metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m381-m382

rac-{[2-(Di­phenyl­thio­phosphor­yl)ferrocen­yl]meth­yl}di­methyl­ammonium di­phenyl­di­thio­phosphinate

aUnité de Recherche de Chimie Moléculaire et Structurale CHEMS, Université Mentouri, Constantine, Algeria, and bCNRS, LCC, 205 route de Narbonne, BP 44099, F-31077, Toulouse cedex 4, France
*Correspondence e-mail: daran@lcc-toulouse.fr

(Received 27 February 2012; accepted 29 February 2012; online 7 March 2012)

2-(Diphenyl­thio­phosphino)dimethyl­amino­methyl­ferrocene is a key inter­mediate in the synthesis of various ferrocenyl ligands. During one such synthesis, the title compound, [Fe(C5H5)(C20H22NPS)](C12H10PS2), was isolated as a by-product. It is built up by association of (2-(diphenyl­phosphino)ferrocen­yl)meth­yl)dimethyl­ammonium cations and diphenyl­phosphino dithio­ate anions. N—H⋯S, C—H⋯S and C—H⋯π inter­actions link the anions and cations. Each anion–cation pair is linked two by two through C—H⋯π inter­actions, forming pseudo dimers.

Related literature

For the synthesis of various ferrocenyl ligands, see: Audin et al. (2010[Audin, C., Daran, J.-C., Deydier, E., Manoury, E. & Poli, R. (2010). C. R. Chimie, 13, 890-899.]); Le Roux et al. (2007[Le Roux, E., Malacea, R., Manoury, E., Poli, R., Gonsalvi, L. & Peruzzini, M. (2007). Adv. Synth. Catal. 349, 1064-1073.]); Routaboul et al. (2005[Routaboul, L., Vincendeau, S., Daran, J.-C. & Manoury, E. (2005). Tetrahedron Asymmetry, 16, 2685-2690.], 2007[Routaboul, L., Vincendeau, S., Turrin, C.-O., Caminade, A.-M., Majoral, J.-P., Daran, J.-C. & Manoury, E. (2007). J. Organomet. Chem. 692, 1064-1073.]). For related structures containing the C12H10PS2 anion, see: Alison et al. (1971[Alison, J. M. C., Stephenson, T. A. & Gould, R. O. (1971). J. Chem. Soc. A, pp. 3690-3696.]); Fackler et al. (1982[Fackler, J. P. Jr, Thompson, L. D., Lin, I. J. B., Stephenson, T. A., Gould, R. O., Alison, J. M. C. & Fraser, A. J. F. (1982). Inorg. Chem. 21, 2397-2403.]); Silvestru et al. (1995[Silvestru, A., Haiduc, I., Toscano, R. A. & Breunig, H. J. (1995). Polyhedron, 14, 2047-2033.]). For related ferrocenyl ammonium structures, see: Štěpnička & Císařová, (2003[Štěpnička, P. & Císařová, I. (2003). Organometallics, 22, 1728-1740.]). For a related ferrocenyl­amine structure, see: Mateus et al. (2006[Mateus, N., Routaboul, L., Daran, J.-C. & Manoury, E. (2006). J. Organomet. Chem. 691, 2297-2310.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C20H22NPS)](C12H10PS2)

  • Mr = 709.65

  • Monoclinic, P 21 /c

  • a = 14.7800 (3) Å

  • b = 18.3770 (3) Å

  • c = 13.6318 (3) Å

  • β = 112.557 (2)°

  • V = 3419.31 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 180 K

  • 0.38 × 0.13 × 0.06 mm

Data collection
  • Agilent Xcalibur Eos Gemini ultra diffractometer

  • Absorption correction: multi-scan (SCALE3 ABSPACK in CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.815, Tmax = 1.000

  • 37299 measured reflections

  • 7498 independent reflections

  • 6435 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.079

  • S = 1.05

  • 7498 reflections

  • 402 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C111–C116 and C221–C226 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S21 0.85 (2) 2.34 (2) 3.1516 (15) 160.3 (19)
C21—H21B⋯S1 0.99 2.87 3.664 (2) 137
C22—H22CCg2i 0.99 2.75 3.621 (3) 149
C23—H23ACg1 0.99 2.75 3.483 (2) 132
Symmetry code: (i) -x+2, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII, Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.].

Supporting information


Comment top

2-(diphenylthiophosphino)dimethylaminomethylferrocene is a key intermediate in the synthesis of various ferrocenyl ligands (Routaboul et al., 2005; Mateus et al., 2006; Routaboul et al., 2007; Le Roux et al., 2007; Audin et al., 2010;), in our laboratories. The last step of the synthesis of 2-(diphenylthiophosphino)dimethylaminomethylferrocene is a sulfurization of 2-(diphenylphosphino)dimethylaminomethylferrocene without any purification with an excess of elemental sulfur (Mateus et al., 2006). During this synthesis, small amounts of dimethyl-(2-(diphenylthiophosphino)ferrocenyl)methylammonium diphenylphosphinodithioato can be observed in the crude materials. We were able to obtain pure salt fractions by flash chromatography on silicagel. Monocrystals suitable for X-ray diffraction analysis could be grown from a dichloromethane solution by slow diffusion of hexane.

The asymmetric unit of the title compound contains a (2-(diphenylphosphino)ferrocenyl)methyl)dimethylammonium cation and a diphenylphosphino dithioate anion which are linked through N—H···S hydrogen bond (Fig. 1; Table 1). Besides this rather strong hydrogen bond, there are weaker C—H···S and C—H···π hydrogen interactions. The anion-cation couple are linked two by two through intermolecular C—H···π interactions (Fig. 2; Table 1).

In the cation, the two Cp rings have roughly a staggered conformation with a twist angle of 20.6 (2)° and they are slightly bent with respect to each other making a dihedral angle of 4.72 (12)°. As observed in the related 2-(diphenylthiophosphino)-dimethylaminomethylferrocene (Mateus et al., 2006), the S atom is displaced undo towards the Fe atom by 1.149 (4) Å from the Cp ring. The C2—C21—N1 plane is making a dihedral angle of 58.9 (1)° with the corresponding Cp ring whereas in the above ferrocenylamine (Mateus et al., 2006) the corresponding angle was roughly 90°. The C21—N1 distance of 1.502 (2) Å is similar to the 1.526 (2) Å observed in the reported ferrocenylammonium cation, [FeCp2PPh2(CH2NMe2CH2Ph)]+ (Štěpnička & Císařová, 2003).

The geometry of the anion fully agrees with related structures containing the same anion (Alison et al., 1971; Fackler et al., 1982; Silvestru et al., 1995).

Related literature top

For the synthesis of various ferrocenyl ligands, see: Audin et al. (2010); Le Roux et al. (2007); Routaboul et al. (2005, 2007). For related structures containing the C12H10PS2 anion, see: Alison et al. (1971); Fackler et al. (1982); Silvestru et al. (1995). For related ferrocenyl ammonium structures, see: Štěpnička & Císařová, (2003). For a related ferrocenylamine structure, see: Mateus et al. (2006).

Experimental top

In a schlenk tube under argon 4gr of crude (2-diphenylphosphino) dimethylaminomethyl ferrocene (0,47 mmol) were dissolved in 100 ml of dichloromethane, 1,7gr of sulfur (53 mmol) were then added and the solution was heated to reflux for 2 h. The crude product was purified and crystallized at RT. Several days later, orange crystals suitable for X-ray analyses, were obtained.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.98 Å (methyl), 0.99 Å (methylene) and 0.95 Å (aromatic) with Uiso(H) = 1.2Ueq(Cmethylene, Caromatic) and Uiso(H) = 1.5Ueq(Cmethyl). H atom attached to nitrogen was freely refined with Uiso(H) = 1.2Ueq(N).

Structure description top

2-(diphenylthiophosphino)dimethylaminomethylferrocene is a key intermediate in the synthesis of various ferrocenyl ligands (Routaboul et al., 2005; Mateus et al., 2006; Routaboul et al., 2007; Le Roux et al., 2007; Audin et al., 2010;), in our laboratories. The last step of the synthesis of 2-(diphenylthiophosphino)dimethylaminomethylferrocene is a sulfurization of 2-(diphenylphosphino)dimethylaminomethylferrocene without any purification with an excess of elemental sulfur (Mateus et al., 2006). During this synthesis, small amounts of dimethyl-(2-(diphenylthiophosphino)ferrocenyl)methylammonium diphenylphosphinodithioato can be observed in the crude materials. We were able to obtain pure salt fractions by flash chromatography on silicagel. Monocrystals suitable for X-ray diffraction analysis could be grown from a dichloromethane solution by slow diffusion of hexane.

The asymmetric unit of the title compound contains a (2-(diphenylphosphino)ferrocenyl)methyl)dimethylammonium cation and a diphenylphosphino dithioate anion which are linked through N—H···S hydrogen bond (Fig. 1; Table 1). Besides this rather strong hydrogen bond, there are weaker C—H···S and C—H···π hydrogen interactions. The anion-cation couple are linked two by two through intermolecular C—H···π interactions (Fig. 2; Table 1).

In the cation, the two Cp rings have roughly a staggered conformation with a twist angle of 20.6 (2)° and they are slightly bent with respect to each other making a dihedral angle of 4.72 (12)°. As observed in the related 2-(diphenylthiophosphino)-dimethylaminomethylferrocene (Mateus et al., 2006), the S atom is displaced undo towards the Fe atom by 1.149 (4) Å from the Cp ring. The C2—C21—N1 plane is making a dihedral angle of 58.9 (1)° with the corresponding Cp ring whereas in the above ferrocenylamine (Mateus et al., 2006) the corresponding angle was roughly 90°. The C21—N1 distance of 1.502 (2) Å is similar to the 1.526 (2) Å observed in the reported ferrocenylammonium cation, [FeCp2PPh2(CH2NMe2CH2Ph)]+ (Štěpnička & Císařová, 2003).

The geometry of the anion fully agrees with related structures containing the same anion (Alison et al., 1971; Fackler et al., 1982; Silvestru et al., 1995).

For the synthesis of various ferrocenyl ligands, see: Audin et al. (2010); Le Roux et al. (2007); Routaboul et al. (2005, 2007). For related structures containing the C12H10PS2 anion, see: Alison et al. (1971); Fackler et al. (1982); Silvestru et al. (1995). For related ferrocenyl ammonium structures, see: Štěpnička & Císařová, (2003). For a related ferrocenylamine structure, see: Mateus et al. (2006).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atom is represented as small sphere of arbitrary radii. Hydrogen bond is shown as dashed lines. H atoms not involved in hydrogen bondings within the Figure have been omitted for clarity.
[Figure 2] Fig. 2. View showing the formation of pseudo dimer resulting from C—H···π interaction. H atoms are represented as small sphere of arbitrary radii and the H bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Cg1 and Cg2 are respectively the centroids of the C111 to C116 and C221 to C226 phenyl ring]. [Symmetry code: (i) -x + 2, -y + 1, -z + 2]
rac-{[2-(Diphenylthiophosphoryl)ferrocenyl]methyl}dimethylammonium diphenyldithiophosphinate top
Crystal data top
[Fe(C5H5)(C20H22NPS)](C12H10PS2)F(000) = 1480
Mr = 709.65Dx = 1.379 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11690 reflections
a = 14.7800 (3) Åθ = 3.0–29.1°
b = 18.3770 (3) ŵ = 0.75 mm1
c = 13.6318 (3) ÅT = 180 K
β = 112.557 (2)°Box, brown
V = 3419.31 (12) Å30.38 × 0.13 × 0.06 mm
Z = 4
Data collection top
Agilent Xcalibur Eos Gemini ultra
diffractometer
7498 independent reflections
Radiation source: Enhance (Mo) X-ray Source6435 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.1978 pixels mm-1θmax = 27.1°, θmin = 3.0°
ω scansh = 1818
Absorption correction: multi-scan
(SCALE3 ABSPACK in CrysAlis PRO; Agilent, 2011)
k = 2323
Tmin = 0.815, Tmax = 1.000l = 1716
37299 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0316P)2 + 2.1534P]
where P = (Fo2 + 2Fc2)/3
7498 reflections(Δ/σ)max = 0.001
402 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Fe(C5H5)(C20H22NPS)](C12H10PS2)V = 3419.31 (12) Å3
Mr = 709.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.7800 (3) ŵ = 0.75 mm1
b = 18.3770 (3) ÅT = 180 K
c = 13.6318 (3) Å0.38 × 0.13 × 0.06 mm
β = 112.557 (2)°
Data collection top
Agilent Xcalibur Eos Gemini ultra
diffractometer
7498 independent reflections
Absorption correction: multi-scan
(SCALE3 ABSPACK in CrysAlis PRO; Agilent, 2011)
6435 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 1.000Rint = 0.032
37299 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.49 e Å3
7498 reflectionsΔρmin = 0.27 e Å3
402 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.892126 (18)0.295821 (13)0.56329 (2)0.02385 (7)
S10.62046 (3)0.37182 (3)0.53349 (4)0.03057 (11)
P10.69099 (3)0.40945 (2)0.44871 (3)0.02035 (10)
N10.92524 (11)0.49481 (8)0.74750 (11)0.0221 (3)
H10.9858 (16)0.4861 (11)0.7672 (16)0.027*
C10.81988 (12)0.38914 (9)0.49855 (13)0.0199 (3)
C20.89066 (12)0.40119 (9)0.60503 (13)0.0203 (3)
C30.98477 (12)0.38249 (10)0.60566 (14)0.0251 (4)
H31.04510.38540.66530.030*
C40.97303 (13)0.35884 (10)0.50256 (15)0.0278 (4)
H41.02410.34300.48150.033*
C50.87217 (12)0.36281 (10)0.43610 (14)0.0251 (4)
H50.84410.35020.36300.030*
C60.83827 (17)0.23364 (11)0.65368 (19)0.0417 (5)
H60.80170.25080.69310.050*
C70.79979 (18)0.20995 (12)0.5482 (2)0.0491 (6)
H70.73230.20830.50300.059*
C80.8793 (2)0.18870 (12)0.5202 (2)0.0552 (7)
H80.87440.17000.45340.066*
C90.96609 (18)0.20020 (12)0.6086 (2)0.0491 (6)
H91.03060.19110.61240.059*
C100.94077 (17)0.22754 (12)0.69090 (19)0.0445 (5)
H100.98550.23990.76020.053*
C210.87113 (13)0.42619 (9)0.69984 (13)0.0233 (4)
H21A0.89080.38730.75430.028*
H21B0.79990.43450.67840.028*
C220.90524 (15)0.51676 (12)0.84249 (15)0.0342 (4)
H22A0.94590.55880.87640.051*
H22B0.92070.47620.89290.051*
H22C0.83590.52970.82060.051*
C230.90543 (15)0.55545 (10)0.67055 (15)0.0333 (4)
H23A0.83590.56850.64480.050*
H23B0.92190.54030.61050.050*
H23C0.94540.59760.70540.050*
C1110.69061 (12)0.50804 (9)0.44182 (12)0.0207 (3)
C1120.63090 (13)0.54821 (10)0.48002 (14)0.0269 (4)
H1120.58680.52380.50450.032*
C1130.63565 (14)0.62385 (11)0.48240 (15)0.0330 (4)
H1130.59490.65100.50840.040*
C1140.69980 (15)0.65936 (11)0.44694 (15)0.0336 (4)
H1140.70400.71100.45000.040*
C1150.75816 (13)0.61995 (10)0.40692 (14)0.0288 (4)
H1150.80080.64470.38090.035*
C1160.75428 (12)0.54460 (10)0.40491 (13)0.0243 (4)
H1160.79500.51770.37840.029*
C1210.64309 (12)0.37339 (10)0.31452 (13)0.0240 (4)
C1220.63419 (15)0.41465 (12)0.22647 (15)0.0356 (5)
H1220.65360.46430.23460.043*
C1230.59665 (17)0.38328 (13)0.12585 (16)0.0437 (5)
H1230.59050.41170.06540.052*
C1240.56839 (15)0.31161 (13)0.11324 (16)0.0390 (5)
H1240.54270.29070.04430.047*
C1250.57726 (16)0.27025 (12)0.20011 (16)0.0410 (5)
H1250.55820.22050.19140.049*
C1260.61405 (15)0.30098 (11)0.30073 (15)0.0350 (4)
H1260.61940.27230.36070.042*
P21.19253 (3)0.42161 (3)0.91598 (3)0.02193 (10)
S211.15395 (3)0.50508 (3)0.81403 (4)0.02754 (10)
S221.08593 (3)0.36503 (3)0.93493 (4)0.03142 (11)
C2111.26918 (13)0.36027 (10)0.87503 (13)0.0263 (4)
C2121.35891 (14)0.38428 (12)0.87664 (15)0.0333 (4)
H2121.38190.43160.90220.040*
C2131.41491 (15)0.33888 (14)0.84076 (16)0.0422 (5)
H2131.47620.35530.84170.051*
C2141.38169 (17)0.26997 (13)0.80366 (17)0.0452 (6)
H2141.42040.23900.77950.054*
C2151.29285 (18)0.24609 (12)0.80160 (18)0.0445 (5)
H2151.26990.19880.77550.053*
C2161.23679 (16)0.29114 (11)0.83768 (16)0.0346 (4)
H2161.17570.27440.83670.042*
C2211.27607 (12)0.45558 (10)1.04489 (13)0.0227 (3)
C2221.32713 (14)0.40705 (11)1.12579 (15)0.0310 (4)
H2221.32170.35621.11240.037*
C2231.38586 (15)0.43272 (12)1.22579 (15)0.0369 (5)
H2231.42070.39941.28060.044*
C2241.39368 (15)0.50654 (13)1.24572 (16)0.0392 (5)
H2241.43360.52401.31430.047*
C2251.34355 (16)0.55488 (12)1.16604 (17)0.0411 (5)
H2251.34860.60571.18000.049*
C2261.28564 (14)0.52961 (11)1.06545 (15)0.0324 (4)
H2261.25240.56321.01050.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02534 (13)0.01906 (13)0.02753 (14)0.00148 (10)0.01055 (10)0.00295 (10)
S10.0301 (2)0.0363 (3)0.0316 (2)0.00764 (19)0.0189 (2)0.0016 (2)
P10.0183 (2)0.0243 (2)0.0188 (2)0.00269 (16)0.00753 (16)0.00222 (17)
N10.0195 (7)0.0237 (8)0.0208 (7)0.0004 (6)0.0052 (6)0.0052 (6)
C10.0196 (8)0.0202 (8)0.0193 (8)0.0019 (6)0.0066 (6)0.0009 (6)
C20.0205 (8)0.0175 (8)0.0216 (8)0.0003 (6)0.0065 (6)0.0012 (6)
C30.0207 (8)0.0263 (9)0.0261 (9)0.0017 (7)0.0065 (7)0.0037 (7)
C40.0232 (9)0.0320 (10)0.0320 (9)0.0003 (7)0.0147 (7)0.0034 (8)
C50.0242 (8)0.0298 (10)0.0228 (8)0.0024 (7)0.0105 (7)0.0039 (7)
C60.0528 (13)0.0252 (10)0.0573 (14)0.0024 (9)0.0323 (11)0.0078 (10)
C70.0445 (13)0.0244 (11)0.0664 (16)0.0087 (9)0.0081 (11)0.0080 (10)
C80.095 (2)0.0198 (11)0.0596 (15)0.0031 (11)0.0390 (15)0.0102 (10)
C90.0495 (13)0.0270 (11)0.0766 (17)0.0154 (10)0.0308 (13)0.0101 (11)
C100.0504 (13)0.0305 (11)0.0454 (13)0.0038 (10)0.0104 (10)0.0131 (10)
C210.0243 (8)0.0238 (9)0.0216 (8)0.0033 (7)0.0086 (7)0.0035 (7)
C220.0364 (10)0.0397 (12)0.0281 (10)0.0009 (9)0.0141 (8)0.0110 (8)
C230.0406 (11)0.0225 (9)0.0299 (10)0.0012 (8)0.0059 (8)0.0013 (8)
C1110.0172 (7)0.0249 (9)0.0168 (8)0.0005 (6)0.0028 (6)0.0013 (6)
C1120.0204 (8)0.0344 (10)0.0260 (9)0.0007 (7)0.0089 (7)0.0031 (8)
C1130.0310 (10)0.0329 (11)0.0337 (10)0.0072 (8)0.0110 (8)0.0047 (8)
C1140.0400 (11)0.0246 (10)0.0298 (10)0.0038 (8)0.0063 (8)0.0006 (8)
C1150.0294 (9)0.0301 (10)0.0239 (9)0.0017 (8)0.0070 (7)0.0051 (8)
C1160.0225 (8)0.0294 (10)0.0198 (8)0.0017 (7)0.0069 (7)0.0016 (7)
C1210.0175 (8)0.0314 (10)0.0222 (8)0.0013 (7)0.0066 (7)0.0038 (7)
C1220.0423 (11)0.0375 (11)0.0255 (9)0.0113 (9)0.0113 (8)0.0036 (8)
C1230.0531 (13)0.0522 (14)0.0232 (10)0.0094 (11)0.0116 (9)0.0021 (9)
C1240.0370 (11)0.0500 (13)0.0253 (10)0.0004 (9)0.0067 (8)0.0122 (9)
C1250.0469 (12)0.0334 (11)0.0346 (11)0.0028 (9)0.0065 (9)0.0112 (9)
C1260.0419 (11)0.0319 (11)0.0253 (9)0.0036 (9)0.0062 (8)0.0035 (8)
P20.0210 (2)0.0259 (2)0.0184 (2)0.00091 (17)0.00710 (17)0.00071 (17)
S210.0231 (2)0.0321 (2)0.0252 (2)0.00201 (17)0.00693 (17)0.00576 (18)
S220.0290 (2)0.0373 (3)0.0304 (2)0.00756 (19)0.01418 (19)0.0032 (2)
C2110.0293 (9)0.0309 (10)0.0186 (8)0.0077 (7)0.0092 (7)0.0034 (7)
C2120.0287 (9)0.0449 (12)0.0258 (9)0.0048 (8)0.0099 (8)0.0001 (8)
C2130.0302 (10)0.0665 (16)0.0306 (10)0.0127 (10)0.0125 (8)0.0051 (10)
C2140.0535 (14)0.0518 (14)0.0335 (11)0.0283 (11)0.0203 (10)0.0081 (10)
C2150.0653 (15)0.0314 (11)0.0420 (12)0.0142 (10)0.0262 (11)0.0040 (10)
C2160.0433 (11)0.0297 (10)0.0348 (10)0.0054 (8)0.0194 (9)0.0023 (8)
C2210.0208 (8)0.0279 (9)0.0208 (8)0.0004 (7)0.0094 (7)0.0005 (7)
C2220.0329 (10)0.0311 (10)0.0261 (9)0.0041 (8)0.0083 (8)0.0011 (8)
C2230.0311 (10)0.0492 (13)0.0233 (9)0.0060 (9)0.0025 (8)0.0026 (9)
C2240.0309 (10)0.0545 (14)0.0273 (10)0.0090 (9)0.0056 (8)0.0116 (9)
C2250.0453 (12)0.0336 (11)0.0393 (12)0.0096 (9)0.0105 (10)0.0101 (9)
C2260.0347 (10)0.0292 (10)0.0297 (10)0.0028 (8)0.0083 (8)0.0005 (8)
Geometric parameters (Å, º) top
Fe1—C22.0208 (17)C112—C1131.391 (3)
Fe1—C12.0340 (17)C112—H1120.9500
Fe1—C32.0344 (18)C113—C1141.382 (3)
Fe1—C92.036 (2)C113—H1130.9500
Fe1—C102.039 (2)C114—C1151.388 (3)
Fe1—C82.042 (2)C114—H1140.9500
Fe1—C72.044 (2)C115—C1161.386 (3)
Fe1—C62.052 (2)C115—H1150.9500
Fe1—C52.0533 (18)C116—H1160.9500
Fe1—C42.0532 (18)C121—C1221.383 (3)
S1—P11.9557 (6)C121—C1261.389 (3)
P1—C11.7992 (17)C122—C1231.392 (3)
P1—C1111.8141 (18)C122—H1220.9500
P1—C1211.8146 (17)C123—C1241.372 (3)
N1—C231.481 (2)C123—H1230.9500
N1—C221.490 (2)C124—C1251.370 (3)
N1—C211.501 (2)C124—H1240.9500
N1—H10.85 (2)C125—C1261.387 (3)
C1—C51.436 (2)C125—H1250.9500
C1—C21.444 (2)C126—H1260.9500
C2—C31.430 (2)P2—C2211.8270 (17)
C2—C211.500 (2)P2—C2111.8305 (18)
C3—C41.417 (2)P2—S221.9856 (6)
C3—H30.9500P2—S212.0004 (6)
C4—C51.419 (2)C211—C2161.384 (3)
C4—H40.9500C211—C2121.390 (3)
C5—H50.9500C212—C2131.390 (3)
C6—C71.398 (3)C212—H2120.9500
C6—C101.405 (3)C213—C2141.382 (3)
C6—H60.9500C213—H2130.9500
C7—C81.422 (4)C214—C2151.374 (3)
C7—H70.9500C214—H2140.9500
C8—C91.399 (4)C215—C2161.388 (3)
C8—H80.9500C215—H2150.9500
C9—C101.404 (3)C216—H2160.9500
C9—H90.9500C221—C2261.385 (3)
C10—H100.9500C221—C2221.394 (3)
C21—H21A0.9900C222—C2231.388 (3)
C21—H21B0.9900C222—H2220.9500
C22—H22A0.9800C223—C2241.380 (3)
C22—H22B0.9800C223—H2230.9500
C22—H22C0.9800C224—C2251.379 (3)
C23—H23A0.9800C224—H2240.9500
C23—H23B0.9800C225—C2261.388 (3)
C23—H23C0.9800C225—H2250.9500
C111—C1121.396 (2)C226—H2260.9500
C111—C1161.398 (2)
C2—Fe1—C141.73 (6)C10—C9—Fe169.96 (12)
C2—Fe1—C341.28 (7)C8—C9—H9126.1
C1—Fe1—C369.34 (7)C10—C9—H9126.1
C2—Fe1—C9143.50 (9)Fe1—C9—H9125.3
C1—Fe1—C9172.17 (9)C9—C10—C6108.7 (2)
C3—Fe1—C9111.40 (9)C9—C10—Fe169.74 (13)
C2—Fe1—C10112.82 (8)C6—C10—Fe170.40 (12)
C1—Fe1—C10147.52 (8)C9—C10—H10125.6
C3—Fe1—C10105.12 (9)C6—C10—H10125.6
C9—Fe1—C1040.31 (10)Fe1—C10—H10125.8
C2—Fe1—C8174.18 (10)C2—C21—N1112.54 (14)
C1—Fe1—C8135.46 (10)C2—C21—H21A109.1
C3—Fe1—C8144.53 (10)N1—C21—H21A109.1
C9—Fe1—C840.11 (11)C2—C21—H21B109.1
C10—Fe1—C867.38 (10)N1—C21—H21B109.1
C2—Fe1—C7133.57 (9)H21A—C21—H21B107.8
C1—Fe1—C7112.83 (8)N1—C22—H22A109.5
C3—Fe1—C7169.60 (9)N1—C22—H22B109.5
C9—Fe1—C767.94 (10)H22A—C22—H22B109.5
C10—Fe1—C767.32 (10)N1—C22—H22C109.5
C8—Fe1—C740.72 (11)H22A—C22—H22C109.5
C2—Fe1—C6108.42 (8)H22B—C22—H22C109.5
C1—Fe1—C6118.04 (8)N1—C23—H23A109.5
C3—Fe1—C6129.75 (9)N1—C23—H23B109.5
C9—Fe1—C667.90 (9)H23A—C23—H23B109.5
C10—Fe1—C640.19 (9)N1—C23—H23C109.5
C8—Fe1—C667.73 (10)H23A—C23—H23C109.5
C7—Fe1—C639.91 (10)H23B—C23—H23C109.5
C2—Fe1—C569.49 (7)C112—C111—C116119.31 (17)
C1—Fe1—C541.12 (7)C112—C111—P1119.92 (13)
C3—Fe1—C568.49 (7)C116—C111—P1120.64 (13)
C9—Fe1—C5131.32 (9)C113—C112—C111120.24 (17)
C10—Fe1—C5168.16 (8)C113—C112—H112119.9
C8—Fe1—C5111.59 (9)C111—C112—H112119.9
C7—Fe1—C5120.23 (9)C114—C113—C112119.92 (18)
C6—Fe1—C5151.38 (8)C114—C113—H113120.0
C2—Fe1—C469.14 (7)C112—C113—H113120.0
C1—Fe1—C468.87 (7)C113—C114—C115120.27 (18)
C3—Fe1—C440.56 (7)C113—C114—H114119.9
C9—Fe1—C4106.34 (9)C115—C114—H114119.9
C10—Fe1—C4128.44 (9)C116—C115—C114120.12 (18)
C8—Fe1—C4115.60 (9)C116—C115—H115119.9
C7—Fe1—C4149.79 (9)C114—C115—H115119.9
C6—Fe1—C4167.51 (9)C115—C116—C111120.11 (17)
C5—Fe1—C440.42 (7)C115—C116—H116119.9
C1—P1—C111102.03 (8)C111—C116—H116119.9
C1—P1—C121104.60 (8)C122—C121—C126119.11 (17)
C111—P1—C121108.68 (8)C122—C121—P1123.04 (14)
C1—P1—S1115.51 (6)C126—C121—P1117.85 (14)
C111—P1—S1113.07 (6)C121—C122—C123119.84 (19)
C121—P1—S1112.11 (6)C121—C122—H122120.1
C23—N1—C22111.15 (15)C123—C122—H122120.1
C23—N1—C21113.45 (13)C124—C123—C122120.5 (2)
C22—N1—C21110.67 (14)C124—C123—H123119.7
C23—N1—H1105.4 (14)C122—C123—H123119.7
C22—N1—H1108.3 (14)C125—C124—C123120.03 (19)
C21—N1—H1107.5 (14)C125—C124—H124120.0
C5—C1—C2107.49 (14)C123—C124—H124120.0
C5—C1—P1125.37 (13)C124—C125—C126120.0 (2)
C2—C1—P1126.99 (12)C124—C125—H125120.0
C5—C1—Fe170.16 (10)C126—C125—H125120.0
C2—C1—Fe168.65 (9)C125—C126—C121120.50 (19)
P1—C1—Fe1129.96 (9)C125—C126—H126119.7
C3—C2—C1107.29 (14)C121—C126—H126119.7
C3—C2—C21125.22 (15)C221—P2—C211103.57 (8)
C1—C2—C21127.46 (15)C221—P2—S22109.33 (6)
C3—C2—Fe169.87 (10)C211—P2—S22109.40 (7)
C1—C2—Fe169.63 (9)C221—P2—S21108.27 (6)
C21—C2—Fe1124.22 (12)C211—P2—S21107.77 (6)
C4—C3—C2108.61 (15)S22—P2—S21117.58 (3)
C4—C3—Fe170.43 (10)C216—C211—C212119.37 (18)
C2—C3—Fe168.85 (10)C216—C211—P2120.67 (15)
C4—C3—H3125.7C212—C211—P2119.88 (15)
C2—C3—H3125.7C213—C212—C211119.8 (2)
Fe1—C3—H3126.6C213—C212—H212120.1
C3—C4—C5108.46 (15)C211—C212—H212120.1
C3—C4—Fe169.01 (10)C214—C213—C212120.2 (2)
C5—C4—Fe169.80 (10)C214—C213—H213119.9
C3—C4—H4125.8C212—C213—H213119.9
C5—C4—H4125.8C215—C214—C213120.2 (2)
Fe1—C4—H4127.0C215—C214—H214119.9
C4—C5—C1108.15 (15)C213—C214—H214119.9
C4—C5—Fe169.79 (11)C214—C215—C216119.8 (2)
C1—C5—Fe168.72 (10)C214—C215—H215120.1
C4—C5—H5125.9C216—C215—H215120.1
C1—C5—H5125.9C211—C216—C215120.6 (2)
Fe1—C5—H5127.1C211—C216—H216119.7
C7—C6—C10107.7 (2)C215—C216—H216119.7
C7—C6—Fe169.75 (13)C226—C221—C222119.09 (17)
C10—C6—Fe169.42 (12)C226—C221—P2120.61 (14)
C7—C6—H6126.2C222—C221—P2120.22 (14)
C10—C6—H6126.2C223—C222—C221120.29 (19)
Fe1—C6—H6126.2C223—C222—H222119.9
C6—C7—C8108.0 (2)C221—C222—H222119.9
C6—C7—Fe170.33 (12)C224—C223—C222120.08 (19)
C8—C7—Fe169.55 (13)C224—C223—H223120.0
C6—C7—H7126.0C222—C223—H223120.0
C8—C7—H7126.0C225—C224—C223119.96 (19)
Fe1—C7—H7125.7C225—C224—H224120.0
C9—C8—C7107.9 (2)C223—C224—H224120.0
C9—C8—Fe169.72 (13)C224—C225—C226120.3 (2)
C7—C8—Fe169.73 (12)C224—C225—H225119.9
C9—C8—H8126.1C226—C225—H225119.9
C7—C8—H8126.1C221—C226—C225120.31 (19)
Fe1—C8—H8126.1C221—C226—H226119.8
C8—C9—C10107.8 (2)C225—C226—H226119.8
C8—C9—Fe170.17 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C111–C116 and C221–C226 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···S210.85 (2)2.34 (2)3.1516 (15)160.3 (19)
C21—H21B···S10.992.873.664 (2)137
C22—H22C···Cg2i0.992.753.621 (3)149
C23—H23A···Cg10.992.753.483 (2)132
Symmetry code: (i) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C20H22NPS)](C12H10PS2)
Mr709.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)180
a, b, c (Å)14.7800 (3), 18.3770 (3), 13.6318 (3)
β (°) 112.557 (2)
V3)3419.31 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.38 × 0.13 × 0.06
Data collection
DiffractometerAgilent Xcalibur Eos Gemini ultra
Absorption correctionMulti-scan
(SCALE3 ABSPACK in CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.815, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
37299, 7498, 6435
Rint0.032
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.05
No. of reflections7498
No. of parameters402
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.27

Computer programs: CrysAlis PRO (Agilent, 2011), SIR97 (Altomare et al., 1999), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C111–C116 and C221–C226 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···S210.85 (2)2.34 (2)3.1516 (15)160.3 (19)
C21—H21B···S10.99002.87003.664 (2)137.00
C22—H22C···Cg2i0.992.753.621 (3)149
C23—H23A···Cg10.992.753.483 (2)132
Symmetry code: (i) x+2, y+1, z+2.
 

Acknowledgements

The CNRS is acknowledged for financial support and NM acknowledges the Department of Chemistry of the University of Mentouri for funding her stay in the LCC.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAlison, J. M. C., Stephenson, T. A. & Gould, R. O. (1971). J. Chem. Soc. A, pp. 3690–3696.  CrossRef Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAudin, C., Daran, J.-C., Deydier, E., Manoury, E. & Poli, R. (2010). C. R. Chimie, 13, 890–899.  CrossRef CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII, Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.  Google Scholar
First citationFackler, J. P. Jr, Thompson, L. D., Lin, I. J. B., Stephenson, T. A., Gould, R. O., Alison, J. M. C. & Fraser, A. J. F. (1982). Inorg. Chem. 21, 2397–2403.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLe Roux, E., Malacea, R., Manoury, E., Poli, R., Gonsalvi, L. & Peruzzini, M. (2007). Adv. Synth. Catal. 349, 1064–1073.  Web of Science CrossRef Google Scholar
First citationMateus, N., Routaboul, L., Daran, J.-C. & Manoury, E. (2006). J. Organomet. Chem. 691, 2297–2310.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoutaboul, L., Vincendeau, S., Daran, J.-C. & Manoury, E. (2005). Tetrahedron Asymmetry, 16, 2685–2690.  Web of Science CrossRef CAS Google Scholar
First citationRoutaboul, L., Vincendeau, S., Turrin, C.-O., Caminade, A.-M., Majoral, J.-P., Daran, J.-C. & Manoury, E. (2007). J. Organomet. Chem. 692, 1064–1073.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilvestru, A., Haiduc, I., Toscano, R. A. & Breunig, H. J. (1995). Polyhedron, 14, 2047–2033.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŠtěpnička, P. & Císařová, I. (2003). Organometallics, 22, 1728–1740.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m381-m382
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds