metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1,5-Bis(2-meth­­oxy­phen­yl)thio­carbazo­nato-κ2N1,S]phenyl­mercury(II)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa, and bResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: veschwkg@ufs.ac.za, mullera@uj.ac.za

(Received 16 November 2011; accepted 17 November 2011; online 23 November 2011)

The title compound, [Hg(C6H5)(C15H15N4O2S)], shows the metal–phenyl moiety coordinated out of plane with the thio­carbazo­nate ligand by 43.84 (6)°. Important geometrical parameters include Hg—S = 2.3653 (10) Å, Hg—C = 2.058 (4) Å and S—Hg—C = 179.06 (11)°. There is a weak coordination of an N atom of the ligand to Hg [Hg—N = 2.725 (3) Å]. S⋯Hg inter­actions[3.2928 (10) Å] form chains along [001], stabilizing the crystal structure.

Related literature

For general background to thio­carbazo­natomercury(II) complexes, see: Irving et al. (1949[Irving, H., Andrew, G. & Risdon, E. J. (1949). J. Chem. Soc. pp. 541-547.]); Webb et al. (1950[Webb, J. L. A., Bhatia, I. S., Corwin, A. H. & Sharp, A. G. (1950). J. Am. Chem. Soc. 72, 91-95.]); Hutton et al. (1980[Hutton, A. T., Irving, H. M. N. H., Nassimbeni, L. R. & Gafner, G. (1980). Acta Cryst. B36, 2064-2070.]); Von Eschwege et al. (2011[Von Eschwege, K. G., van As, L. & Swarts, J. C. (2011). Electrochim. Acta, 56, 10064-10068.]); Schwoerer et al. (2011[Schwoerer, H., Von Eschwege, K. G., Bosman, G., Krok, P. & Conradie, J. (2011). ChemPhysChem, 12, 2653-2658.]). For synthetic procedures relating to the title compound, see: Mirkhalaf et al. (1998[Mirkhalaf, F., Whittaker, D. & Schiffrin, D. J. (1998). J. Electroanal. Chem. 452, 203-213.]); Von Eschwege et al. (2008[Von Eschwege, K. G., Conradie, J. & Swarts, J. C. (2008). J. Phys. Chem. 112, 2211-2218.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg(C6H5)(C15H15N4O2S)]

  • Mr = 593.06

  • Monoclinic, P 21 /c

  • a = 15.2113 (16) Å

  • b = 18.2730 (18) Å

  • c = 7.4649 (8) Å

  • β = 90.106 (2)°

  • V = 2074.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.54 mm−1

  • T = 299 K

  • 0.26 × 0.19 × 0.01 mm

Data collection
  • Bruker APEX DUO 4K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.542, Tmax = 0.746

  • 17400 measured reflections

  • 5107 independent reflections

  • 4107 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.076

  • S = 1.03

  • 5107 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 1.16 e Å−3

  • Δρmin = −0.89 e Å−3

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Irving et al. (1949) and Webb et al. (1950) independently reported photochromicity of the thiocarbazonatomercury(II) complex. The single-crystal X-ray structure of the phenyl mercury thiocarbazonate complex was established by Hutton et al. (1980) and redox properties by Von Eschwege et al. (2011), while femtosecond laser spectroscopy resolved the short-lived time constants of the photochromic reaction (Schwoerer et al., 2011). For the purpose of investigating the influence of electron donating groups on the photochromic and redox reactions of thiocarbazonatophenylmercury(II) complexes a series of electronically altered dithizones were synthesized and for the first time complexed with mercury. Deep orange-red needle crystals of the ortho-methoxy derivative, suitable for X-ray crystallography, were isolated from a dichloromethane solution overlaid with ethanol.

The title compound (Fig. 1, Table 1) shows the metal-phenyl moiety coordinated out of plane to the (2-methoxyphenyl)thiocarbazonate by 43.84 (6)°. The methoxy moieties are slightly twisted out of planarity with their respective phenyl rings [C12—C13—O1—C14 = 22.0 (7)° and C19—C20—O2—C21 = 16.1 (6)°]. Important geometrical parameters include Hg—S = 2.3653 (10) Å, Hg—C = 2.058 (4) Å, and S—Hg—C = 179.06 (11)°. There is a weak coordination of a N-atom of the thiocarbazonate to Hg (Hg—N = 2.725 (3) Å). S···Hg interactions stabilizes the crystal packing (Fig. 2).

Related literature top

For general background to thiocarbazonatomercury(II) complexes, see: Irving et al. (1949); Webb et al. (1950); Hutton et al. (1980); Von Eschwege et al. (2011); Schwoerer et al. (2011). For synthetic procedures relating to the title compound, see: Mirkhalaf et al. (1998); Von Eschwege et al. (2008).

Experimental top

Solvents (AR) purchased from Merck and reagents from Sigma-Aldrich were used without further purification. The ortho-methoxy derivative of dithizone, (o-OCH3PhNHN)2CS, was prepared according to a procedure reported by Mirkhalaf et al. (1998). The synthesis and crystallization of the title compound was done according to a procedure earlier reported by Von Eschwege et al. (2008).

Refinement top

All hydrogen atoms were positioned in geometrically idealized positions with C—H = 0.98 Å (methyl), 0.95 Å (aromatic) and 0.86 Å (imine). All hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C), except for the methyl where Uiso(H) = 1.5Ueq(C) was utilized. The initial positions of methyl hydrogen atoms were located from a Fourier difference map and refined as fixed rotor. The highest residual electron density of 1.15 e.Å-3 is 0.81 Å from Hg1 representing no physical meaning.

Structure description top

Irving et al. (1949) and Webb et al. (1950) independently reported photochromicity of the thiocarbazonatomercury(II) complex. The single-crystal X-ray structure of the phenyl mercury thiocarbazonate complex was established by Hutton et al. (1980) and redox properties by Von Eschwege et al. (2011), while femtosecond laser spectroscopy resolved the short-lived time constants of the photochromic reaction (Schwoerer et al., 2011). For the purpose of investigating the influence of electron donating groups on the photochromic and redox reactions of thiocarbazonatophenylmercury(II) complexes a series of electronically altered dithizones were synthesized and for the first time complexed with mercury. Deep orange-red needle crystals of the ortho-methoxy derivative, suitable for X-ray crystallography, were isolated from a dichloromethane solution overlaid with ethanol.

The title compound (Fig. 1, Table 1) shows the metal-phenyl moiety coordinated out of plane to the (2-methoxyphenyl)thiocarbazonate by 43.84 (6)°. The methoxy moieties are slightly twisted out of planarity with their respective phenyl rings [C12—C13—O1—C14 = 22.0 (7)° and C19—C20—O2—C21 = 16.1 (6)°]. Important geometrical parameters include Hg—S = 2.3653 (10) Å, Hg—C = 2.058 (4) Å, and S—Hg—C = 179.06 (11)°. There is a weak coordination of a N-atom of the thiocarbazonate to Hg (Hg—N = 2.725 (3) Å). S···Hg interactions stabilizes the crystal packing (Fig. 2).

For general background to thiocarbazonatomercury(II) complexes, see: Irving et al. (1949); Webb et al. (1950); Hutton et al. (1980); Von Eschwege et al. (2011); Schwoerer et al. (2011). For synthetic procedures relating to the title compound, see: Mirkhalaf et al. (1998); Von Eschwege et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound indicating labeling and displacement ellipsoids (drawn at a 50% probability level).
[Figure 2] Fig. 2. Partial packing diagram of the title compound viewed along the b axis illustrating the Hg···S interactions stabilizing the crystal packing.
[1,5-Bis(2-methoxyphenyl)thiocarbazonato- κ2N5,S]phenylmercury(II) top
Crystal data top
[Hg(C6H5)(C15H15N4O2S)]F(000) = 1144
Mr = 593.06Dx = 1.895 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5470 reflections
a = 15.2113 (16) Åθ = 2.7–25.7°
b = 18.2730 (18) ŵ = 7.54 mm1
c = 7.4649 (8) ÅT = 299 K
β = 90.106 (2)°Plate, brown
V = 2074.9 (4) Å30.26 × 0.19 × 0.01 mm
Z = 4
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
5107 independent reflections
Graphite monochromator4107 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1Rint = 0.042
φ and ω scansθmax = 28.3°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2019
Tmin = 0.542, Tmax = 0.746k = 2424
17400 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.036P)2]
where P = (Fo2 + 2Fc2)/3
5107 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 1.16 e Å3
0 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Hg(C6H5)(C15H15N4O2S)]V = 2074.9 (4) Å3
Mr = 593.06Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.2113 (16) ŵ = 7.54 mm1
b = 18.2730 (18) ÅT = 299 K
c = 7.4649 (8) Å0.26 × 0.19 × 0.01 mm
β = 90.106 (2)°
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
5107 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4107 reflections with I > 2σ(I)
Tmin = 0.542, Tmax = 0.746Rint = 0.042
17400 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.03Δρmax = 1.16 e Å3
5107 reflectionsΔρmin = 0.89 e Å3
264 parameters
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 60 s/frame. A total of 894 frames were collected with a frame width of 0.5° covering up to θ = 28.26° with 99.2% completeness accomplished.

Analytical data: M.p. 212 - 213 °C; λmax (dichloromethane) 505 nm; δH (300 MHz, CDCl3) 3.68, 4.03 (6 H, 2 × s, 2 × CH3), 6.57 – 7.89 (13 H, m, 2 × C6H4, 1 × C6H5), 9.75 (1H, s, 1 × NH).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.757410 (11)0.741409 (8)0.89423 (2)0.04159 (7)
S10.63975 (7)0.80179 (5)1.03894 (13)0.0396 (2)
C10.8609 (3)0.6905 (2)0.7679 (5)0.0400 (9)
C20.8465 (3)0.6229 (2)0.6869 (6)0.0517 (11)
H20.78960.60430.68470.062*
C30.9118 (4)0.5830 (3)0.6110 (7)0.0672 (14)
H30.89990.53770.55960.081*
C40.9962 (4)0.6106 (3)0.6112 (6)0.0723 (16)
H41.04150.5840.55870.087*
C51.0137 (3)0.6760 (3)0.6869 (6)0.0696 (15)
H51.07070.69440.6860.084*
C60.9459 (3)0.7164 (3)0.7672 (6)0.0560 (11)
H60.95860.76120.82040.067*
C70.5620 (3)0.73001 (19)1.0383 (5)0.0373 (8)
C80.3652 (3)0.8205 (2)0.9259 (5)0.0431 (9)
C90.2994 (3)0.7691 (2)0.9489 (7)0.0542 (11)
H90.31230.72350.9980.065*
C100.2150 (4)0.7859 (3)0.8986 (8)0.0692 (14)
H100.17060.75150.91320.083*
C110.1954 (4)0.8535 (3)0.8264 (7)0.0748 (16)
H110.13830.86370.78970.09*
C120.2595 (4)0.9059 (3)0.8082 (7)0.0646 (13)
H120.24570.95160.76110.078*
C130.3446 (3)0.8903 (2)0.8604 (6)0.0494 (10)
C140.3947 (4)1.0137 (2)0.8541 (7)0.0654 (14)
H14A0.36691.02650.74290.098*
H14B0.44831.0410.8670.098*
H14C0.3561.02510.95170.098*
C150.6791 (3)0.5672 (2)1.1234 (5)0.0417 (9)
C160.6159 (3)0.5142 (2)1.1353 (6)0.0522 (11)
H160.55720.52721.12010.063*
C170.6369 (4)0.4415 (2)1.1693 (6)0.0648 (14)
H170.59310.4061.17470.078*
C180.7232 (4)0.4233 (2)1.1947 (7)0.0683 (16)
H180.73770.3751.22020.082*
C190.7891 (4)0.4745 (2)1.1834 (6)0.0593 (13)
H190.84740.46071.19980.071*
C200.7683 (3)0.5471 (2)1.1474 (5)0.0507 (11)
C210.9188 (4)0.5815 (3)1.1217 (7)0.0700 (15)
H21A0.94030.5641.23480.105*
H21B0.95290.62311.08490.105*
H21C0.92390.54351.03360.105*
N10.5817 (2)0.65684 (16)1.0733 (4)0.0425 (8)
N20.6628 (2)0.64165 (16)1.0849 (4)0.0387 (7)
N30.4523 (2)0.80730 (17)0.9711 (4)0.0468 (8)
H3A0.48930.84290.97290.056*
N40.4790 (3)0.73963 (16)1.0117 (5)0.0447 (8)
O10.4138 (2)0.93781 (16)0.8552 (5)0.0618 (9)
O20.8295 (2)0.60215 (16)1.1388 (4)0.0585 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.03951 (11)0.04266 (10)0.04260 (10)0.00361 (6)0.00085 (7)0.00262 (6)
S10.0410 (6)0.0322 (5)0.0458 (5)0.0036 (4)0.0026 (4)0.0019 (4)
C10.040 (2)0.046 (2)0.0335 (17)0.0076 (17)0.0009 (17)0.0040 (15)
C20.048 (3)0.048 (2)0.059 (3)0.001 (2)0.001 (2)0.0059 (19)
C30.077 (4)0.059 (3)0.066 (3)0.016 (3)0.007 (3)0.011 (2)
C40.075 (4)0.085 (4)0.057 (3)0.036 (3)0.008 (3)0.002 (3)
C50.033 (3)0.112 (5)0.064 (3)0.005 (3)0.002 (2)0.002 (3)
C60.049 (3)0.068 (3)0.051 (2)0.004 (2)0.003 (2)0.002 (2)
C70.038 (2)0.0358 (19)0.0384 (19)0.0047 (16)0.0027 (17)0.0005 (14)
C80.037 (2)0.048 (2)0.045 (2)0.0062 (18)0.0038 (18)0.0074 (16)
C90.046 (3)0.053 (3)0.064 (3)0.002 (2)0.003 (2)0.013 (2)
C100.037 (3)0.086 (4)0.085 (4)0.003 (3)0.001 (3)0.023 (3)
C110.042 (3)0.098 (4)0.084 (4)0.019 (3)0.014 (3)0.023 (3)
C120.056 (3)0.076 (3)0.062 (3)0.025 (3)0.005 (3)0.005 (3)
C130.043 (3)0.052 (2)0.053 (2)0.015 (2)0.003 (2)0.0067 (19)
C140.083 (4)0.045 (3)0.068 (3)0.014 (2)0.005 (3)0.004 (2)
C150.059 (3)0.0331 (19)0.0331 (17)0.0093 (18)0.0033 (18)0.0028 (14)
C160.060 (3)0.038 (2)0.059 (2)0.002 (2)0.004 (2)0.0056 (18)
C170.085 (4)0.037 (2)0.072 (3)0.004 (2)0.004 (3)0.009 (2)
C180.113 (5)0.031 (2)0.060 (3)0.013 (3)0.001 (3)0.0060 (19)
C190.074 (4)0.045 (2)0.059 (3)0.021 (2)0.008 (3)0.004 (2)
C200.068 (3)0.042 (2)0.041 (2)0.013 (2)0.007 (2)0.0029 (16)
C210.059 (4)0.081 (4)0.070 (3)0.017 (3)0.007 (3)0.018 (3)
N10.050 (2)0.0321 (16)0.0458 (17)0.0046 (15)0.0015 (16)0.0035 (13)
N20.044 (2)0.0336 (16)0.0382 (16)0.0050 (14)0.0023 (15)0.0028 (12)
N30.040 (2)0.0373 (17)0.063 (2)0.0039 (15)0.0067 (17)0.0015 (15)
N40.043 (2)0.0369 (17)0.054 (2)0.0047 (15)0.0005 (18)0.0004 (14)
O10.058 (2)0.0399 (16)0.088 (2)0.0125 (15)0.0015 (18)0.0012 (15)
O20.053 (2)0.0465 (17)0.076 (2)0.0043 (15)0.0084 (17)0.0095 (15)
Geometric parameters (Å, º) top
Hg1—C12.058 (4)C12—H120.93
Hg1—S12.3653 (10)C13—O11.364 (5)
S1—C71.766 (4)C14—O11.417 (5)
C1—C61.378 (6)C14—H14A0.96
C1—C21.392 (6)C14—H14B0.96
C2—C31.358 (6)C14—H14C0.96
C2—H20.93C15—C161.368 (6)
C3—C41.380 (8)C15—N21.412 (4)
C3—H30.93C15—C201.417 (6)
C4—C51.348 (7)C16—C171.389 (6)
C4—H40.93C16—H160.93
C5—C61.403 (7)C17—C181.368 (7)
C5—H50.93C17—H170.93
C6—H60.93C18—C191.374 (7)
C7—N41.289 (6)C18—H180.93
C7—N11.395 (4)C19—C201.389 (5)
C8—C91.384 (6)C19—H190.93
C8—N31.387 (5)C20—O21.372 (5)
C8—C131.401 (6)C21—O21.416 (6)
C9—C101.372 (8)C21—H21A0.96
C9—H90.93C21—H21B0.96
C10—C111.380 (8)C21—H21C0.96
C10—H100.93N1—N21.267 (5)
C11—C121.373 (8)N3—N41.336 (4)
C11—H110.93N3—H3A0.86
C12—C131.381 (7)
C1—Hg1—S1179.06 (11)C12—C13—C8119.7 (5)
C7—S1—Hg199.19 (13)O1—C14—H14A109.5
C6—C1—C2116.7 (4)O1—C14—H14B109.5
C6—C1—Hg1124.4 (3)H14A—C14—H14B109.5
C2—C1—Hg1118.7 (3)O1—C14—H14C109.5
C3—C2—C1123.0 (5)H14A—C14—H14C109.5
C3—C2—H2118.5H14B—C14—H14C109.5
C1—C2—H2118.5C16—C15—N2124.9 (4)
C2—C3—C4118.9 (5)C16—C15—C20118.7 (4)
C2—C3—H3120.5N2—C15—C20116.3 (4)
C4—C3—H3120.5C15—C16—C17121.8 (5)
C5—C4—C3120.5 (5)C15—C16—H16119.1
C5—C4—H4119.8C17—C16—H16119.1
C3—C4—H4119.8C18—C17—C16118.6 (5)
C4—C5—C6120.1 (5)C18—C17—H17120.7
C4—C5—H5119.9C16—C17—H17120.7
C6—C5—H5119.9C17—C18—C19121.7 (4)
C1—C6—C5120.7 (5)C17—C18—H18119.1
C1—C6—H6119.6C19—C18—H18119.1
C5—C6—H6119.6C18—C19—C20119.8 (5)
N4—C7—N1111.7 (4)C18—C19—H19120.1
N4—C7—S1123.7 (3)C20—C19—H19120.1
N1—C7—S1124.5 (3)O2—C20—C19123.7 (5)
C9—C8—N3122.9 (4)O2—C20—C15116.9 (3)
C9—C8—C13120.0 (4)C19—C20—C15119.3 (5)
N3—C8—C13117.1 (4)O2—C21—H21A109.5
C10—C9—C8119.4 (5)O2—C21—H21B109.5
C10—C9—H9120.3H21A—C21—H21B109.5
C8—C9—H9120.3O2—C21—H21C109.5
C9—C10—C11120.6 (5)H21A—C21—H21C109.5
C9—C10—H10119.7H21B—C21—H21C109.5
C11—C10—H10119.7N2—N1—C7115.6 (3)
C12—C11—C10120.6 (5)N1—N2—C15113.3 (3)
C12—C11—H11119.7N4—N3—C8120.4 (3)
C10—C11—H11119.7N4—N3—H3A119.8
C11—C12—C13119.6 (5)C8—N3—H3A119.8
C11—C12—H12120.2C7—N4—N3117.3 (4)
C13—C12—H12120.2C13—O1—C14117.7 (4)
O1—C13—C12125.7 (4)C20—O2—C21117.4 (4)
O1—C13—C8114.7 (4)
C6—C1—C2—C30.5 (7)C15—C16—C17—C181.2 (7)
Hg1—C1—C2—C3175.5 (4)C16—C17—C18—C191.4 (8)
C1—C2—C3—C41.0 (8)C17—C18—C19—C200.8 (8)
C2—C3—C4—C50.5 (8)C18—C19—C20—O2178.1 (4)
C3—C4—C5—C60.3 (8)C18—C19—C20—C150.2 (6)
C2—C1—C6—C50.4 (6)C16—C15—C20—O2178.4 (4)
Hg1—C1—C6—C5176.1 (3)N2—C15—C20—O22.8 (5)
C4—C5—C6—C10.8 (7)C16—C15—C20—C190.4 (6)
Hg1—S1—C7—N4141.9 (3)N2—C15—C20—C19179.2 (4)
Hg1—S1—C7—N140.9 (3)N4—C7—N1—N2173.9 (3)
N3—C8—C9—C10179.1 (4)S1—C7—N1—N28.6 (5)
C13—C8—C9—C103.2 (7)C7—N1—N2—C15179.0 (3)
C8—C9—C10—C110.3 (8)C16—C15—N2—N14.5 (5)
C9—C10—C11—C121.9 (8)C20—C15—N2—N1176.8 (3)
C10—C11—C12—C131.0 (8)C9—C8—N3—N411.1 (6)
C11—C12—C13—O1177.8 (4)C13—C8—N3—N4171.1 (4)
C11—C12—C13—C82.0 (7)N1—C7—N4—N3177.9 (3)
C9—C8—C13—O1175.7 (4)S1—C7—N4—N34.5 (5)
N3—C8—C13—O12.1 (5)C8—N3—N4—C7174.5 (4)
C9—C8—C13—C124.1 (6)C12—C13—O1—C1422.0 (7)
N3—C8—C13—C12178.1 (4)C8—C13—O1—C14157.7 (4)
N2—C15—C16—C17178.4 (4)C19—C20—O2—C2116.1 (6)
C20—C15—C16—C170.3 (6)C15—C20—O2—C21166.0 (4)

Experimental details

Crystal data
Chemical formula[Hg(C6H5)(C15H15N4O2S)]
Mr593.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)15.2113 (16), 18.2730 (18), 7.4649 (8)
β (°) 90.106 (2)
V3)2074.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)7.54
Crystal size (mm)0.26 × 0.19 × 0.01
Data collection
DiffractometerBruker APEX DUO 4K CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.542, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
17400, 5107, 4107
Rint0.042
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.03
No. of reflections5107
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.16, 0.89

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

 

Acknowledgements

Research funds of the University of Johannesburg and the National Research Foundation of South Africa are gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHutton, A. T., Irving, H. M. N. H., Nassimbeni, L. R. & Gafner, G. (1980). Acta Cryst. B36, 2064–2070.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationIrving, H., Andrew, G. & Risdon, E. J. (1949). J. Chem. Soc. pp. 541–547.  CrossRef Web of Science Google Scholar
First citationMirkhalaf, F., Whittaker, D. & Schiffrin, D. J. (1998). J. Electroanal. Chem. 452, 203–213.  Web of Science CrossRef CAS Google Scholar
First citationSchwoerer, H., Von Eschwege, K. G., Bosman, G., Krok, P. & Conradie, J. (2011). ChemPhysChem, 12, 2653–2658.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVon Eschwege, K. G., Conradie, J. & Swarts, J. C. (2008). J. Phys. Chem. 112, 2211–2218.  CrossRef CAS Google Scholar
First citationVon Eschwege, K. G., van As, L. & Swarts, J. C. (2011). Electrochim. Acta, 56, 10064–10068.  CrossRef CAS Google Scholar
First citationWebb, J. L. A., Bhatia, I. S., Corwin, A. H. & Sharp, A. G. (1950). J. Am. Chem. Soc. 72, 91–95.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds