metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(pyridine-2-sulfonato-κ2N,O)cobalt(II)

aCollege of Safety and Environment Engineering, Capital University of Economics and Business, Beijing 100070, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 8 November 2011; accepted 14 November 2011; online 19 November 2011)

The title complex, [Co(C5H4NO3S)2(H2O)2], lies on a twofold rotation axis that relates the two water mol­ecules and the two pyridine-2-sulfonate ions. The CoII atom exists in an slightly distorted octa­hedral environment. The N-donor atoms are cis to each other. In the crystal, adjacent mol­ecules are linked by O—H⋯O hydrogen bonds into a layer motif extending along (001).

Related literature

For the isotypic manganese(II), zinc and cadmium analogs, see: Lobana et al. (2004[Lobana, T. S., Kinoshita, I., Kimura, K., Nishioka, T., Shiomi, D. & Isobe, K. (2004). Eur. J. Inorg. Chem. pp. 356-367.]); Xiao (2007[Xiao, Z.-J. (2007). J. Huaquio Univ. (Nat. Sci.), 28, 170-173.]); Xiao & Liu (2004[Xiao, Z.-J. & Liu, S.-X. (2004). Chin. J. Struct. Chem. 23, 798-802.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C5H4NO3S)2(H2O)2]

  • Mr = 411.29

  • Monoclinic, C 2/c

  • a = 13.7009 (9) Å

  • b = 7.1127 (5) Å

  • c = 16.0180 (11) Å

  • β = 106.734 (1)°

  • V = 1494.86 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.710, Tmax = 0.810

  • 4331 measured reflections

  • 1695 independent reflections

  • 1590 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.067

  • S = 1.03

  • 1695 reflections

  • 113 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O2i 0.83 (1) 1.90 (1) 2.735 (2) 177 (3)
O1w—H12⋯O3ii 0.83 (1) 1.88 (1) 2.703 (2) 172 (3)
Symmetry codes: (i) [-x+1, y+1, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Diaquabis(pyridine-2-sulfonate)cobalt(II) (Scheme I) is isostructural with the manganese, zinc (Lobana et al., 2004; Xiao & Liu, 2004) and cadmium (Xiao, 2007) analogs. The molecule lies on a twofold rotation axis that relates the two water molecules and the two pyridine-2-sulfonate ions and the CoII atom exist in an slightly distorted octahedral environment. The N donor atoms are cis to each other (Fig. 1). Adjacent molecules are linked by water O–H···Osulfonate hydrogen bonds (Table 1) into a layer motif extending along (0 0 1) (Fig. 2).

Related literature top

For the isotypic manganese(II), zinc(II) and cadmium(II) analogs, see: Lobana et al. (2004); Xiao (2007); Xiao & Liu (2004).

Experimental top

Pyridine-2-sulfonic acid (0.4 mmol, 0.0641 g) was dissolved in 0.1 M sodium hydroxide (4 ml); cobalt(II) chloride hexahydrate (0.2 mmol, 0.0476 g) and 4,4'-bipyridine-N,N'-dioxide (0.2 mmol, 0.0446 g) were added to the solution. The clear solution was allowed to evaporate at ambient conditions, affording red block-shaped crystals after one week, in 40% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The water H-atoms were located in a difference Fourier map and was refined with distance restraints of O—H = 0.83±0.01 and H···H = 1.37±0.01 Å. Their isotropic displacement parameters were refined.

Structure description top

Diaquabis(pyridine-2-sulfonate)cobalt(II) (Scheme I) is isostructural with the manganese, zinc (Lobana et al., 2004; Xiao & Liu, 2004) and cadmium (Xiao, 2007) analogs. The molecule lies on a twofold rotation axis that relates the two water molecules and the two pyridine-2-sulfonate ions and the CoII atom exist in an slightly distorted octahedral environment. The N donor atoms are cis to each other (Fig. 1). Adjacent molecules are linked by water O–H···Osulfonate hydrogen bonds (Table 1) into a layer motif extending along (0 0 1) (Fig. 2).

For the isotypic manganese(II), zinc(II) and cadmium(II) analogs, see: Lobana et al. (2004); Xiao (2007); Xiao & Liu (2004).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [Co(H2O)2(C5H4NO3S)2] at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The unlabeled atoms are related to the labeled ones by twofold rotational symmetry (symmetry code -x + 1, y, -z + 3/2).
[Figure 2] Fig. 2. The hydrogen-bonded layer structure.
Diaquabis(pyridine-2-sulfonato-κ2N,O)cobalt(II) top
Crystal data top
[Co(C5H4NO3S)2(H2O)2]F(000) = 836
Mr = 411.29Dx = 1.827 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3169 reflections
a = 13.7009 (9) Åθ = 3.1–27.6°
b = 7.1127 (5) ŵ = 1.47 mm1
c = 16.0180 (11) ÅT = 296 K
β = 106.734 (1)°Prism, yellow
V = 1494.86 (18) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1695 independent reflections
Radiation source: fine-focus sealed tube1590 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1711
Tmin = 0.710, Tmax = 0.810k = 99
4331 measured reflectionsl = 1320
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0362P)2 + 1.5779P]
where P = (Fo2 + 2Fc2)/3
1695 reflections(Δ/σ)max = 0.001
113 parametersΔρmax = 0.35 e Å3
3 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Co(C5H4NO3S)2(H2O)2]V = 1494.86 (18) Å3
Mr = 411.29Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.7009 (9) ŵ = 1.47 mm1
b = 7.1127 (5) ÅT = 296 K
c = 16.0180 (11) Å0.25 × 0.20 × 0.15 mm
β = 106.734 (1)°
Data collection top
Bruker SMART APEX
diffractometer
1695 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1590 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.810Rint = 0.016
4331 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0243 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.35 e Å3
1695 reflectionsΔρmin = 0.34 e Å3
113 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.69090 (4)0.75000.02354 (11)
S10.33529 (3)0.39913 (6)0.66183 (2)0.02716 (12)
O10.38590 (11)0.4900 (2)0.74481 (7)0.0379 (3)
O20.37681 (13)0.21672 (19)0.65256 (10)0.0474 (4)
O30.22560 (11)0.3995 (3)0.64164 (10)0.0504 (4)
O1W0.59993 (12)0.9037 (2)0.74438 (11)0.0467 (4)
H110.6059 (18)1.001 (2)0.7743 (14)0.055 (7)*
H120.6431 (16)0.902 (3)0.7169 (15)0.060 (8)*
N10.44352 (10)0.6597 (2)0.61055 (9)0.0255 (3)
C10.36597 (12)0.5407 (2)0.58114 (9)0.0237 (3)
C20.31435 (14)0.5162 (3)0.49417 (11)0.0339 (4)
H20.25890.43520.47690.041*
C30.34772 (16)0.6160 (3)0.43366 (11)0.0398 (4)
H30.31490.60340.37440.048*
C40.43020 (15)0.7344 (3)0.46221 (12)0.0384 (4)
H40.45510.79980.42240.046*
C50.47534 (14)0.7548 (3)0.55036 (12)0.0344 (4)
H50.52990.83740.56910.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02474 (17)0.02440 (17)0.02083 (16)0.0000.00555 (11)0.000
S10.0294 (2)0.0293 (2)0.0240 (2)0.00801 (15)0.00954 (16)0.00137 (14)
O10.0506 (8)0.0432 (7)0.0214 (5)0.0189 (6)0.0125 (5)0.0010 (5)
O20.0711 (11)0.0282 (7)0.0465 (8)0.0001 (7)0.0228 (7)0.0063 (6)
O30.0306 (7)0.0803 (12)0.0433 (8)0.0137 (7)0.0154 (6)0.0049 (7)
O1W0.0496 (9)0.0409 (8)0.0625 (9)0.0211 (7)0.0367 (8)0.0254 (7)
N10.0268 (7)0.0279 (7)0.0218 (6)0.0028 (5)0.0068 (5)0.0036 (5)
C10.0262 (7)0.0245 (7)0.0216 (7)0.0003 (6)0.0088 (6)0.0013 (6)
C20.0371 (9)0.0382 (9)0.0246 (8)0.0068 (8)0.0060 (7)0.0044 (7)
C30.0489 (11)0.0493 (11)0.0201 (7)0.0006 (9)0.0081 (7)0.0008 (7)
C40.0488 (11)0.0418 (10)0.0291 (8)0.0012 (9)0.0184 (8)0.0109 (8)
C50.0364 (9)0.0346 (9)0.0335 (9)0.0077 (8)0.0119 (7)0.0070 (7)
Geometric parameters (Å, º) top
Co1—O1W2.0601 (14)O1W—H120.832 (9)
Co1—O1Wi2.0601 (13)N1—C11.334 (2)
Co1—O12.1018 (13)N1—C51.349 (2)
Co1—O1i2.1018 (13)C1—C21.380 (2)
Co1—N12.1545 (13)C2—C31.381 (3)
Co1—N1i2.1545 (13)C2—H20.9300
S1—O21.4414 (15)C3—C41.378 (3)
S1—O31.4432 (14)C3—H30.9300
S1—O11.4612 (13)C4—C51.376 (3)
S1—C11.7814 (15)C4—H40.9300
O1W—H110.833 (9)C5—H50.9300
O1W—Co1—O1Wi85.45 (9)Co1—O1W—H11122.9 (16)
O1W—Co1—O1173.62 (6)Co1—O1W—H12126.6 (16)
O1Wi—Co1—O190.29 (6)H11—O1W—H12110.3 (15)
O1W—Co1—O1i90.29 (6)C1—N1—C5117.02 (14)
O1Wi—Co1—O1i173.61 (6)C1—N1—Co1116.31 (10)
O1—Co1—O1i94.34 (8)C5—N1—Co1126.58 (12)
O1W—Co1—N194.31 (6)N1—C1—C2124.14 (15)
O1Wi—Co1—N194.36 (6)N1—C1—S1115.65 (11)
O1—Co1—N181.26 (5)C2—C1—S1120.12 (13)
O1i—Co1—N190.69 (5)C1—C2—C3117.83 (17)
O1W—Co1—N1i94.36 (6)C1—C2—H2121.1
O1Wi—Co1—N1i94.31 (6)C3—C2—H2121.1
O1—Co1—N1i90.69 (5)C4—C3—C2119.14 (16)
O1i—Co1—N1i81.26 (5)C4—C3—H3120.4
N1—Co1—N1i168.19 (8)C2—C3—H3120.4
O2—S1—O3113.26 (10)C3—C4—C5119.23 (17)
O2—S1—O1113.20 (9)C3—C4—H4120.4
O3—S1—O1113.19 (9)C5—C4—H4120.4
O2—S1—C1104.56 (8)N1—C5—C4122.56 (17)
O3—S1—C1106.52 (8)N1—C5—H5118.7
O1—S1—C1105.11 (7)C4—C5—H5118.7
S1—O1—Co1119.31 (7)
O2—S1—O1—Co198.03 (11)C5—N1—C1—C23.1 (3)
O3—S1—O1—Co1131.35 (10)Co1—N1—C1—C2173.84 (14)
C1—S1—O1—Co115.48 (11)C5—N1—C1—S1173.39 (13)
O1Wi—Co1—O1—S1104.28 (10)Co1—N1—C1—S19.71 (16)
O1i—Co1—O1—S180.13 (9)O2—S1—C1—N1103.32 (14)
N1—Co1—O1—S19.91 (10)O3—S1—C1—N1136.50 (14)
N1i—Co1—O1—S1161.41 (10)O1—S1—C1—N116.13 (15)
O1W—Co1—N1—C1174.23 (12)O2—S1—C1—C273.28 (16)
O1Wi—Co1—N1—C188.48 (12)O3—S1—C1—C246.89 (17)
O1—Co1—N1—C11.14 (12)O1—S1—C1—C2167.27 (15)
O1i—Co1—N1—C195.43 (12)N1—C1—C2—C32.6 (3)
N1i—Co1—N1—C148.64 (11)S1—C1—C2—C3173.66 (14)
O1W—Co1—N1—C52.33 (15)C1—C2—C3—C40.0 (3)
O1Wi—Co1—N1—C588.09 (15)C2—C3—C4—C52.0 (3)
O1—Co1—N1—C5177.71 (16)C1—N1—C5—C40.9 (3)
O1i—Co1—N1—C588.01 (15)Co1—N1—C5—C4175.65 (14)
N1i—Co1—N1—C5134.79 (15)C3—C4—C5—N11.6 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O2ii0.83 (1)1.90 (1)2.735 (2)177 (3)
O1w—H12···O3iii0.83 (1)1.88 (1)2.703 (2)172 (3)
Symmetry codes: (ii) x+1, y+1, z+3/2; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Co(C5H4NO3S)2(H2O)2]
Mr411.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)13.7009 (9), 7.1127 (5), 16.0180 (11)
β (°) 106.734 (1)
V3)1494.86 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.710, 0.810
No. of measured, independent and
observed [I > 2σ(I)] reflections
4331, 1695, 1590
Rint0.016
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.067, 1.03
No. of reflections1695
No. of parameters113
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O2i0.83 (1)1.90 (1)2.735 (2)177 (3)
O1w—H12···O3ii0.83 (1)1.88 (1)2.703 (2)172 (3)
Symmetry codes: (i) x+1, y+1, z+3/2; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

We thank Beijing Normal University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLobana, T. S., Kinoshita, I., Kimura, K., Nishioka, T., Shiomi, D. & Isobe, K. (2004). Eur. J. Inorg. Chem. pp. 356–367.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z.-J. (2007). J. Huaquio Univ. (Nat. Sci.), 28, 170–173.  CAS Google Scholar
First citationXiao, Z.-J. & Liu, S.-X. (2004). Chin. J. Struct. Chem. 23, 798–802.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds