organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o929-o930

4-Meth­­oxy­benzoyl-meso-octa­methyl­calix[2]pyrrolidino[2]pyrrole: an acyl chloride derivative of a partially reduced calix[4]pyrrole

aInstitute of Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: reinhard.neier@unine.ch, helen.stoeckli-evans@unine.ch

(Received 15 February 2012; accepted 22 February 2012; online 7 March 2012)

In the title compound, C36H50N4O2, the two pyrrolidine rings have envelope conformations. The conformation of the macrocycle is stabilized by N—H⋯N hydrogen bonds and a C—H⋯N inter­action. The benzoyl ring is inclined to an adjacent pyrrole ring by 6.76 (9)°, with a centroid-to-centroid distance of 3.6285 (10) Å. In the crystal, apart from a C—H⋯O and a C—H⋯π inter­action, mol­ecules are linked via an N—H⋯O hydrogen bond, leading to the formation of helical chains propagating along [010].

Related literature

For the heterogeneous catalytic hydrogenation of meso-octa­methyl­calix[4]pyrrole, which gave meso-octa­methyl­calix[2]pyrrole­[2]pyrrolidine, see: Blangy et al. (2009[Blangy, V., Heiss, C., Khlebnikov, V., Letondor, C., Stoeckli-Evans, H. & Neier, R. (2009). Angew. Chem. Int. Ed. 2009, 48, 1688-1691.]). For the N-acyl­ation of pyrrolidines using substituted benzoyl chlorides, see: Journot et al. (2012a[Journot, G., Neier, R. & Stoeckli-Evans, H. (2012a). Acta Cryst. C68, o119-o122.]); Zhang et al. (2009[Zhang, L., Wang, X.-J., Wang, J., Grinberg, N., Krishnamurthy, D. K. & Senanayake, C. H. (2009). Tetrahedron Lett. 50, 2964-2966.]). For the synthesis and reactivity of the title compound, see: Journot & Neier (2012[Journot, G. & Neier, R. (2012). In preparation.]). For the crystal structures of similar compounds, see: Journot et al. (2012b[Journot, G., Neier, R. & Stoeckli-Evans, H. (2012b). Acta Cryst. E68, o976-o977.],c[Journot, G., Neier, R. & Stoeckli-Evans, H. (2012c). Private communication (deposition number CCDC-866917). CCDC, Cambridge, England.],d[Journot, G., Neier, R. & Stoeckli-Evans, H. (2012d). Private communication (deposition number CCDC-866918). CCDC, Cambridge, England.],e[Journot, G., Neier, R. & Stoeckli-Evans, H. (2012e). Private communication (deposition number CCDC-866919). CCDC, Cambridge, England.])

[Scheme 1]

Experimental

Crystal data
  • C36H50N4O2

  • Mr = 570.80

  • Monoclinic, P 21 /n

  • a = 10.3150 (4) Å

  • b = 11.8104 (5) Å

  • c = 26.1856 (10) Å

  • β = 98.629 (3)°

  • V = 3153.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.40 × 0.39 × 0.39 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: multi-scan (MULABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.893, Tmax = 1.000

  • 33803 measured reflections

  • 5943 independent reflections

  • 4470 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.097

  • S = 1.03

  • 5943 reflections

  • 393 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the pyrrole ring N2/C3/C4/C25/C26 and Cg2 is the centroid of the benzene ring C30–C35.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N3 0.88 2.57 3.0671 (18) 117
N4—H4A⋯N3 0.88 2.33 2.8759 (18) 121
C28—H28B⋯N4 0.98 2.59 3.561 (2) 171
C28—H28BCg1 0.98 2.45 3.3632 (18) 155
N3—H3N⋯O1i 0.924 (18) 2.283 (18) 3.1401 (17) 154.0 (15)
C20—H20B⋯O1i 0.98 2.56 3.530 (2) 170
C15—H15ACg2i 0.98 2.85 3.7176 (19) 148
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97, PLATON and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have recently reported the access to new macrocycles by heterogeneous catalytic hydrogenation of meso-octamethylcalix[4]pyrrole, which gave meso-octamethylcalix[2]pyrrole[2]pyrrolidine (1 in Fig. 3) (Blangy et al., 2009). It was decided to investigate the nucleophilicity of this new macrocycle, which showed interesting reactivity (Journot & Neier, 2012), by reacting different substituted benzoyl chlorides with the macrocycle under smooth conditions (Journot et al., 2012a; Zhang et al., 2009). Herein, we report on the synthesis and crystal structure of the title 4-methoxybenzoyl derivative, one of five compounds that have been studied by X-ray diffraction analysis (Journot et al., 2012b,c,d,e).

The molecular structure of the title compound is given in Fig. 1. The two pyrrolidine rings (N1,C1,C12–C14) and (N3,C6,C7,C21,C22) have envelope conformations with, respectively, atoms C14 and C7 as the flaps. The conformation of the macrocycle is stabilized by intramolecular N—H···N hydrogen bonds involving atom N3 and the two pyrrole H atoms, H2 and H4 (Table 1). The benzoyl ring (C30–C35) is inclined to the pyrrole ring (N2,C3,C4,C25,C26) by 6.76 (9)°, with a centroid-to-centroid distance of 3.6285 (10) Å. The methyl group C28 is also in close contact with the pyrrole ring (N4,C9,C10,C17,C18), with a short C28—H28A···N4 interaction and a C28—H28A···centroid distance of 3.3632 (18) Å (Table 1).

In the crystal, molecules are linked via an N—H···O hydrogen bond, involving the N3 pyrrolidine H atom (H3N) and the benzoyl O atom (O1), leading to the formation of helical chains propagating along [010] (Fig. 2 and Table 1). The same O atom is involved in a C—H···O contact with methyl group C20. A C—H···π interaction is also observed, involving the methyl group C15 and the benzoyl ring (C30–C35) (see Table 1).

The overall geometry and crystal packing is very similar to that reported for the 4-chlorobenzoyl derivative (Journot et al., 2012b), and the 4-nitrobenzoyl (Journot et al., 2012d) and 4-methylbenzoyl (Journot et al., 2012e) derivatives. The benzoyl derivative (Journot et al., 2012c) crystallized in the trigonal space group R3, as a partial (0.25H2O) hydrate, and forms hydrogen bonded chains propagating along [001].

Related literature top

For the heterogeneous catalytic hydrogenation of meso-octamethylcalix[4]pyrrole, which gave meso-octamethylcalix[2]pyrrole[2]pyrrolidine, see: Blangy et al. (2009). For the N-acylation of pyrrolidines using substituted benzoyl chlorides, see: Journot et al. (2012a); Zhang et al. (2009). For the synthesis and reactivity of the title compound, see: Journot & Neier (2012). For the crystal structures of similar compounds, see: Journot et al. (2012b,c,d,e)

Experimental top

General procedure for the N-acylation of meso-octamethylcalix[2]pyrrolidino[2]pyrrole (1) is illustrated in Fig. 3. The full details of this synthesis will be reported elsewhere (Journot & Neier, 2012). The title amide 3e was prepared, according to the general procedure, from 100 mg of 1 (0.23 mmol), 4-methoxybenzoyl chloride (2e, 64.93 µl, 0.48 mmol), potassium carbonate (70 mg, 0.48 mmol) in THF (5 ml) and ACN (2.5 ml). The residue was purified by column chromatography (SiO2, CH2Cl2/MeOH, 97/3) to yield 117.0 mg (90%) of colourless crystals of the title compound (3e). Melting point: 488 K. HRMS calcd. for C36H50N4O2+H+ 571.4007, found 571.3993. Further synthetic and spectroscopic data has been reported elsewhere (Journot & Neier, 2012).

Refinement top

The NH H atoms were located in a difference electron-density map. H atom H3N was freely refined, while the other NH H atoms and the C-bound H atoms were included in calculated positions and treated as riding atoms: N—H = 0.88 Å, C—H = 0.95 Å for CH-allyl and CH-aromatic H atoms, and 1.00, 0.99 and 0.98 Å, for methine, methylene and methyl H atoms, respectively, with Uiso(H) = k × Ueq(C, N), where k = 1.5 for CH3 H atoms, and = 1.2 for the other H atoms.

Structure description top

We have recently reported the access to new macrocycles by heterogeneous catalytic hydrogenation of meso-octamethylcalix[4]pyrrole, which gave meso-octamethylcalix[2]pyrrole[2]pyrrolidine (1 in Fig. 3) (Blangy et al., 2009). It was decided to investigate the nucleophilicity of this new macrocycle, which showed interesting reactivity (Journot & Neier, 2012), by reacting different substituted benzoyl chlorides with the macrocycle under smooth conditions (Journot et al., 2012a; Zhang et al., 2009). Herein, we report on the synthesis and crystal structure of the title 4-methoxybenzoyl derivative, one of five compounds that have been studied by X-ray diffraction analysis (Journot et al., 2012b,c,d,e).

The molecular structure of the title compound is given in Fig. 1. The two pyrrolidine rings (N1,C1,C12–C14) and (N3,C6,C7,C21,C22) have envelope conformations with, respectively, atoms C14 and C7 as the flaps. The conformation of the macrocycle is stabilized by intramolecular N—H···N hydrogen bonds involving atom N3 and the two pyrrole H atoms, H2 and H4 (Table 1). The benzoyl ring (C30–C35) is inclined to the pyrrole ring (N2,C3,C4,C25,C26) by 6.76 (9)°, with a centroid-to-centroid distance of 3.6285 (10) Å. The methyl group C28 is also in close contact with the pyrrole ring (N4,C9,C10,C17,C18), with a short C28—H28A···N4 interaction and a C28—H28A···centroid distance of 3.3632 (18) Å (Table 1).

In the crystal, molecules are linked via an N—H···O hydrogen bond, involving the N3 pyrrolidine H atom (H3N) and the benzoyl O atom (O1), leading to the formation of helical chains propagating along [010] (Fig. 2 and Table 1). The same O atom is involved in a C—H···O contact with methyl group C20. A C—H···π interaction is also observed, involving the methyl group C15 and the benzoyl ring (C30–C35) (see Table 1).

The overall geometry and crystal packing is very similar to that reported for the 4-chlorobenzoyl derivative (Journot et al., 2012b), and the 4-nitrobenzoyl (Journot et al., 2012d) and 4-methylbenzoyl (Journot et al., 2012e) derivatives. The benzoyl derivative (Journot et al., 2012c) crystallized in the trigonal space group R3, as a partial (0.25H2O) hydrate, and forms hydrogen bonded chains propagating along [001].

For the heterogeneous catalytic hydrogenation of meso-octamethylcalix[4]pyrrole, which gave meso-octamethylcalix[2]pyrrole[2]pyrrolidine, see: Blangy et al. (2009). For the N-acylation of pyrrolidines using substituted benzoyl chlorides, see: Journot et al. (2012a); Zhang et al. (2009). For the synthesis and reactivity of the title compound, see: Journot & Neier (2012). For the crystal structures of similar compounds, see: Journot et al. (2012b,c,d,e)

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with the numbering scheme and displacement ellipsoids drawn at the 50% probability level. The N—H···N hydrogen bonds are shown as dashed lines (see Table 1 for details; the C-bound H atoms have been omitted for clarity).
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The N—H···N and N—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; the C-bound H atoms have been omitted for clarity).
[Figure 3] Fig. 3. The general procedure for the N-acylation of meso-octamethylcalix[2]pyrrolidino[2]pyrrole (1).
21-[(4-methoxyphenyl)carbonyl]-2,2,7,7,12,12,17,17-octamethyl-21,22,23,24- tetraazapentacyclo[16.2.1.13,6.18,11.113,16]tetracosa-3,5,13,15-tetraene top
Crystal data top
C36H50N4O2F(000) = 1240
Mr = 570.80Dx = 1.202 Mg m3
Monoclinic, P21/nMelting point: 488 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.3150 (4) ÅCell parameters from 22254 reflections
b = 11.8104 (5) Åθ = 1.6–26.1°
c = 26.1856 (10) ŵ = 0.08 mm1
β = 98.629 (3)°T = 173 K
V = 3153.9 (2) Å3Block, colourless
Z = 40.40 × 0.39 × 0.39 mm
Data collection top
Stoe IPDS II
diffractometer
5943 independent reflections
Radiation source: fine-focus sealed tube4470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
φ and ω scansθmax = 25.6°, θmin = 1.6°
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
h = 1212
Tmin = 0.893, Tmax = 1.000k = 1414
33803 measured reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.4659P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5943 reflectionsΔρmax = 0.20 e Å3
393 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0016 (3)
Crystal data top
C36H50N4O2V = 3153.9 (2) Å3
Mr = 570.80Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.3150 (4) ŵ = 0.08 mm1
b = 11.8104 (5) ÅT = 173 K
c = 26.1856 (10) Å0.40 × 0.39 × 0.39 mm
β = 98.629 (3)°
Data collection top
Stoe IPDS II
diffractometer
5943 independent reflections
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
4470 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 1.000Rint = 0.063
33803 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
5943 reflectionsΔρmin = 0.17 e Å3
393 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20707 (11)0.58944 (10)0.24279 (4)0.0303 (4)
O20.54533 (13)0.47589 (14)0.07206 (6)0.0546 (5)
N10.04328 (12)0.64660 (11)0.17968 (5)0.0219 (4)
N20.14268 (12)0.82620 (11)0.10133 (5)0.0241 (4)
N30.17847 (13)1.07140 (11)0.13942 (5)0.0240 (4)
N40.01564 (12)0.97053 (11)0.19335 (5)0.0220 (4)
C10.03465 (15)0.60651 (14)0.13026 (6)0.0251 (5)
C20.05119 (16)0.69079 (14)0.08382 (6)0.0258 (5)
C30.08118 (16)0.73569 (13)0.07453 (6)0.0245 (5)
C40.25883 (15)0.85139 (14)0.08367 (6)0.0255 (5)
C50.34568 (16)0.94944 (15)0.10384 (6)0.0282 (5)
C60.26805 (16)1.06197 (14)0.10030 (6)0.0275 (5)
C70.07249 (16)1.14824 (14)0.11697 (6)0.0259 (5)
C80.04038 (16)1.16205 (14)0.14923 (6)0.0262 (5)
C90.09460 (15)1.05203 (13)0.16707 (6)0.0245 (5)
C100.08901 (15)0.88939 (13)0.21376 (6)0.0227 (5)
C110.02631 (15)0.79183 (13)0.24618 (6)0.0236 (5)
C120.04177 (15)0.67167 (14)0.22005 (6)0.0233 (5)
C130.18076 (16)0.64202 (14)0.19360 (7)0.0279 (5)
C140.16030 (16)0.56400 (15)0.14901 (7)0.0306 (5)
C150.11827 (16)0.81902 (14)0.26463 (7)0.0288 (5)
C160.09630 (18)0.78299 (16)0.29437 (7)0.0347 (6)
C170.21771 (16)0.92137 (14)0.20026 (7)0.0283 (5)
C180.22099 (16)1.02167 (14)0.17079 (7)0.0292 (5)
C190.15049 (17)1.22845 (15)0.11586 (7)0.0346 (6)
C200.01016 (17)1.23347 (14)0.19778 (7)0.0308 (5)
C210.04096 (17)1.10045 (15)0.06251 (6)0.0316 (6)
C220.17762 (17)1.08058 (16)0.04826 (6)0.0334 (6)
C230.41022 (16)0.93032 (15)0.16006 (7)0.0322 (6)
C240.45482 (18)0.96246 (18)0.06999 (7)0.0414 (7)
C250.27112 (17)0.77462 (15)0.04554 (7)0.0312 (5)
C260.16092 (17)0.70252 (15)0.03980 (6)0.0301 (5)
C270.10938 (17)0.61989 (16)0.03625 (7)0.0340 (6)
C280.14476 (16)0.78916 (14)0.08942 (6)0.0288 (5)
C290.16336 (15)0.59792 (13)0.19642 (6)0.0234 (5)
C300.25177 (15)0.56260 (13)0.15833 (6)0.0240 (5)
C310.23655 (17)0.46683 (14)0.12715 (6)0.0294 (5)
C320.33205 (17)0.43414 (15)0.09790 (7)0.0331 (5)
C330.44455 (17)0.49856 (17)0.09941 (7)0.0346 (6)
C340.46181 (17)0.59379 (16)0.13061 (7)0.0360 (6)
C350.36688 (16)0.62456 (15)0.15988 (7)0.0295 (5)
C360.5385 (2)0.3742 (2)0.04287 (10)0.0684 (10)
H10.011400.538300.119200.0300*
H2A0.112100.862800.126200.0290*
H3N0.2223 (17)1.0984 (15)0.1704 (7)0.031 (5)*
H4A0.070500.970300.196700.0260*
H60.332201.125900.105600.0330*
H70.112401.224700.114100.0310*
H120.018300.614900.248300.0280*
H13A0.230500.602900.217900.0340*
H13B0.229100.711100.180600.0340*
H14A0.235900.568500.120900.0370*
H14B0.149800.484500.160900.0370*
H15A0.125600.894700.280100.0430*
H15B0.166700.816800.235200.0430*
H15C0.155000.762900.290400.0430*
H16A0.188700.763600.283600.0520*
H16B0.090200.855800.312600.0520*
H16C0.054300.724000.317500.0520*
H170.291800.882600.209200.0340*
H180.297701.061300.156100.0350*
H19A0.191301.180500.087400.0520*
H19B0.113601.296200.101900.0520*
H19C0.216701.251000.137100.0520*
H20A0.039401.307600.187100.0460*
H20B0.083701.194300.218500.0460*
H20C0.060701.243700.218400.0460*
H21A0.009501.155300.038800.0380*
H21B0.009001.028800.062100.0380*
H22A0.177901.013200.025800.0400*
H22B0.206701.147100.029900.0400*
H23A0.469200.865000.161700.0480*
H23B0.342200.916000.181700.0480*
H23C0.460400.997800.172700.0480*
H24A0.415300.976200.034100.0620*
H24B0.507300.893000.071900.0620*
H24C0.511201.026500.082500.0620*
H250.341900.770600.026200.0370*
H260.144700.641600.016000.0360*
H27A0.197800.594700.040300.0510*
H27B0.053600.553700.033300.0510*
H27C0.113600.666200.005000.0510*
H28A0.232200.759300.092000.0430*
H28B0.112200.832400.120600.0430*
H28C0.149800.838700.059200.0430*
H310.159100.422700.125800.0350*
H320.320100.368100.077000.0400*
H340.539200.638000.131900.0430*
H350.380400.689400.181500.0350*
H36A0.531400.309500.065700.1030*
H36B0.461400.376400.016000.1030*
H36C0.617900.366400.026800.1030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0324 (6)0.0370 (7)0.0197 (6)0.0040 (5)0.0016 (5)0.0026 (5)
O20.0369 (8)0.0764 (11)0.0524 (9)0.0096 (7)0.0125 (7)0.0272 (8)
N10.0231 (7)0.0226 (7)0.0193 (7)0.0005 (5)0.0006 (5)0.0018 (5)
N20.0261 (7)0.0275 (7)0.0185 (7)0.0031 (6)0.0032 (5)0.0056 (6)
N30.0263 (7)0.0262 (7)0.0191 (7)0.0004 (6)0.0023 (6)0.0022 (6)
N40.0183 (6)0.0238 (7)0.0238 (7)0.0013 (5)0.0029 (5)0.0001 (6)
C10.0265 (8)0.0230 (8)0.0240 (8)0.0003 (7)0.0025 (7)0.0062 (7)
C20.0280 (9)0.0263 (9)0.0214 (8)0.0024 (7)0.0017 (7)0.0041 (7)
C30.0302 (9)0.0246 (8)0.0167 (8)0.0041 (7)0.0029 (6)0.0010 (6)
C40.0249 (8)0.0299 (9)0.0218 (8)0.0063 (7)0.0034 (7)0.0011 (7)
C50.0252 (9)0.0344 (10)0.0258 (9)0.0004 (7)0.0069 (7)0.0030 (7)
C60.0312 (9)0.0286 (9)0.0235 (9)0.0054 (7)0.0072 (7)0.0011 (7)
C70.0317 (9)0.0209 (8)0.0246 (9)0.0003 (7)0.0022 (7)0.0027 (7)
C80.0294 (9)0.0235 (9)0.0248 (9)0.0037 (7)0.0016 (7)0.0005 (7)
C90.0246 (8)0.0233 (8)0.0251 (8)0.0044 (6)0.0017 (7)0.0021 (7)
C100.0243 (8)0.0229 (8)0.0218 (8)0.0018 (6)0.0061 (6)0.0042 (6)
C110.0253 (8)0.0240 (9)0.0213 (8)0.0026 (7)0.0032 (6)0.0011 (7)
C120.0245 (8)0.0242 (9)0.0213 (8)0.0029 (6)0.0043 (6)0.0020 (6)
C130.0253 (9)0.0263 (9)0.0324 (9)0.0053 (7)0.0049 (7)0.0018 (7)
C140.0286 (9)0.0269 (9)0.0344 (10)0.0055 (7)0.0013 (7)0.0040 (8)
C150.0313 (9)0.0249 (9)0.0279 (9)0.0021 (7)0.0034 (7)0.0005 (7)
C160.0452 (11)0.0346 (10)0.0260 (9)0.0029 (8)0.0114 (8)0.0014 (8)
C170.0219 (8)0.0280 (9)0.0359 (10)0.0022 (7)0.0072 (7)0.0056 (7)
C180.0226 (8)0.0276 (9)0.0358 (10)0.0047 (7)0.0007 (7)0.0057 (8)
C190.0362 (10)0.0335 (10)0.0335 (10)0.0100 (8)0.0031 (8)0.0022 (8)
C200.0350 (10)0.0261 (9)0.0316 (9)0.0012 (7)0.0062 (8)0.0026 (7)
C210.0395 (10)0.0329 (10)0.0206 (9)0.0040 (8)0.0009 (7)0.0039 (7)
C220.0447 (11)0.0330 (10)0.0234 (9)0.0016 (8)0.0079 (8)0.0022 (7)
C230.0262 (9)0.0362 (10)0.0325 (10)0.0019 (7)0.0010 (7)0.0056 (8)
C240.0326 (10)0.0535 (13)0.0407 (11)0.0045 (9)0.0139 (8)0.0092 (9)
C250.0326 (9)0.0353 (10)0.0269 (9)0.0059 (8)0.0084 (7)0.0044 (8)
C260.0395 (10)0.0283 (9)0.0221 (9)0.0047 (8)0.0029 (7)0.0066 (7)
C270.0366 (10)0.0365 (10)0.0260 (9)0.0009 (8)0.0047 (7)0.0080 (8)
C280.0295 (9)0.0296 (10)0.0255 (9)0.0043 (7)0.0016 (7)0.0000 (7)
C290.0263 (8)0.0195 (8)0.0235 (9)0.0004 (6)0.0007 (7)0.0003 (6)
C300.0264 (8)0.0233 (8)0.0208 (8)0.0046 (7)0.0015 (6)0.0032 (7)
C310.0317 (9)0.0258 (9)0.0294 (9)0.0020 (7)0.0004 (7)0.0000 (7)
C320.0380 (10)0.0311 (9)0.0281 (9)0.0110 (8)0.0023 (8)0.0077 (8)
C330.0280 (9)0.0461 (11)0.0290 (10)0.0137 (8)0.0023 (7)0.0056 (8)
C340.0249 (9)0.0429 (11)0.0396 (11)0.0006 (8)0.0032 (8)0.0080 (9)
C350.0265 (9)0.0312 (9)0.0292 (9)0.0032 (7)0.0013 (7)0.0064 (7)
C360.0559 (14)0.0877 (19)0.0634 (16)0.0183 (13)0.0151 (12)0.0374 (14)
Geometric parameters (Å, º) top
O1—C291.2343 (19)C34—C351.380 (2)
O2—C331.374 (2)C1—H11.0000
O2—C361.420 (3)C6—H61.0000
N1—C11.494 (2)C7—H71.0000
N1—C121.501 (2)C12—H121.0000
N1—C291.376 (2)C13—H13A0.9900
N2—C31.380 (2)C13—H13B0.9900
N2—C41.380 (2)C14—H14A0.9900
N3—C61.483 (2)C14—H14B0.9900
N3—C71.474 (2)C15—H15A0.9800
N4—C91.377 (2)C15—H15B0.9800
N4—C101.378 (2)C15—H15C0.9800
N2—H2A0.8800C16—H16A0.9800
N3—H3N0.924 (18)C16—H16B0.9800
N4—H4A0.8800C16—H16C0.9800
C1—C21.561 (2)C17—H170.9500
C1—C141.538 (2)C18—H180.9500
C2—C31.518 (2)C19—H19A0.9800
C2—C271.546 (2)C19—H19B0.9800
C2—C281.531 (2)C19—H19C0.9800
C3—C261.372 (2)C20—H20A0.9800
C4—C51.510 (2)C20—H20B0.9800
C4—C251.369 (2)C20—H20C0.9800
C5—C231.539 (2)C21—H21A0.9900
C5—C61.547 (2)C21—H21B0.9900
C5—C241.542 (2)C22—H22A0.9900
C6—C221.547 (2)C22—H22B0.9900
C7—C81.546 (2)C23—H23A0.9800
C7—C211.523 (2)C23—H23B0.9800
C8—C201.549 (2)C23—H23C0.9800
C8—C91.516 (2)C24—H24A0.9800
C8—C191.540 (2)C24—H24B0.9800
C9—C181.370 (2)C24—H24C0.9800
C10—C111.517 (2)C25—H250.9500
C10—C171.375 (2)C26—H260.9500
C11—C161.549 (2)C27—H27A0.9800
C11—C121.573 (2)C27—H27B0.9800
C11—C151.531 (2)C27—H27C0.9800
C12—C131.536 (2)C28—H28A0.9800
C13—C141.527 (3)C28—H28B0.9800
C17—C181.411 (2)C28—H28C0.9800
C21—C221.530 (2)C31—H310.9500
C25—C261.410 (3)C32—H320.9500
C29—C301.508 (2)C34—H340.9500
C30—C351.390 (2)C35—H350.9500
C30—C311.390 (2)C36—H36A0.9800
C31—C321.390 (2)C36—H36B0.9800
C32—C331.383 (3)C36—H36C0.9800
C33—C341.386 (3)
C33—O2—C36117.72 (16)C11—C12—H12107.00
C1—N1—C12112.15 (12)C13—C12—H12107.00
C1—N1—C29119.01 (13)C12—C13—H13A111.00
C12—N1—C29116.83 (12)C12—C13—H13B111.00
C3—N2—C4110.65 (13)C14—C13—H13A111.00
C6—N3—C7105.81 (12)C14—C13—H13B111.00
C9—N4—C10111.22 (13)H13A—C13—H13B109.00
C4—N2—H2A125.00C1—C14—H14A111.00
C3—N2—H2A125.00C1—C14—H14B111.00
C6—N3—H3N111.0 (11)C13—C14—H14A111.00
C7—N3—H3N111.9 (11)C13—C14—H14B111.00
C10—N4—H4A124.00H14A—C14—H14B109.00
C9—N4—H4A124.00C11—C15—H15A109.00
N1—C1—C14101.34 (12)C11—C15—H15B109.00
N1—C1—C2117.02 (13)C11—C15—H15C109.00
C2—C1—C14117.27 (13)H15A—C15—H15B109.00
C1—C2—C28113.95 (13)H15A—C15—H15C110.00
C1—C2—C3110.60 (13)H15B—C15—H15C109.00
C1—C2—C27105.44 (13)C11—C16—H16A109.00
C27—C2—C28108.30 (13)C11—C16—H16B109.00
C3—C2—C27108.06 (13)C11—C16—H16C110.00
C3—C2—C28110.20 (13)H16A—C16—H16B109.00
C2—C3—C26130.52 (15)H16A—C16—H16C109.00
N2—C3—C26106.43 (14)H16B—C16—H16C109.00
N2—C3—C2123.03 (14)C10—C17—H17126.00
C5—C4—C25130.40 (15)C18—C17—H17126.00
N2—C4—C5123.19 (14)C9—C18—H18126.00
N2—C4—C25106.37 (14)C17—C18—H18126.00
C4—C5—C6111.30 (13)C8—C19—H19A109.00
C6—C5—C23109.22 (13)C8—C19—H19B109.00
C4—C5—C23111.77 (14)C8—C19—H19C110.00
C4—C5—C24108.75 (14)H19A—C19—H19B110.00
C6—C5—C24107.21 (14)H19A—C19—H19C109.00
C23—C5—C24108.44 (14)H19B—C19—H19C109.00
N3—C6—C22104.00 (13)C8—C20—H20A109.00
N3—C6—C5113.18 (13)C8—C20—H20B110.00
C5—C6—C22114.39 (13)C8—C20—H20C109.00
N3—C7—C8114.92 (13)H20A—C20—H20B110.00
N3—C7—C21100.76 (13)H20A—C20—H20C110.00
C8—C7—C21118.57 (14)H20B—C20—H20C109.00
C7—C8—C20108.51 (13)C7—C21—H21A111.00
C9—C8—C19109.67 (13)C7—C21—H21B111.00
C7—C8—C9114.89 (13)C22—C21—H21A111.00
C7—C8—C19107.19 (13)C22—C21—H21B111.00
C9—C8—C20107.94 (13)H21A—C21—H21B109.00
C19—C8—C20108.49 (14)C6—C22—H22A111.00
N4—C9—C8122.37 (14)C6—C22—H22B111.00
N4—C9—C18106.23 (14)C21—C22—H22A111.00
C8—C9—C18130.20 (15)C21—C22—H22B111.00
N4—C10—C17105.94 (14)H22A—C22—H22B109.00
N4—C10—C11122.17 (13)C5—C23—H23A110.00
C11—C10—C17131.82 (15)C5—C23—H23B110.00
C12—C11—C16105.33 (13)C5—C23—H23C110.00
C10—C11—C15109.30 (13)H23A—C23—H23B109.00
C15—C11—C16107.95 (13)H23A—C23—H23C109.00
C10—C11—C12115.78 (13)H23B—C23—H23C109.00
C10—C11—C16107.19 (13)C5—C24—H24A109.00
C12—C11—C15110.90 (13)C5—C24—H24B109.00
N1—C12—C13104.01 (12)C5—C24—H24C109.00
N1—C12—C11116.90 (13)H24A—C24—H24B110.00
C11—C12—C13115.38 (13)H24A—C24—H24C109.00
C12—C13—C14104.81 (13)H24B—C24—H24C109.00
C1—C14—C13105.49 (14)C4—C25—H25126.00
C10—C17—C18108.32 (15)C26—C25—H25126.00
C9—C18—C17108.28 (15)C3—C26—H26126.00
C7—C21—C22102.13 (13)C25—C26—H26126.00
C6—C22—C21105.24 (13)C2—C27—H27A109.00
C4—C25—C26108.45 (15)C2—C27—H27B110.00
C3—C26—C25108.11 (15)C2—C27—H27C110.00
O1—C29—N1121.72 (14)H27A—C27—H27B109.00
N1—C29—C30120.64 (13)H27A—C27—H27C110.00
O1—C29—C30117.41 (14)H27B—C27—H27C109.00
C31—C30—C35117.79 (15)C2—C28—H28A109.00
C29—C30—C35115.71 (14)C2—C28—H28B109.00
C29—C30—C31125.98 (14)C2—C28—H28C109.00
C30—C31—C32121.51 (16)H28A—C28—H28B110.00
C31—C32—C33119.49 (16)H28A—C28—H28C109.00
O2—C33—C32125.09 (17)H28B—C28—H28C109.00
O2—C33—C34115.15 (16)C30—C31—H31119.00
C32—C33—C34119.75 (17)C32—C31—H31119.00
C33—C34—C35120.14 (17)C31—C32—H32120.00
C30—C35—C34121.29 (16)C33—C32—H32120.00
N1—C1—H1107.00C33—C34—H34120.00
C2—C1—H1107.00C35—C34—H34120.00
C14—C1—H1107.00C30—C35—H35119.00
N3—C6—H6108.00C34—C35—H35119.00
C5—C6—H6108.00O2—C36—H36A109.00
C22—C6—H6108.00O2—C36—H36B109.00
N3—C7—H7107.00O2—C36—H36C109.00
C8—C7—H7107.00H36A—C36—H36B109.00
C21—C7—H7107.00H36A—C36—H36C109.00
N1—C12—H12107.00H36B—C36—H36C110.00
C36—O2—C33—C324.9 (3)C24—C5—C6—N3167.61 (13)
C36—O2—C33—C34174.72 (18)C24—C5—C6—C2273.50 (17)
C12—N1—C1—C2107.23 (15)N3—C6—C22—C210.44 (17)
C12—N1—C1—C1421.59 (16)C5—C6—C22—C21124.39 (15)
C29—N1—C1—C2111.23 (16)N3—C7—C8—C948.77 (18)
C29—N1—C1—C14119.95 (14)N3—C7—C8—C19170.90 (13)
C1—N1—C12—C11127.09 (14)N3—C7—C8—C2072.12 (17)
C1—N1—C12—C131.36 (16)C21—C7—C8—C970.41 (19)
C29—N1—C12—C1190.47 (17)C21—C7—C8—C1951.73 (19)
C29—N1—C12—C13141.08 (14)C21—C7—C8—C20168.70 (14)
C1—N1—C29—O1149.49 (15)N3—C7—C21—C2243.89 (15)
C1—N1—C29—C3036.2 (2)C8—C7—C21—C22170.18 (14)
C12—N1—C29—O19.7 (2)C7—C8—C9—N452.8 (2)
C12—N1—C29—C30175.94 (13)C7—C8—C9—C18141.52 (18)
C4—N2—C3—C2177.68 (14)C19—C8—C9—N4173.56 (14)
C4—N2—C3—C260.71 (18)C19—C8—C9—C1820.7 (2)
C3—N2—C4—C5177.31 (14)C20—C8—C9—N468.43 (19)
C3—N2—C4—C250.66 (18)C20—C8—C9—C1897.3 (2)
C7—N3—C6—C5153.56 (13)N4—C9—C18—C170.74 (19)
C7—N3—C6—C2228.83 (16)C8—C9—C18—C17166.71 (16)
C6—N3—C7—C8174.58 (13)N4—C10—C11—C12109.38 (16)
C6—N3—C7—C2145.89 (15)N4—C10—C11—C1516.7 (2)
C10—N4—C9—C8168.50 (14)N4—C10—C11—C16133.45 (15)
C10—N4—C9—C180.16 (18)C17—C10—C11—C1274.0 (2)
C9—N4—C10—C11177.86 (14)C17—C10—C11—C15159.91 (17)
C9—N4—C10—C170.49 (18)C17—C10—C11—C1643.2 (2)
N1—C1—C2—C352.15 (18)N4—C10—C17—C180.94 (19)
N1—C1—C2—C27168.72 (13)C11—C10—C17—C18177.95 (16)
N1—C1—C2—C2872.64 (18)C10—C11—C12—N175.88 (17)
C14—C1—C2—C3172.90 (14)C10—C11—C12—C1346.87 (19)
C14—C1—C2—C2770.53 (17)C15—C11—C12—N149.38 (18)
C14—C1—C2—C2848.11 (19)C15—C11—C12—C13172.14 (14)
N1—C1—C14—C1333.50 (16)C16—C11—C12—N1165.92 (13)
C2—C1—C14—C1395.17 (16)C16—C11—C12—C1371.33 (17)
C1—C2—C3—N283.99 (18)N1—C12—C13—C1419.90 (16)
C1—C2—C3—C2698.0 (2)C11—C12—C13—C14149.28 (13)
C27—C2—C3—N2161.07 (15)C12—C13—C14—C133.92 (17)
C27—C2—C3—C2616.9 (2)C10—C17—C18—C91.1 (2)
C28—C2—C3—N242.9 (2)C7—C21—C22—C626.63 (17)
C28—C2—C3—C26135.07 (18)C4—C25—C26—C30.09 (19)
N2—C3—C26—C250.48 (18)O1—C29—C30—C31108.99 (19)
C2—C3—C26—C25177.74 (16)O1—C29—C30—C3562.4 (2)
N2—C4—C5—C653.7 (2)N1—C29—C30—C3176.4 (2)
N2—C4—C5—C2368.7 (2)N1—C29—C30—C35112.15 (17)
N2—C4—C5—C24171.63 (15)C29—C30—C31—C32171.98 (16)
C25—C4—C5—C6123.70 (19)C35—C30—C31—C320.7 (2)
C25—C4—C5—C23113.9 (2)C29—C30—C35—C34173.61 (16)
C25—C4—C5—C245.8 (2)C31—C30—C35—C341.4 (3)
N2—C4—C25—C260.34 (19)C30—C31—C32—C330.5 (3)
C5—C4—C25—C26177.43 (16)C31—C32—C33—O2179.42 (17)
C4—C5—C6—N373.58 (16)C31—C32—C33—C341.0 (3)
C4—C5—C6—C2245.31 (18)O2—C33—C34—C35179.91 (18)
C23—C5—C6—N350.31 (18)C32—C33—C34—C350.3 (3)
C23—C5—C6—C22169.19 (14)C33—C34—C35—C301.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the pyrrole ring N2/C3/C4/C25/C26 and Cg2 is the centroid of the benzene ring C30–C35.
D—H···AD—HH···AD···AD—H···A
N2—H2A···N30.882.573.0671 (18)117
N4—H4A···N30.882.332.8759 (18)121
C28—H28B···N40.982.593.561 (2)171
C28—H28B···Cg10.982.453.3632 (18)155
N3—H3N···O1i0.924 (18)2.283 (18)3.1401 (17)154.0 (15)
C20—H20B···O1i0.982.563.530 (2)170
C15—H15A···Cg2i0.982.853.7176 (19)148
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC36H50N4O2
Mr570.80
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)10.3150 (4), 11.8104 (5), 26.1856 (10)
β (°) 98.629 (3)
V3)3153.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.39 × 0.39
Data collection
DiffractometerStoe IPDS II
Absorption correctionMulti-scan
(MULABS in PLATON; Spek, 2009)
Tmin, Tmax0.893, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
33803, 5943, 4470
Rint0.063
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.097, 1.03
No. of reflections5943
No. of parameters393
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED32 (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the pyrrole ring N2/C3/C4/C25/C26 and Cg2 is the centroid of the benzene ring C30–C35.
D—H···AD—HH···AD···AD—H···A
N2—H2A···N30.882.573.0671 (18)117
N4—H4A···N30.882.332.8759 (18)121
C28—H28B···N40.982.593.561 (2)171
C28—H28B···Cg10.982.453.3632 (18)155
N3—H3N···O1i0.924 (18)2.283 (18)3.1401 (17)154.0 (15)
C20—H20B···O1i0.982.563.530 (2)170
C15—H15A···Cg2i0.982.853.7176 (19)148
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

HSE thanks the staff of the XRD Application Laboratory, CSEM, Neuchâtel, for access to the X-ray diffraction equipment.

References

First citationBlangy, V., Heiss, C., Khlebnikov, V., Letondor, C., Stoeckli-Evans, H. & Neier, R. (2009). Angew. Chem. Int. Ed. 2009, 48, 1688–1691.  Google Scholar
First citationJournot, G. & Neier, R. (2012). In preparation.  Google Scholar
First citationJournot, G., Neier, R. & Stoeckli-Evans, H. (2012a). Acta Cryst. C68, o119–o122.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJournot, G., Neier, R. & Stoeckli-Evans, H. (2012b). Acta Cryst. E68, o976–o977.  CSD CrossRef IUCr Journals Google Scholar
First citationJournot, G., Neier, R. & Stoeckli-Evans, H. (2012c). Private communication (deposition number CCDC-866917). CCDC, Cambridge, England.  Google Scholar
First citationJournot, G., Neier, R. & Stoeckli-Evans, H. (2012d). Private communication (deposition number CCDC-866918). CCDC, Cambridge, England.  Google Scholar
First citationJournot, G., Neier, R. & Stoeckli-Evans, H. (2012e). Private communication (deposition number CCDC-866919). CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L., Wang, X.-J., Wang, J., Grinberg, N., Krishnamurthy, D. K. & Senanayake, C. H. (2009). Tetrahedron Lett. 50, 2964–2966.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o929-o930
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds