ray diffraction were obtained after two weeks. Anal. Calc. for C39H26Fe2N12O7: C, 52.85; H, 2.96; N, 18.96; Fe, 12.60%. Found: C, 53.04; H, 2.73; N, 19.11; Fe, 12.45%. The TGA curve shows 2.17% loss of mass, which is in good agreement with 2.03% calculated for one water molecule per asymmetric unit.

Refinement top

All non-H atoms were refined anisotropically. All H atoms including ligand and interstitial water were placed in calculated positions and with C—H = 0.93–0.97 Å, and with Ueq values set at 1.2–1.5 Ueq of the parent atoms. Each asymmetric unit contains one crystal water molecule, the water molecule is disordered over three positions with refined occupancies of 0.401 (7), 0.322 (7) and 0.277 (6).

Structure description top

In recent years, have been developed new synthetic strategies to prepare cyano-bridged low-dimensional systems by using modified cyanometalates, [M(L)y(CN)x](x-m)- (M = first row transition metal ions and L = organic polydentate ligands), as multidentate ligands (Lescouëzec et al., 2005), because these cyano-bridged bimetallic low-dimensional assemblies possess extraordinary magnetic properties such as SMM (single molecule magnets) and SCM (single chain magnets). For example, it was found that [Fe(bpca)(CN)3]- {bpca = [N-(2-pyridylcarbonyl)pyridine-2-carboximidate} can coordinate to transition metal ions to form various polynuclear and one-dimensional structures with interesting magnetic behaviors (Lescouëzec et al., 2004; Wen et al., 2006). Recently, we had expected to obtain such low-dimensional systems using [Fe(bpca)(CN)3]- and lanthanide metal ion like Tb3+ as the building blocks. However, an unexpected ion-paired compound of [FeIII(bpca)2][FeIII(bpca)(CN)3] instead of any [Fe(bpca)(CN)3]-/Tb3+ cyano-bridged assembly was obtained. Herein, the crystal structure of the prepared complex is presented.

The asymmetric unit of the title complex consists of a [FeIII(bpca)2]+ cation, a [FeIII(bpca)(CN)3]- anion and one H2O molecule (Fig. 1). In [FeIII(bpca)2]+cation, the FeIII ion is coordinated by six nitrogen atoms from two tridentate bpca ligands in a mer–mode, and exhibits a distorted octahedral coordination configuration. The Fe1—N bond lengths are in the range of 1.910 (3)–1.979 (3) Å, which is consistent with the values 1.900–1.977 Å reported for [FeIII(bpca)2]ClO4.CH3OH (Wu, 2009). In [FeIII(bpca)(CN)3]- anion, the FeIII ion is coordinated by three carbon atoms of cyanide groups and three N atoms from bpca ligand in a mer-arrangement, which results in a distorted octahedral environment around the FeIII ion. The Fe2—N(bpca) bond distances vary in the range of 1.898 (3)–1.977 (3) Å, which are close to those (1.893 (2)–1.959 (2) Å) found in the complex of PPh4[FeIII(bpca)(CN)3].H2O (Lescouëzec et al., 2004). The Fe2—C(cyano) bond lengths (1.922 (4)–2.000 (4) Å) are slightly longer than those (1.937 (3)–1.951 (3) Å) reported for PPh4[FeIII(bpca)(CN)3].H2O. The interstitial water molecule in the structure was found to be severely disordered and has been refined as disordered over three positions with occupancies of 0.401 (7), 0.322 (7) and 0.277 (6) for O7, O8 and O9, respectively.

For the background to cyanide-bridged low-dimensional systems, see: Lescouëzec et al. (2005). For related structures, see: Lescouëzec et al. (2004); Wen et al. (2006); Wu (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008)r; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of an asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms and the disordered water molecule have been omitted for clarity.
Bis[N-(pyridin-2-ylcarbonyl)pyridine-2-carboximidato- κ3N,N',N'']iron(III) tris(cyanido-κC)[N-(pyridin-2-ylcarbonyl)pyridine-2- carboximidato-κ3N,N',N'']ferrate(III) monohydrate top
Crystal data top
[Fe(C12H8N3O2)2][Fe(C12H8N3O2)(CN)3]·H2OZ = 2
Mr = 886.42F(000) = 904
Triclinic, P1Dx = 1.525 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6116 (12) ÅCell parameters from 3763 reflections
b = 14.2025 (13) Åθ = 2.1–25.1°
c = 15.1032 (16) ŵ = 0.82 mm1
α = 98.154 (2)°T = 291 K
β = 99.645 (3)°Prism, red
γ = 104.558 (2)°0.28 × 0.24 × 0.22 mm
V = 1930.4 (4) Å3
Data collection top
Rigaku CCD area-detector
diffractometer
6943 independent reflections
Radiation source: fine-focus sealed tube6052 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 25.3°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.803, Tmax = 0.840k = 1417
18046 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.06P)2 + 1.99P]
where P = (Fo2 + 2Fc2)/3
6943 reflections(Δ/σ)max < 0.001
562 parametersΔρmax = 0.63 e Å3
1 restraintΔρmin = 0.61 e Å3
Crystal data top
[Fe(C12H8N3O2)2][Fe(C12H8N3O2)(CN)3]·H2Oγ = 104.558 (2)°
Mr = 886.42V = 1930.4 (4) Å3
Triclinic, P1Z = 2
a = 9.6116 (12) ÅMo Kα radiation
b = 14.2025 (13) ŵ = 0.82 mm1
c = 15.1032 (16) ÅT = 291 K
α = 98.154 (2)°0.28 × 0.24 × 0.22 mm
β = 99.645 (3)°
Data collection top
Rigaku CCD area-detector
diffractometer
6943 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6052 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.840Rint = 0.029
18046 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0561 restraint
wR(F2) = 0.132H-atom parameters constrained
S = 1.10Δρmax = 0.63 e Å3
6943 reflectionsΔρmin = 0.61 e Å3
562 parameters
Special details top

Geometry. All s.u.'s (except the s.u.'s in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1550 (4)0.5880 (3)0.2213 (3)0.0390 (8)
H10.17860.60210.16650.047*
C20.0448 (4)0.6193 (3)0.2510 (3)0.0438 (9)
H20.00210.65760.21850.053*
C30.0037 (4)0.5941 (3)0.3286 (3)0.0450 (9)
H30.07700.61070.34560.054*
C40.0787 (4)0.5453 (3)0.3816 (3)0.0408 (8)
H40.05680.53240.43720.049*
C50.1900 (4)0.5159 (3)0.3475 (3)0.0397 (8)
C60.2753 (4)0.4547 (3)0.3944 (3)0.0414 (8)
C70.4915 (4)0.3953 (2)0.3852 (2)0.0382 (8)
C80.5828 (4)0.3863 (3)0.3157 (2)0.0418 (8)
C90.6924 (4)0.3396 (3)0.3248 (2)0.0400 (8)
H90.71340.31330.37680.048*
C100.7703 (4)0.3318 (3)0.2579 (3)0.0431 (9)
H100.85070.30640.26760.052*
C110.7332 (4)0.3601 (3)0.1778 (3)0.0476 (9)
H110.78130.35040.13020.057*
C120.6182 (4)0.4051 (3)0.1698 (2)0.0419 (8)
H120.59370.42920.11690.050*
C130.6159 (4)0.6490 (3)0.3617 (2)0.0376 (8)
H130.59350.61990.41080.045*
C140.7276 (4)0.7360 (3)0.3758 (2)0.0393 (8)
H140.77520.76710.43550.047*
C150.7696 (4)0.7769 (3)0.3067 (3)0.0482 (9)
H150.85000.83270.31730.058*
C160.6909 (4)0.7344 (3)0.2202 (3)0.0530 (10)
H160.71480.76380.17150.064*
C170.5797 (4)0.6510 (3)0.2040 (2)0.0401 (8)
C180.4896 (3)0.5990 (2)0.1128 (2)0.0331 (7)
C190.2682 (4)0.4607 (3)0.0464 (2)0.0400 (8)
C200.1788 (4)0.3704 (3)0.0731 (2)0.0382 (8)
C210.0660 (4)0.3025 (3)0.0180 (3)0.0494 (10)
H210.03790.30950.04210.059*
C220.0153 (4)0.2170 (3)0.0490 (3)0.0536 (11)
H220.09530.16900.01080.064*
C230.0318 (4)0.2118 (3)0.1349 (2)0.0433 (9)
H230.01680.15870.15820.052*
C240.1537 (4)0.2843 (3)0.1922 (2)0.0384 (8)
H240.18320.27720.25220.046*
C250.7555 (4)0.1371 (3)0.6227 (3)0.0475 (9)
H250.85350.14620.64970.057*
C260.7204 (4)0.1721 (3)0.5429 (2)0.0420 (8)
H260.79480.20460.51650.050*
C270.5740 (4)0.1584 (3)0.5024 (3)0.0492 (10)
H270.55050.18180.44900.059*
C280.4628 (4)0.1098 (3)0.5417 (3)0.0457 (9)
H280.36480.10060.51470.055*
C290.4979 (4)0.0747 (2)0.6215 (2)0.0348 (7)
C300.3941 (4)0.0205 (3)0.6703 (2)0.0408 (8)
C310.3943 (4)0.0594 (3)0.8027 (3)0.0455 (9)
C320.5023 (4)0.0738 (3)0.8766 (2)0.0395 (8)
C330.4645 (4)0.1290 (3)0.9454 (3)0.0423 (9)
H330.36810.16410.94390.051*
C340.5839 (4)0.1271 (3)1.0165 (3)0.0394 (8)
H340.56540.14871.06990.047*
C350.7131 (4)0.0965 (3)1.0072 (3)0.0404 (8)
H350.78830.10921.04690.048*
C360.7472 (4)0.0450 (3)0.9407 (2)0.0400 (8)
H360.84570.01610.94140.048*
C370.6896 (4)0.1629 (3)0.8446 (2)0.0395 (8)
C380.8851 (4)0.0780 (3)0.8024 (2)0.0398 (8)
C390.6958 (4)0.0899 (3)0.7025 (3)0.0420 (8)
Fe10.38487 (6)0.47999 (4)0.23489 (3)0.03707 (15)
Fe20.67373 (5)0.03413 (4)0.77245 (4)0.03803 (15)
N10.2297 (3)0.5375 (2)0.2693 (2)0.0386 (7)
N20.3856 (3)0.4435 (2)0.3520 (2)0.0390 (7)
N30.5435 (3)0.4141 (2)0.23525 (19)0.0354 (6)
N40.5388 (3)0.6062 (2)0.27491 (19)0.0363 (6)
N50.3787 (3)0.5174 (2)0.11802 (19)0.0368 (6)
N60.2278 (3)0.3621 (2)0.16414 (19)0.0358 (6)
N70.6443 (3)0.0884 (2)0.6620 (2)0.0388 (7)
N80.4650 (3)0.0055 (2)0.7452 (2)0.0421 (7)
N90.6479 (3)0.0345 (2)0.8762 (2)0.0425 (7)
N100.7025 (3)0.2397 (2)0.8813 (2)0.0392 (7)
N111.0150 (3)0.1090 (2)0.8213 (2)0.0432 (7)
N120.7123 (3)0.1607 (2)0.6665 (2)0.0424 (7)
O10.2532 (3)0.43098 (18)0.46654 (17)0.0423 (6)
O20.5156 (3)0.37206 (17)0.45674 (16)0.0384 (6)
O30.5171 (3)0.62797 (19)0.04174 (17)0.0434 (6)
O40.2354 (3)0.47773 (19)0.03012 (17)0.0484 (7)
O50.2636 (3)0.00215 (18)0.64104 (17)0.0413 (6)
O60.2625 (3)0.09010 (18)0.79723 (17)0.0419 (6)
O71.0200 (6)0.6983 (5)0.5415 (4)0.0416 (19)0.401 (7)
H7D0.94700.65560.56640.050*0.401 (7)
H7A0.96590.73700.53520.050*0.401 (7)
O80.0047 (9)0.8413 (6)0.6309 (6)0.058 (3)0.322 (7)
H8A0.01980.83120.68100.069*0.322 (7)
H8B0.08750.88490.64210.069*0.322 (7)
O90.0225 (9)0.0250 (6)0.5151 (6)0.042 (3)0.277 (6)
H9A0.04400.00530.54510.050*0.277 (6)
H9B0.00620.07840.49560.050*0.277 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.043 (2)0.0382 (19)0.044 (2)0.0177 (16)0.0144 (16)0.0162 (16)
C20.045 (2)0.045 (2)0.048 (2)0.0183 (17)0.0137 (17)0.0134 (17)
C30.0360 (19)0.051 (2)0.047 (2)0.0140 (17)0.0061 (16)0.0066 (18)
C40.045 (2)0.0350 (18)0.043 (2)0.0060 (16)0.0128 (16)0.0119 (15)
C50.0242 (16)0.0396 (19)0.051 (2)0.0031 (14)0.0082 (15)0.0149 (16)
C60.039 (2)0.0323 (18)0.048 (2)0.0011 (15)0.0074 (17)0.0155 (16)
C70.046 (2)0.0321 (17)0.0335 (19)0.0112 (15)0.0003 (15)0.0048 (14)
C80.042 (2)0.042 (2)0.0373 (19)0.0109 (16)0.0001 (16)0.0048 (15)
C90.050 (2)0.0384 (19)0.0352 (19)0.0128 (16)0.0113 (16)0.0138 (15)
C100.047 (2)0.0387 (19)0.045 (2)0.0148 (17)0.0105 (17)0.0098 (16)
C110.052 (2)0.050 (2)0.041 (2)0.0107 (18)0.0165 (18)0.0052 (17)
C120.0341 (18)0.049 (2)0.0373 (19)0.0028 (16)0.0054 (15)0.0115 (16)
C130.047 (2)0.0344 (18)0.0318 (18)0.0128 (16)0.0126 (15)0.0021 (14)
C140.049 (2)0.0341 (18)0.0343 (18)0.0173 (16)0.0054 (16)0.0000 (14)
C150.044 (2)0.046 (2)0.043 (2)0.0012 (17)0.0067 (17)0.0007 (17)
C160.045 (2)0.057 (2)0.041 (2)0.0077 (19)0.0025 (17)0.0113 (18)
C170.044 (2)0.0381 (19)0.0361 (19)0.0073 (16)0.0102 (16)0.0056 (15)
C180.0288 (16)0.0315 (17)0.0397 (19)0.0094 (14)0.0051 (14)0.0108 (14)
C190.0319 (18)0.046 (2)0.0382 (19)0.0000 (15)0.0065 (15)0.0156 (16)
C200.0391 (19)0.0354 (18)0.0351 (18)0.0006 (15)0.0071 (15)0.0099 (15)
C210.0355 (19)0.047 (2)0.054 (2)0.0033 (16)0.0108 (17)0.0239 (18)
C220.049 (2)0.043 (2)0.047 (2)0.0135 (18)0.0129 (18)0.0144 (18)
C230.0279 (17)0.053 (2)0.041 (2)0.0017 (16)0.0036 (15)0.0118 (17)
C240.0300 (17)0.046 (2)0.0337 (18)0.0002 (15)0.0013 (14)0.0153 (15)
C250.0364 (19)0.054 (2)0.046 (2)0.0009 (17)0.0013 (16)0.0196 (18)
C260.0396 (19)0.0387 (19)0.0385 (19)0.0039 (15)0.0027 (16)0.0117 (16)
C270.048 (2)0.0340 (19)0.044 (2)0.0158 (17)0.0093 (17)0.0110 (16)
C280.0366 (19)0.051 (2)0.043 (2)0.0137 (17)0.0078 (16)0.0066 (17)
C290.0395 (18)0.0233 (15)0.0383 (18)0.0101 (14)0.0045 (15)0.0077 (13)
C300.036 (2)0.044 (2)0.0392 (19)0.0151 (16)0.0025 (16)0.0021 (16)
C310.0298 (19)0.048 (2)0.049 (2)0.0023 (16)0.0001 (16)0.0144 (18)
C320.0388 (19)0.0353 (18)0.043 (2)0.0045 (15)0.0073 (16)0.0153 (15)
C330.0361 (19)0.0361 (18)0.046 (2)0.0071 (15)0.0068 (16)0.0138 (16)
C340.043 (2)0.0379 (18)0.047 (2)0.0179 (16)0.0142 (16)0.0225 (16)
C350.0364 (19)0.044 (2)0.046 (2)0.0155 (16)0.0126 (16)0.0154 (17)
C360.0347 (18)0.0400 (19)0.040 (2)0.0050 (15)0.0004 (15)0.0102 (16)
C370.0376 (19)0.038 (2)0.0346 (18)0.0028 (15)0.0112 (15)0.0016 (16)
C380.0336 (19)0.048 (2)0.0309 (18)0.0017 (16)0.0033 (14)0.0135 (15)
C390.042 (2)0.041 (2)0.041 (2)0.0155 (17)0.0052 (16)0.0090 (17)
Fe10.0397 (3)0.0324 (3)0.0388 (3)0.0091 (2)0.0052 (2)0.0116 (2)
Fe20.0321 (3)0.0352 (3)0.0431 (3)0.0053 (2)0.0012 (2)0.0143 (2)
N10.0465 (17)0.0322 (15)0.0396 (16)0.0128 (13)0.0112 (13)0.0097 (13)
N20.0555 (19)0.0277 (14)0.0374 (16)0.0146 (13)0.0101 (14)0.0122 (12)
N30.0400 (16)0.0307 (14)0.0310 (15)0.0077 (12)0.0023 (12)0.0013 (11)
N40.0395 (16)0.0348 (15)0.0333 (15)0.0111 (12)0.0018 (12)0.0077 (12)
N50.0340 (15)0.0416 (16)0.0317 (15)0.0039 (13)0.0054 (12)0.0112 (12)
N60.0437 (16)0.0303 (14)0.0325 (15)0.0055 (12)0.0109 (13)0.0086 (12)
N70.0421 (17)0.0344 (15)0.0377 (16)0.0062 (13)0.0032 (13)0.0140 (12)
N80.0297 (15)0.0483 (18)0.0431 (17)0.0058 (13)0.0033 (13)0.0137 (14)
N90.0295 (15)0.0454 (17)0.0415 (17)0.0056 (13)0.0046 (13)0.0155 (14)
N100.0435 (17)0.0392 (17)0.0380 (16)0.0100 (13)0.0139 (13)0.0144 (14)
N110.0376 (18)0.0438 (17)0.0417 (17)0.0027 (14)0.0083 (14)0.0128 (14)
N120.0400 (17)0.0442 (18)0.0394 (17)0.0157 (14)0.0087 (13)0.0093 (14)
O10.0443 (14)0.0417 (14)0.0440 (15)0.0134 (11)0.0117 (12)0.0133 (12)
O20.0415 (13)0.0382 (13)0.0331 (13)0.0117 (11)0.0033 (10)0.0115 (10)
O30.0399 (14)0.0462 (14)0.0389 (14)0.0025 (11)0.0037 (11)0.0146 (11)
O40.0452 (15)0.0468 (15)0.0393 (14)0.0009 (12)0.0175 (11)0.0166 (12)
O50.0393 (14)0.0379 (13)0.0449 (14)0.0123 (11)0.0044 (11)0.0150 (11)
O60.0384 (14)0.0379 (13)0.0455 (14)0.0001 (11)0.0125 (11)0.0105 (11)
O70.021 (3)0.050 (4)0.044 (4)0.002 (3)0.005 (2)0.009 (3)
O80.041 (5)0.054 (5)0.066 (6)0.013 (4)0.013 (4)0.016 (4)
O90.031 (5)0.040 (6)0.042 (6)0.003 (4)0.010 (4)0.003 (4)
Geometric parameters (Å, º) top
C1—N11.338 (4)C24—N61.321 (4)
C1—C21.363 (5)C24—H240.9300
C1—H10.9300C25—C261.390 (5)
C2—C31.364 (5)C25—N71.390 (5)
C2—H20.9300C25—H250.9300
C3—C41.364 (5)C26—C271.390 (5)
C3—H30.9300C26—H260.9300
C4—C51.390 (5)C27—C281.390 (6)
C4—H40.9300C27—H270.9300
C5—N11.353 (5)C28—C291.390 (5)
C5—C61.506 (5)C28—H280.9300
C6—O11.221 (4)C29—N71.390 (4)
C6—N21.357 (5)C29—C301.467 (5)
C7—O21.177 (4)C30—O51.206 (4)
C7—N21.426 (5)C30—N81.366 (4)
C7—C81.489 (5)C31—O61.216 (4)
C8—N31.354 (5)C31—N81.387 (5)
C8—C91.378 (5)C31—C321.465 (5)
C9—C101.363 (5)C32—N91.372 (5)
C9—H90.9300C32—C331.429 (5)
C10—C111.348 (5)C33—C341.426 (5)
C10—H100.9300C33—H330.9300
C11—C121.406 (5)C34—C351.247 (5)
C11—H110.9300C34—H340.9300
C12—N31.326 (5)C35—C361.361 (5)
C12—H120.9300C35—H350.9300
C13—N41.363 (4)C36—N91.297 (4)
C13—C141.380 (5)C36—H360.9300
C13—H130.9300C37—N101.117 (4)
C14—C151.336 (5)C37—Fe21.948 (4)
C14—H140.9300C38—N111.185 (4)
C15—C161.364 (5)C38—Fe21.922 (4)
C15—H150.9300C39—N121.134 (5)
C16—C171.341 (5)C39—Fe22.000 (4)
C16—H160.9300Fe1—N51.910 (3)
C17—N41.384 (4)Fe1—N21.911 (3)
C17—C181.478 (5)Fe1—N41.956 (3)
C18—O31.247 (4)Fe1—N61.976 (3)
C18—N51.385 (4)Fe1—N11.977 (3)
C19—O41.221 (4)Fe1—N31.979 (3)
C19—N51.373 (4)Fe2—N81.898 (3)
C19—C201.500 (5)Fe2—N71.942 (3)
C20—C211.320 (5)Fe2—N91.977 (3)
C20—N61.409 (4)O7—H7D0.9700
C21—C221.453 (5)O7—H7A0.8500
C21—H210.9300O8—H8A0.8500
C22—C231.319 (5)O8—H8B0.8500
C22—H220.9300O9—O9i1.014 (16)
C23—C241.409 (5)O9—H9A0.8500
C23—H230.9300O9—H9B0.8501
N1—C1—C2121.5 (3)O5—C30—N8128.4 (4)
N1—C1—H1119.3O5—C30—C29119.7 (3)
C2—C1—H1119.3N8—C30—C29111.8 (3)
C1—C2—C3119.7 (4)O6—C31—N8127.4 (3)
C1—C2—H2120.2O6—C31—C32122.3 (3)
C3—C2—H2120.2N8—C31—C32110.3 (3)
C2—C3—C4121.3 (4)N9—C32—C33119.0 (3)
C2—C3—H3119.4N9—C32—C31116.9 (3)
C4—C3—H3119.4C33—C32—C31124.0 (3)
C3—C4—C5115.8 (3)C34—C33—C32115.8 (3)
C3—C4—H4122.1C34—C33—H33122.1
C5—C4—H4122.1C32—C33—H33122.1
N1—C5—C4123.8 (3)C35—C34—C33120.0 (3)
N1—C5—C6114.0 (3)C35—C34—H34120.0
C4—C5—C6122.2 (3)C33—C34—H34120.0
O1—C6—N2127.6 (3)C34—C35—C36121.9 (4)
O1—C6—C5121.4 (3)C34—C35—H35119.1
N2—C6—C5110.5 (3)C36—C35—H35119.1
O2—C7—N2128.9 (3)N9—C36—C35122.7 (3)
O2—C7—C8123.1 (3)N9—C36—H36118.7
N2—C7—C8107.8 (3)C35—C36—H36118.7
N3—C8—C9118.6 (3)N10—C37—Fe2175.1 (3)
N3—C8—C7117.9 (3)N11—C38—Fe2177.2 (3)
C9—C8—C7122.9 (3)N12—C39—Fe2176.8 (3)
C10—C9—C8120.3 (3)N5—Fe1—N2178.25 (13)
C10—C9—H9119.9N5—Fe1—N482.70 (12)
C8—C9—H9119.9N2—Fe1—N497.75 (12)
C11—C10—C9121.3 (4)N5—Fe1—N682.91 (12)
C11—C10—H10119.3N2—Fe1—N696.64 (12)
C9—C10—H10119.3N4—Fe1—N6165.61 (12)
C10—C11—C12116.7 (4)N5—Fe1—N196.89 (12)
C10—C11—H11121.6N2—Fe1—N181.40 (12)
C12—C11—H11121.6N4—Fe1—N193.56 (12)
N3—C12—C11122.0 (3)N6—Fe1—N188.18 (12)
N3—C12—H12119.0N5—Fe1—N399.12 (12)
C11—C12—H12119.0N2—Fe1—N382.59 (12)
N4—C13—C14119.3 (3)N4—Fe1—N387.56 (12)
N4—C13—H13120.3N6—Fe1—N394.70 (12)
C14—C13—H13120.3N1—Fe1—N3163.96 (12)
C15—C14—C13122.3 (3)N8—Fe2—C38178.23 (16)
C15—C14—H14118.8N8—Fe2—N782.21 (13)
C13—C14—H14118.8C38—Fe2—N797.87 (14)
C14—C15—C16117.9 (4)N8—Fe2—C3794.17 (15)
C14—C15—H15121.1C38—Fe2—C3784.06 (16)
C16—C15—H15121.1N7—Fe2—C3789.14 (14)
C17—C16—C15121.4 (4)N8—Fe2—N983.05 (12)
C17—C16—H16119.3C38—Fe2—N996.90 (13)
C15—C16—H16119.3N7—Fe2—N9165.21 (12)
C16—C17—N4121.0 (3)C37—Fe2—N993.16 (14)
C16—C17—C18125.2 (3)N8—Fe2—C3995.83 (15)
N4—C17—C18113.8 (3)C38—Fe2—C3985.94 (16)
O3—C18—N5126.7 (3)N7—Fe2—C3991.68 (14)
O3—C18—C17121.3 (3)C37—Fe2—C39169.99 (15)
N5—C18—C17112.0 (3)N9—Fe2—C3988.59 (15)
O4—C19—N5128.0 (3)C1—N1—C5117.8 (3)
O4—C19—C20120.3 (3)C1—N1—Fe1127.5 (2)
N5—C19—C20111.7 (3)C5—N1—Fe1114.5 (2)
C21—C20—N6121.3 (3)C6—N2—C7123.1 (3)
C21—C20—C19124.9 (3)C6—N2—Fe1118.2 (2)
N6—C20—C19113.7 (3)C7—N2—Fe1118.2 (2)
C20—C21—C22121.7 (3)C12—N3—C8120.6 (3)
C20—C21—H21119.2C12—N3—Fe1126.2 (2)
C22—C21—H21119.2C8—N3—Fe1112.9 (2)
C23—C22—C21115.6 (3)C13—N4—C17117.9 (3)
C23—C22—H22122.2C13—N4—Fe1127.7 (2)
C21—C22—H22122.2C17—N4—Fe1114.1 (2)
C22—C23—C24121.9 (3)C19—N5—C18125.6 (3)
C22—C23—H23119.1C19—N5—Fe1117.9 (2)
C24—C23—H23119.1C18—N5—Fe1116.5 (2)
N6—C24—C23122.5 (3)C24—N6—C20116.9 (3)
N6—C24—H24118.7C24—N6—Fe1129.6 (2)
C23—C24—H24118.7C20—N6—Fe1113.0 (2)
C26—C25—N7120.0 (3)C25—N7—C29120.0 (3)
C26—C25—H25120.0C25—N7—Fe2125.4 (2)
N7—C25—H25120.0C29—N7—Fe2114.6 (2)
C25—C26—C27120.0 (3)C30—N8—C31124.3 (3)
C25—C26—H26120.0C30—N8—Fe2118.0 (3)
C27—C26—H26120.0C31—N8—Fe2117.7 (2)
C28—C27—C26120.0 (3)C36—N9—C32119.0 (3)
C28—C27—H27120.0C36—N9—Fe2129.0 (3)
C26—C27—H27120.0C32—N9—Fe2112.0 (2)
C27—C28—C29120.0 (3)H7D—O7—H7A90.2
C27—C28—H28120.0H8A—O8—H8B109.5
C29—C28—H28120.0O9i—O9—H9A57.9
C28—C29—N7120.0 (3)O9i—O9—H9B107.3
C28—C29—C30126.7 (3)H9A—O9—H9B116.4
N7—C29—C30113.3 (3)
N1—C1—C2—C33.7 (6)N4—Fe1—N3—C892.3 (2)
C1—C2—C3—C45.6 (6)N6—Fe1—N3—C8102.0 (2)
C2—C3—C4—C55.2 (6)N1—Fe1—N3—C82.1 (6)
C3—C4—C5—N13.3 (5)C14—C13—N4—C172.0 (5)
C3—C4—C5—C6175.4 (3)C14—C13—N4—Fe1175.9 (2)
N1—C5—C6—O1178.8 (3)C16—C17—N4—C130.7 (5)
C4—C5—C6—O12.5 (5)C18—C17—N4—C13180.0 (3)
N1—C5—C6—N26.6 (4)C16—C17—N4—Fe1175.3 (3)
C4—C5—C6—N2174.7 (3)C18—C17—N4—Fe15.3 (4)
O2—C7—C8—N3179.1 (3)N5—Fe1—N4—C13178.0 (3)
N2—C7—C8—N36.1 (4)N2—Fe1—N4—C130.3 (3)
O2—C7—C8—C97.7 (6)N6—Fe1—N4—C13178.0 (4)
N2—C7—C8—C9177.4 (3)N1—Fe1—N4—C1381.5 (3)
N3—C8—C9—C107.3 (5)N3—Fe1—N4—C1382.5 (3)
C7—C8—C9—C10178.6 (3)N5—Fe1—N4—C177.9 (3)
C8—C9—C10—C116.7 (6)N2—Fe1—N4—C17173.8 (2)
C9—C10—C11—C124.9 (6)N6—Fe1—N4—C177.9 (6)
C10—C11—C12—N33.9 (6)N1—Fe1—N4—C17104.4 (3)
N4—C13—C14—C154.4 (6)N3—Fe1—N4—C1791.6 (3)
C13—C14—C15—C165.0 (6)O4—C19—N5—C1810.3 (6)
C14—C15—C16—C173.6 (7)C20—C19—N5—C18172.4 (3)
C15—C16—C17—N41.4 (7)O4—C19—N5—Fe1171.3 (3)
C15—C16—C17—C18179.3 (4)C20—C19—N5—Fe15.9 (4)
C16—C17—C18—O33.8 (6)O3—C18—N5—C198.3 (6)
N4—C17—C18—O3176.9 (3)C17—C18—N5—C19172.8 (3)
C16—C17—C18—N5177.3 (4)O3—C18—N5—Fe1170.1 (3)
N4—C17—C18—N52.1 (4)C17—C18—N5—Fe18.8 (4)
O4—C19—C20—C212.8 (6)N4—Fe1—N5—C19172.1 (3)
N5—C19—C20—C21179.7 (4)N6—Fe1—N5—C197.9 (3)
O4—C19—C20—N6178.5 (3)N1—Fe1—N5—C1979.4 (3)
N5—C19—C20—N61.0 (5)N3—Fe1—N5—C19101.6 (3)
N6—C20—C21—C221.4 (6)N4—Fe1—N5—C189.4 (2)
C19—C20—C21—C22180.0 (4)N6—Fe1—N5—C18170.6 (3)
C20—C21—C22—C230.5 (7)N1—Fe1—N5—C18102.1 (3)
C21—C22—C23—C240.4 (6)N3—Fe1—N5—C1876.9 (3)
C22—C23—C24—N60.4 (6)C23—C24—N6—C200.5 (5)
N7—C25—C26—C270.0 (6)C23—C24—N6—Fe1171.9 (3)
C25—C26—C27—C280.0 (6)C21—C20—N6—C241.4 (5)
C26—C27—C28—C290.0 (6)C19—C20—N6—C24179.9 (3)
C27—C28—C29—N70.0 (5)C21—C20—N6—Fe1174.2 (3)
C27—C28—C29—C30178.7 (4)C19—C20—N6—Fe17.0 (4)
C28—C29—C30—O50.2 (6)N5—Fe1—N6—C24179.8 (3)
N7—C29—C30—O5178.6 (3)N2—Fe1—N6—C241.5 (3)
C28—C29—C30—N8178.4 (3)N4—Fe1—N6—C24179.8 (4)
N7—C29—C30—N80.4 (4)N1—Fe1—N6—C2482.6 (3)
O6—C31—C32—N9179.1 (4)N3—Fe1—N6—C2481.6 (3)
N8—C31—C32—N90.6 (5)N5—Fe1—N6—C208.0 (2)
O6—C31—C32—C333.6 (6)N2—Fe1—N6—C20170.3 (2)
N8—C31—C32—C33177.9 (4)N4—Fe1—N6—C208.1 (6)
N9—C32—C33—C348.4 (5)N1—Fe1—N6—C2089.1 (2)
C31—C32—C33—C34174.3 (4)N3—Fe1—N6—C20106.7 (2)
C32—C33—C34—C3514.2 (5)C26—C25—N7—C290.0 (6)
C33—C34—C35—C3614.4 (6)C26—C25—N7—Fe2179.5 (3)
C34—C35—C36—N98.5 (6)C28—C29—N7—C250.0 (5)
C2—C1—N1—C51.7 (5)C30—C29—N7—C25178.8 (3)
C2—C1—N1—Fe1176.5 (3)C28—C29—N7—Fe2179.6 (3)
C4—C5—N1—C11.6 (5)C30—C29—N7—Fe20.7 (4)
C6—C5—N1—C1177.2 (3)N8—Fe2—N7—C25178.4 (3)
C4—C5—N1—Fe1177.0 (3)C38—Fe2—N7—C253.4 (3)
C6—C5—N1—Fe11.7 (4)C37—Fe2—N7—C2587.3 (3)
N5—Fe1—N1—C11.8 (3)N9—Fe2—N7—C25173.6 (5)
N2—Fe1—N1—C1178.5 (3)C39—Fe2—N7—C2582.7 (3)
N4—Fe1—N1—C181.2 (3)N8—Fe2—N7—C291.1 (2)
N6—Fe1—N1—C184.5 (3)C38—Fe2—N7—C29177.1 (3)
N3—Fe1—N1—C1174.8 (4)C37—Fe2—N7—C2993.2 (3)
N5—Fe1—N1—C5173.1 (2)N9—Fe2—N7—C296.0 (7)
N2—Fe1—N1—C56.5 (2)C39—Fe2—N7—C2996.8 (3)
N4—Fe1—N1—C5103.8 (2)O5—C30—N8—C310.4 (6)
N6—Fe1—N1—C590.5 (2)C29—C30—N8—C31178.4 (3)
N3—Fe1—N1—C510.3 (6)O5—C30—N8—Fe2179.4 (3)
O1—C6—N2—C73.6 (6)C29—C30—N8—Fe21.4 (4)
C5—C6—N2—C7175.2 (3)O6—C31—N8—C301.2 (7)
O1—C6—N2—Fe1176.0 (3)C32—C31—N8—C30179.6 (3)
C5—C6—N2—Fe112.5 (4)O6—C31—N8—Fe2179.0 (3)
O2—C7—N2—C612.3 (6)C32—C31—N8—Fe20.7 (4)
C8—C7—N2—C6173.2 (3)N7—Fe2—N8—C301.4 (3)
O2—C7—N2—Fe1175.4 (3)C37—Fe2—N8—C3087.1 (3)
C8—C7—N2—Fe10.9 (4)N9—Fe2—N8—C30179.8 (3)
N4—Fe1—N2—C6103.4 (3)C39—Fe2—N8—C3092.3 (3)
N6—Fe1—N2—C676.2 (3)N7—Fe2—N8—C31178.4 (3)
N1—Fe1—N2—C610.9 (3)C37—Fe2—N8—C3193.1 (3)
N3—Fe1—N2—C6170.1 (3)N9—Fe2—N8—C310.4 (3)
N4—Fe1—N2—C783.9 (3)C39—Fe2—N8—C3187.4 (3)
N6—Fe1—N2—C796.5 (3)C35—C36—N9—C322.4 (6)
N1—Fe1—N2—C7176.4 (3)C35—C36—N9—Fe2178.5 (3)
N3—Fe1—N2—C72.6 (2)C33—C32—N9—C363.0 (5)
C11—C12—N3—C84.8 (5)C31—C32—N9—C36179.6 (3)
C11—C12—N3—Fe1177.5 (3)C33—C32—N9—Fe2177.8 (3)
C9—C8—N3—C126.3 (5)C31—C32—N9—Fe20.3 (4)
C7—C8—N3—C12178.1 (3)N8—Fe2—N9—C36179.1 (4)
C9—C8—N3—Fe1180.0 (3)C38—Fe2—N9—C360.9 (4)
C7—C8—N3—Fe18.3 (4)N7—Fe2—N9—C36176.1 (4)
N5—Fe1—N3—C121.2 (3)C37—Fe2—N9—C3685.3 (4)
N2—Fe1—N3—C12179.1 (3)C39—Fe2—N9—C3684.9 (4)
N4—Fe1—N3—C1281.0 (3)N8—Fe2—N9—C320.0 (3)
N6—Fe1—N3—C1284.8 (3)C38—Fe2—N9—C32178.3 (3)
N1—Fe1—N3—C12175.4 (4)N7—Fe2—N9—C324.8 (7)
N5—Fe1—N3—C8174.5 (2)C37—Fe2—N9—C3293.9 (3)
N2—Fe1—N3—C85.9 (2)C39—Fe2—N9—C3296.0 (3)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C12H8N3O2)2][Fe(C12H8N3O2)(CN)3]·H2O
Mr886.42
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)9.6116 (12), 14.2025 (13), 15.1032 (16)
α, β, γ (°)98.154 (2), 99.645 (3), 104.558 (2)
V3)1930.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.28 × 0.24 × 0.22
Data collection
DiffractometerRigaku CCD area-detector
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.803, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
18046, 6943, 6052
Rint0.029
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.132, 1.10
No. of reflections6943
No. of parameters562
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.61

Computer programs: CrystalClear (Rigaku, 2008)r, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Natural Science Foundation of Jiangsu Province (No. BK2009196) for financial support.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Coporation, Tokyo, Japan.  Google Scholar
First citationLescouëzec, R., Toma, L. M., Vaissermann, J., Verdaguer, M., Delgado, F. S., Ruiz-Pérez, C., Lloret, F. & Julve, M. (2005). Coord. Chem. Rev. 249, 2691–2729.  Google Scholar
First citationLescouëzec, R., Vaissermann, J., Toma, L. M., Carrasco, R., Lloret, F. & Julve, M. (2004). Inorg. Chem. 43, 2234–2236.  Web of Science PubMed Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, H. R., Wang, C. F., Zuo, J. L., Song, Y., Zeng, X. R. & You, X. Z. (2006). Inorg. Chem. 45, 582–590.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, D. (2009). Acta Cryst. E65, m1340.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds