organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­phen­yl)chromen-4-one

aChemical Biology Laboratory, Department of Chemistry, University of Delhi 110 007, India, and bDepartment of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 225 001 UP, India
*Correspondence e-mail: awasthisatish@yahoo.com

(Received 16 August 2011; accepted 21 October 2011; online 5 November 2011)

The title compound, C15H9ClO2, is a synthetic flavonoid obtained by the cyclization of 3-(4-chloro­phen­yl)-1-(2-hy­droxy­phen­yl)prop-2-en-1-one. The 4-chloro­phenyl ring is twisted at an angle of 11.54° with respect to the chromen-4-one skeleton. In the crystal, pairs of mol­ecules are inter­connected by weak Cl⋯Cl inter­actions [3.3089 (10) Å] forming dimmers which are further peripherally connected through inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general features and crystal structures of flavanoids, see: Tim Cushnie & Lamb (2005[Tim Cushnie, T. P. & Lamb, A. J. (2005). Int. J. Antimicrob. Agents, 26, 343-356.]); Wera et al. (2011[Wera, M., Serdiuk, I. E., Roshal, A. D. & Błażejowski, J. (2011). Acta Cryst. E67, o440.]). For crystal structures of small mol­ecules, see: Singh, Agarwal & Awasthi (2011[Singh, M. K., Agarwal, A. & Awasthi, S. K. (2011). Acta Cryst. E67, o1137.]); Singh, Singh et al. (2011[Singh, S., Singh, M. K., Agarwal, A., Hussain, F. & Awasthi, S. K. (2011). Acta Cryst. E67, o1616-o1617.]). For the synthesis, see: Migrdichian (1957[Migrdichian, V. (1957). Organic Synthesis, Vol. 1, pp. 171-173. New York: Reinhold Publishing.]); Awasthi et al. (2009[Awasthi, S. K., Mishra, N., Kumar, B., Sharma, M., Bhattacharya, A., Mishra, L. C. & Bhasin, V. K. (2009). Med. Chem. Res. 18, 407-420.]); Shah et al. (1955[Shah, D. N., Parikh, S. K. & Shah, N. M. (1955). J. Am. Chem. Soc. 77, 2223-2224.]). For inter­molecular inter­actions and bond lengths and angles, see: Reddy et al. (2006[Reddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222-2234.]); Wang et al. (2010[Wang, Y., Wan, C.-Q., Zheng, T. & Cao, S.-L. (2010). Acta Cryst. E66, o2858.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]); Waller et al. (2003[Waller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767-o768.]); Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H9ClO2

  • Mr = 256.67

  • Monoclinic, C 2/c

  • a = 22.1564 (16) Å

  • b = 3.8745 (2) Å

  • c = 26.7728 (18) Å

  • β = 95.524 (6)°

  • V = 2287.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.40 × 0.39 × 0.38 mm

Data collection
  • Oxford Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.938, Tmax = 0.941

  • 8152 measured reflections

  • 2249 independent reflections

  • 1910 reflections with I > 2σ(I)

  • Rint = 0.037

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.119

  • S = 1.10

  • 2249 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O2i 0.93 2.64 3.345 (3) 134 (1)
Symmetry code: (i) [-x+1, y-1, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The term flavonoid generally includes a group of natural products containing a C6—C3—C6 carbon skeleton or more specifically phenylbenzopyran functionality in the molecule. Flavones (flavus = yellow), a class of the flavonoids mainly found in cereals and herbs. Flavanoids exhibit a wide range of biological activities such as antibacterial, anti-inflammatory, antioxidants, antifungal, antitumour and antimalarial (Tim Cushnie & Lamb 2005). Recently, few flavanoids have also been characterized in solid state (Wera et al., 2011). Continuing our ongoing work on antimalarials (Awasthi et al., 2009) and crystal structure of small molecules (Singh, Agarwal & Awasthi, 2011; Singh, Singh et al., 2011), here we wish to report the crystal structure of 2-(4-chlorophenyl)chromen-4-one.

In the title compound (Fig. 1),the bond lengths and bond angles are usual and are comparable with the analogues structure of 2-phenyl-4H-chromen-4-one (flavone) reported earlier (Allen et al., 1987; Waller et al., 2003). The 4-chlorophenyl ring in the molecule is twisted at an angle of 11.54° relative to the chromen-4-one skeleton confirming nearly planner structure. The centroid–centroid distance between two parallel chromone ring in the molecule is 3.87 Å. Further, it is evident from the crystal packing structure (Fig. 2) that 8 molecules are present in a unit cell and adjacent chromone units are parallel in a given column, thus forming a herringbone type pattern. Moreover,crystal packing in the molecule is stabilized by weaker intermolecular hydrogen bonding C11—H11—O2 [D = 3.34 (3) Å] which is very well supported by earlier findings (Desiraju & Steiner, 1999). Further, weak interaction among atoms in molecule such as Cl1—Cl1 (x, -1 + y, 1/2 - z) [3.30 Å] (Reddy et al.,2006) and C8—H8—H8—C8 [2.26 Å](Wang et al., 2010) are also responsible for stability in the crystal packing. Further, intermolecular Cl1—Cl1 short interaction forms a dimeric unit which are further peripherically links to six other molecules through C—H—O and C—H—H—C interactions.

Related literature top

For general features and crystal structures of flavanoids, see: Tim Cushnie & Lamb (2005); Wera et al. (2011). For crystal structures of small molecules see: Singh, Agarwal & Awasthi (2011); Singh, Singh et al. (2011). For synthesis, see: Migrdichian (1957); Awasthi et al. (2009); Shah et al. (1955). For intermolecular interactions and bond lengths and angles, see: Reddy et al. (2006); Wang et al. (2010); Desiraju & Steiner (1999); Waller et al. (2003); Allen et al. (1987).

Experimental top

The synthesis of the title compound was carried out in two steps according to the published procedure. (Migrdichian 1957; Awasthi et al., 2009). In the first step, an aqueous solution of sodium hydroxide (10% w/v, 10 ml) was added to a solution of 2-hydroxyacetophenone (1.77 g m, 10 mmol) and 4-chlorobenzaldehyde (1.73 g m, 10 mmol) in minimum amount of methanol (3–5 ml) at ice cooled flask. The reaction mixture was allowed to draw closer to room temperature and stirred for 18–20 h yielded a yellow solid. The completion of the reaction was monitored by thin layer chromatography. After completion of the reaction, the mixture was neutralized with 10% hydrochloric acid in water. The compound was characterized by 1H NMR, 13C NMR, FT–IR and EI–MS.

In second step, the cyclization was carried out according to published procedure (Shah et al., 1955). Briefly, 3-(4-chlorophenyl)-1-(2-hydroxyphenyl)propenone (40 mg, 0.12 mmol) & SeO2 (39 mg, 0.35 mmol) were added to dry amyl alcohol (30 ml) and the mixture was heated in an oil bath at 140–150 °C so that the entire compound was completely dissolved in the solvent. The reaction mixture was refluxed for 12 h and completion of the reaction was monitored by TLC. The reaction mixture was then filtered and dried in vacuum and purified by silica gel column using (Pet. ether: EtOAc, 2:3) as eluent. The recrystalliation of an isolated compound from PE/ethylacetate to afford 2-(4-chlorophenyl)chromen-4-one (10 mg, 20.1%) as white solid, m.p 177–178°C. Rf 0.6 (PE; EtOAc, 2:3). FT–IR νmax (KBr) cm-1: 1651 (CO), 1606 and 1510 (CC aromatic), 1263 (C—O); 1H NMR (300 Mz, CDCl3) p.p.m.: δ 6.63 (1H, s, H-3, pyrone ring), δ 7.32–7.48 (4H, m, Ar-H, H'-5, H'-6, H'-7, H'-8), 7.20 (2H, dd, J = 2.4 Hz, H'-5, H'-3), 7.28 (2H, dd, J = 2.1 Hz, H'-2, H'-6), 13C NMR (300 Mz, CDCl3) ppm: EI–MS: m/z 255 [M+].

For crystallization 5 mg of compound dissolved in 5 ml mixture of Petroleum ether/ethylacetate (80:20) and left for several days at ambient temperature which yielded fine needle shape crystals.

Refinement top

All H atoms were located from Fourier map (range of C—H = 0.93 Å) allowed to refine freely.

Structure description top

The term flavonoid generally includes a group of natural products containing a C6—C3—C6 carbon skeleton or more specifically phenylbenzopyran functionality in the molecule. Flavones (flavus = yellow), a class of the flavonoids mainly found in cereals and herbs. Flavanoids exhibit a wide range of biological activities such as antibacterial, anti-inflammatory, antioxidants, antifungal, antitumour and antimalarial (Tim Cushnie & Lamb 2005). Recently, few flavanoids have also been characterized in solid state (Wera et al., 2011). Continuing our ongoing work on antimalarials (Awasthi et al., 2009) and crystal structure of small molecules (Singh, Agarwal & Awasthi, 2011; Singh, Singh et al., 2011), here we wish to report the crystal structure of 2-(4-chlorophenyl)chromen-4-one.

In the title compound (Fig. 1),the bond lengths and bond angles are usual and are comparable with the analogues structure of 2-phenyl-4H-chromen-4-one (flavone) reported earlier (Allen et al., 1987; Waller et al., 2003). The 4-chlorophenyl ring in the molecule is twisted at an angle of 11.54° relative to the chromen-4-one skeleton confirming nearly planner structure. The centroid–centroid distance between two parallel chromone ring in the molecule is 3.87 Å. Further, it is evident from the crystal packing structure (Fig. 2) that 8 molecules are present in a unit cell and adjacent chromone units are parallel in a given column, thus forming a herringbone type pattern. Moreover,crystal packing in the molecule is stabilized by weaker intermolecular hydrogen bonding C11—H11—O2 [D = 3.34 (3) Å] which is very well supported by earlier findings (Desiraju & Steiner, 1999). Further, weak interaction among atoms in molecule such as Cl1—Cl1 (x, -1 + y, 1/2 - z) [3.30 Å] (Reddy et al.,2006) and C8—H8—H8—C8 [2.26 Å](Wang et al., 2010) are also responsible for stability in the crystal packing. Further, intermolecular Cl1—Cl1 short interaction forms a dimeric unit which are further peripherically links to six other molecules through C—H—O and C—H—H—C interactions.

For general features and crystal structures of flavanoids, see: Tim Cushnie & Lamb (2005); Wera et al. (2011). For crystal structures of small molecules see: Singh, Agarwal & Awasthi (2011); Singh, Singh et al. (2011). For synthesis, see: Migrdichian (1957); Awasthi et al. (2009); Shah et al. (1955). For intermolecular interactions and bond lengths and angles, see: Reddy et al. (2006); Wang et al. (2010); Desiraju & Steiner (1999); Waller et al. (2003); Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the molecule with thermal ellipsoids drawn at 50% probability level Color code: White: C; red: O; green: Cl; white: H.
[Figure 2] Fig. 2. Packing diagram of molecule showing centroid–centroid distance between two parallel lying cromone ring and intermolecular hydrogen bonding.
2-(4-Chlorophenyl)chromen-4-one top
Crystal data top
C15H9ClO2F(000) = 528
Mr = 256.67Dx = 1.490 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3949 reflections
a = 22.1564 (16) Åθ = 3.1–32.6°
b = 3.8745 (2) ŵ = 0.32 mm1
c = 26.7728 (18) ÅT = 293 K
β = 95.524 (6)°Needle, colourless
V = 2287.6 (3) Å30.40 × 0.39 × 0.38 mm
Z = 8
Data collection top
Oxford Xcalibur Eos
diffractometer
2249 independent reflections
Radiation source: fine-focus sealed tube1910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 26.0°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 2626
Tmin = 0.938, Tmax = 0.941k = 44
8152 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0483P)2 + 1.836P]
where P = (Fo2 + 2Fc2)/3
2249 reflections(Δ/σ)max = 0.009
163 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H9ClO2V = 2287.6 (3) Å3
Mr = 256.67Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.1564 (16) ŵ = 0.32 mm1
b = 3.8745 (2) ÅT = 293 K
c = 26.7728 (18) Å0.40 × 0.39 × 0.38 mm
β = 95.524 (6)°
Data collection top
Oxford Xcalibur Eos
diffractometer
2249 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1910 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.941Rint = 0.037
8152 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.10Δρmax = 0.20 e Å3
2249 reflectionsΔρmin = 0.24 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.31934 (3)0.85487 (18)0.02358 (2)0.0570 (2)
C90.53822 (9)1.4266 (6)0.14239 (7)0.0337 (5)
C60.64493 (9)1.7175 (6)0.18541 (7)0.0354 (5)
C100.48486 (9)1.2780 (6)0.11311 (7)0.0337 (5)
C10.63679 (9)1.6341 (5)0.13486 (7)0.0339 (5)
C130.38335 (9)1.0144 (6)0.05827 (8)0.0397 (5)
C150.48053 (10)1.2743 (6)0.06106 (8)0.0400 (5)
H150.51231.36060.04450.048*
C80.54262 (10)1.5012 (7)0.19128 (8)0.0461 (6)
H80.50951.45730.20920.055*
C50.70028 (10)1.8653 (6)0.20370 (8)0.0428 (5)
H50.70691.92480.23740.051*
C20.68118 (10)1.6940 (6)0.10315 (8)0.0431 (5)
H20.67481.63700.06930.052*
C140.42994 (10)1.1448 (6)0.03366 (8)0.0436 (6)
H140.42731.14550.00120.052*
C110.43729 (10)1.1410 (6)0.13715 (8)0.0416 (5)
H110.43971.13850.17200.050*
C120.38674 (10)1.0092 (6)0.10974 (8)0.0431 (5)
H120.35510.91720.12600.052*
C70.59653 (11)1.6468 (6)0.21751 (8)0.0445 (6)
O20.60167 (9)1.7078 (6)0.26277 (6)0.0690 (6)
C30.73488 (10)1.8388 (6)0.12232 (9)0.0472 (6)
H30.76511.88090.10130.057*
C40.74463 (11)1.9233 (6)0.17286 (9)0.0475 (6)
H40.78142.01930.18560.057*
O10.58414 (6)1.4868 (4)0.11337 (5)0.0382 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0454 (4)0.0656 (5)0.0582 (4)0.0157 (3)0.0049 (3)0.0043 (3)
C90.0323 (10)0.0380 (12)0.0317 (10)0.0045 (9)0.0076 (8)0.0045 (9)
C60.0365 (11)0.0363 (12)0.0332 (11)0.0054 (9)0.0013 (9)0.0023 (9)
C100.0323 (11)0.0353 (11)0.0337 (10)0.0045 (9)0.0033 (8)0.0035 (9)
C10.0319 (10)0.0358 (12)0.0336 (10)0.0005 (9)0.0011 (8)0.0027 (9)
C130.0326 (11)0.0390 (12)0.0466 (12)0.0030 (10)0.0011 (9)0.0010 (10)
C150.0375 (11)0.0492 (13)0.0342 (11)0.0041 (10)0.0082 (9)0.0025 (10)
C80.0389 (12)0.0672 (16)0.0331 (11)0.0059 (11)0.0085 (9)0.0006 (11)
C50.0437 (12)0.0432 (13)0.0398 (12)0.0003 (11)0.0045 (10)0.0018 (10)
C20.0408 (12)0.0529 (14)0.0361 (11)0.0015 (11)0.0060 (9)0.0002 (10)
C140.0444 (13)0.0533 (15)0.0331 (11)0.0050 (11)0.0038 (10)0.0002 (10)
C110.0393 (12)0.0529 (14)0.0334 (11)0.0009 (11)0.0076 (9)0.0040 (10)
C120.0347 (11)0.0496 (14)0.0461 (12)0.0054 (10)0.0103 (10)0.0052 (11)
C70.0451 (13)0.0563 (15)0.0321 (11)0.0007 (12)0.0038 (9)0.0031 (10)
O20.0648 (12)0.1114 (17)0.0314 (9)0.0159 (11)0.0068 (8)0.0149 (10)
C30.0379 (12)0.0508 (15)0.0539 (14)0.0036 (11)0.0105 (10)0.0053 (12)
C40.0382 (12)0.0450 (14)0.0574 (14)0.0045 (11)0.0045 (11)0.0018 (12)
O10.0326 (7)0.0541 (10)0.0282 (7)0.0041 (7)0.0045 (6)0.0028 (7)
Geometric parameters (Å, º) top
Cl1—C131.733 (2)C8—C71.441 (3)
C9—C81.335 (3)C8—H80.9300
C9—O11.358 (2)C5—C41.362 (3)
C9—C101.471 (3)C5—H50.9300
C6—C11.386 (3)C2—C31.370 (3)
C6—C51.399 (3)C2—H20.9300
C6—C71.463 (3)C14—H140.9300
C10—C151.388 (3)C11—C121.377 (3)
C10—C111.392 (3)C11—H110.9300
C1—O11.374 (2)C12—H120.9300
C1—C21.379 (3)C7—O21.229 (3)
C13—C141.373 (3)C3—C41.389 (3)
C13—C121.373 (3)C3—H30.9300
C15—C141.374 (3)C4—H40.9300
C15—H150.9300
C8—C9—O1122.4 (2)C6—C5—H5119.5
C8—C9—C10125.9 (2)C3—C2—C1118.9 (2)
O1—C9—C10111.72 (17)C3—C2—H2120.5
C1—C6—C5117.7 (2)C1—C2—H2120.5
C1—C6—C7119.74 (19)C13—C14—C15119.4 (2)
C5—C6—C7122.57 (19)C13—C14—H14120.3
C15—C10—C11118.6 (2)C15—C14—H14120.3
C15—C10—C9120.89 (19)C12—C11—C10120.5 (2)
C11—C10—C9120.54 (18)C12—C11—H11119.7
O1—C1—C2116.05 (18)C10—C11—H11119.7
O1—C1—C6122.07 (18)C13—C12—C11119.5 (2)
C2—C1—C6121.9 (2)C13—C12—H12120.2
C14—C13—C12121.1 (2)C11—C12—H12120.2
C14—C13—Cl1119.24 (17)O2—C7—C8123.3 (2)
C12—C13—Cl1119.70 (17)O2—C7—C6122.7 (2)
C14—C15—C10120.9 (2)C8—C7—C6114.01 (18)
C14—C15—H15119.5C2—C3—C4120.6 (2)
C10—C15—H15119.5C2—C3—H3119.7
C9—C8—C7122.8 (2)C4—C3—H3119.7
C9—C8—H8118.6C5—C4—C3119.9 (2)
C7—C8—H8118.6C5—C4—H4120.1
C4—C5—C6121.0 (2)C3—C4—H4120.1
C4—C5—H5119.5C9—O1—C1118.96 (15)
C8—C9—C10—C15167.0 (2)C15—C10—C11—C120.9 (3)
O1—C9—C10—C1512.2 (3)C9—C10—C11—C12178.5 (2)
C8—C9—C10—C1112.3 (4)C14—C13—C12—C110.9 (4)
O1—C9—C10—C11168.48 (19)Cl1—C13—C12—C11179.02 (18)
C5—C6—C1—O1179.74 (19)C10—C11—C12—C130.2 (4)
C7—C6—C1—O10.3 (3)C9—C8—C7—O2178.0 (3)
C5—C6—C1—C20.2 (3)C9—C8—C7—C62.2 (4)
C7—C6—C1—C2179.6 (2)C1—C6—C7—O2178.3 (2)
C11—C10—C15—C141.3 (4)C5—C6—C7—O21.1 (4)
C9—C10—C15—C14178.1 (2)C1—C6—C7—C81.9 (3)
O1—C9—C8—C70.9 (4)C5—C6—C7—C8178.7 (2)
C10—C9—C8—C7180.0 (2)C1—C2—C3—C40.2 (4)
C1—C6—C5—C40.3 (3)C6—C5—C4—C30.7 (4)
C7—C6—C5—C4179.1 (2)C2—C3—C4—C50.7 (4)
O1—C1—C2—C3179.7 (2)C8—C9—O1—C10.9 (3)
C6—C1—C2—C30.3 (3)C10—C9—O1—C1178.32 (17)
C12—C13—C14—C150.5 (4)C2—C1—O1—C9178.86 (19)
Cl1—C13—C14—C15179.43 (18)C6—C1—O1—C91.2 (3)
C10—C15—C14—C130.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O2i0.932.643.345 (3)134 (1)
Symmetry code: (i) x+1, y1, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H9ClO2
Mr256.67
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)22.1564 (16), 3.8745 (2), 26.7728 (18)
β (°) 95.524 (6)
V3)2287.6 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.40 × 0.39 × 0.38
Data collection
DiffractometerOxford Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.938, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
8152, 2249, 1910
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.119, 1.10
No. of reflections2249
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O2i0.932.643.345 (3)133.86 (14)
Symmetry code: (i) x+1, y1, z+1/2.
 

Acknowledgements

SKA is grateful to the Department of Science and Technology (Scheme No. SR/SO BB-65/2003 ) and the University of Delhi, India, for financial assistance. The authors are very grateful to the University Sophisticated Instrument Center (USIC), University of Delhi, India, for providing the single-crystal X-ray diffractometer facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAwasthi, S. K., Mishra, N., Kumar, B., Sharma, M., Bhattacharya, A., Mishra, L. C. & Bhasin, V. K. (2009). Med. Chem. Res. 18, 407–420.  Web of Science CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMigrdichian, V. (1957). Organic Synthesis, Vol. 1, pp. 171–173. New York: Reinhold Publishing.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationReddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222–2234.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationShah, D. N., Parikh, S. K. & Shah, N. M. (1955). J. Am. Chem. Soc. 77, 2223–2224.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, M. K., Agarwal, A. & Awasthi, S. K. (2011). Acta Cryst. E67, o1137.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSingh, S., Singh, M. K., Agarwal, A., Hussain, F. & Awasthi, S. K. (2011). Acta Cryst. E67, o1616–o1617.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTim Cushnie, T. P. & Lamb, A. J. (2005). Int. J. Antimicrob. Agents, 26, 343–356.  Web of Science PubMed Google Scholar
First citationWaller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767–o768.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Wan, C.-Q., Zheng, T. & Cao, S.-L. (2010). Acta Cryst. E66, o2858.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWera, M., Serdiuk, I. E., Roshal, A. D. & Błażejowski, J. (2011). Acta Cryst. E67, o440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds