organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-(2-Hy­dr­oxy-5-iodo­benzyl­­idene)hydrazinecarboxamide

aYoung Researchers Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran, bDepartment of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran, cDepartment of Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, PO Box 1655, Tabriz, Iran, and dDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113, Iran
*Correspondence e-mail: bikas_r@yahoo.com

(Received 10 February 2012; accepted 7 March 2012; online 17 March 2012)

In the title mol­ecule, C8H8IN3O2, there is an intra­molecular O—H⋯N hydrogen bond between the hy­droxy group and the imine N atom, which generates an S(6) ring. In the crystal, the carbonyl O atom accepts two different N—H⋯O hydrogen bonds, which connect mol­ecules with two R22(8) motifs.

Related literature

For historical background to semicarbazones, see: Arapov et al. (1987[Arapov, O. V., Alferva, O. F., Levocheskaya, E. I. & Krasilnikov, I. (1987). Radiobiologiya, 27, 843-846.]); Pickart et al. (1983[Pickart, L., Goodwin, W. H., Burgua, W., Murphy, T. B. & Johnson, D. K. (1983). Biochem. Pharmacol. 32, 3868-3871.]). For related structures see: Bikas et al. (2010[Bikas, R., Hosseini Monfared, H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010). Acta Cryst. E66, o2015.], 2012a[Bikas, R., Anarjan, P. M., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o193.],b[Bikas, R., Anarjan, P. M., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o413-o414.]); Monfared et al. (2010a[Monfared, H. H., Bikas, R. & Mayer, P. (2010a). Acta Cryst. E66, o236-o237.]). For background to the development of hydrazide derivatives for biological evaluation, see: Carvalho et al. (2008[Carvalho, S. R., da Silva, E. F., de Souza, M. V. N., Lourenco, M. C. S. & Vicente, F. R. (2008). Bioorg. Med. Chem. Lett. 18, 538-541.]). For catalytic applications of aroylhydrazones, see: Monfared et al. (2010b[Monfared, H. H., Bikas, R. & Mayer, P. (2010b). Inorg. Chim. Acta, 363, 574-2583.]). For a similiar structure, see: Abboud et al. (1995[Abboud, K. A., Summers, S. P. & Palenik, G. J. (1995). Acta Cryst. C51, 1707-1709.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8IN3O2

  • Mr = 305.07

  • Monoclinic, P 2/c

  • a = 9.1066 (18) Å

  • b = 7.6277 (15) Å

  • c = 14.375 (3) Å

  • β = 95.31 (3)°

  • V = 994.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.20 mm−1

  • T = 120 K

  • 0.25 × 0.13 × 0.12 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • Absorption correction: numerical (shape of crystal determined optically; X-RED32 and X-SHAPE, Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.502, Tmax = 0.700

  • 10438 measured reflections

  • 2686 independent reflections

  • 2362 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.056

  • S = 1.13

  • 2686 reflections

  • 143 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O2i 0.81 (4) 2.13 (4) 2.920 (3) 163 (3)
N2—H2⋯O2ii 0.80 (4) 2.00 (4) 2.800 (3) 176 (3)
O1—H1⋯N1 0.84 (2) 1.88 (3) 2.628 (3) 147 (4)
Symmetry codes: (i) [-x+3, y, -z+{\script{3\over 2}}]; (ii) -x+3, -y+2, -z+2.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Semicarbazone compounds are derived from the condensation of carbonyl compounds and semicarbazides. This class are important tridentate O, N, O-donor ligands. As biologically active compounds, semicarbazones find application in the treatment of diseases such as anti-tumor, tuberculosis, leprosy and mental disorder. Furthermore, semicarbazone have wide spread applications in fields such as coordination chemistry, bioinorganic chemistry, and in magnetic, electronic, nonlinear optically active and fluorescent compounds. Also semicarbazone metal complexes seem to be a good candidate for catalytic oxidation studies because of their resist to oxidation (Monfared et al., 2010b).

As part of our studies on the synthesis and characterization of hydrazone derivatives (Bikas et al., 2010; Bikas et al., 2012a,b), we report here the crystal structure of (E)-2-(2-hydroxy-5-iodobenzylidene)hydrazinecarboxamide (Fig.1). Bond distances are in the normal range for similar hydrazone compounds (Abboud et al., 1995). The molecule is approximately planar, with an r.m.s. deviation from the mean plane through all 14 non-H atoms of 0.181 (2) Å. The dihedral angle between the phenyl ring plane and the least-squares plane through the N3—C8—O2—N2 unit is 14.00 (13)°. In the crystal structure of the title compound, the molecule adopts an E configuration with respect to the C7=N1 bond. In the crystal structure of the title compound, there is an intramolecular O—H···N hydrogen bonding between the hydroxyl group and imine nitrogen atom. The carbonyl group forms two different intermolecular N—H···O hydrogen bonds parallel to ac- plane which connects molecules with two R22(8) motifs (Table 1, Fig. 2).

Related literature top

For historical background to semicarbazones, see: Arapov et al. (1987); Pickart et al. (1983). For related structures see: Bikas et al. (2010, 2012a,b); Monfared et al. (2010a). For background to the development of hydrazide derivatives for biological evaluation, see: Carvalho et al. (2008). For catalytic applications of aroylhydrazones, see: Monfared et al. (2010b). For a similiar structure, see: Abboud et al. (1995).

Experimental top

For preparing the title compound a methanol (10 ml) solution of 2-hydroxy-5-iodobenzaldehyde (1.5 mmol) was added drop-wise to a methanol solution (10 ml) of semicarbazide (1.5 mmol), and the mixture was refluxed for 3 h. The solution was then evaporated on a steam bath to 5 ml and cooled to room temperature. The light-yellow precipitates of the title compound were separated and filtered off, washed with 3 ml of cooled methanol and then dried in air. Colorless crystals were obtained from its methanol solution by slow solvent evaporation. Yield: 92%. IR (cm-1): 3464 (m, O—H), 3176 (m, broad, N—H), 1699 (vs, C=O), 1594 (s, C=N), 1463 (s), 1340 (m), 1259 (vs), 1187 (s), 1072 (m), 942 (vs), 893 (m), 818 (m), 769 (vs), 682 (m), 613 (m), 572 (vs), 517 (s), 522 (m), 472 (vs), 427 (vs).

Refinement top

The hydrogen atoms of the N—H and O—H groups were found in a difference Fourier map and refined isotropically with a distance restraint to 0.84 Å for the O—H group. All other H atoms were positioned geometrically and refined as riding atoms with C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C) aromatic and imine H atoms.

Structure description top

Semicarbazone compounds are derived from the condensation of carbonyl compounds and semicarbazides. This class are important tridentate O, N, O-donor ligands. As biologically active compounds, semicarbazones find application in the treatment of diseases such as anti-tumor, tuberculosis, leprosy and mental disorder. Furthermore, semicarbazone have wide spread applications in fields such as coordination chemistry, bioinorganic chemistry, and in magnetic, electronic, nonlinear optically active and fluorescent compounds. Also semicarbazone metal complexes seem to be a good candidate for catalytic oxidation studies because of their resist to oxidation (Monfared et al., 2010b).

As part of our studies on the synthesis and characterization of hydrazone derivatives (Bikas et al., 2010; Bikas et al., 2012a,b), we report here the crystal structure of (E)-2-(2-hydroxy-5-iodobenzylidene)hydrazinecarboxamide (Fig.1). Bond distances are in the normal range for similar hydrazone compounds (Abboud et al., 1995). The molecule is approximately planar, with an r.m.s. deviation from the mean plane through all 14 non-H atoms of 0.181 (2) Å. The dihedral angle between the phenyl ring plane and the least-squares plane through the N3—C8—O2—N2 unit is 14.00 (13)°. In the crystal structure of the title compound, the molecule adopts an E configuration with respect to the C7=N1 bond. In the crystal structure of the title compound, there is an intramolecular O—H···N hydrogen bonding between the hydroxyl group and imine nitrogen atom. The carbonyl group forms two different intermolecular N—H···O hydrogen bonds parallel to ac- plane which connects molecules with two R22(8) motifs (Table 1, Fig. 2).

For historical background to semicarbazones, see: Arapov et al. (1987); Pickart et al. (1983). For related structures see: Bikas et al. (2010, 2012a,b); Monfared et al. (2010a). For background to the development of hydrazide derivatives for biological evaluation, see: Carvalho et al. (2008). For catalytic applications of aroylhydrazones, see: Monfared et al. (2010b). For a similiar structure, see: Abboud et al. (1995).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound showing intermolecular hydrogen bonds as blue dashed lines.
(E)-2-(2-Hydroxy-5-iodobenzylidene)hydrazinecarboxamide top
Crystal data top
C8H8IN3O2F(000) = 584
Mr = 305.07Dx = 2.038 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 2686 reflections
a = 9.1066 (18) Åθ = 2.7–29.2°
b = 7.6277 (15) ŵ = 3.20 mm1
c = 14.375 (3) ÅT = 120 K
β = 95.31 (3)°Block, colorless
V = 994.3 (3) Å30.25 × 0.13 × 0.12 mm
Z = 4
Data collection top
Stoe IPDS 2T
diffractometer
2686 independent reflections
Radiation source: fine-focus sealed tube2362 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 2.7°
rotation method scansh = 1212
Absorption correction: numerical
(shape of crystal determined optically; X-RED32 and X-SHAPE, Stoe & Cie, 2005)
k = 1010
Tmin = 0.502, Tmax = 0.700l = 1819
10438 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0208P)2 + 1.0932P]
where P = (Fo2 + 2Fc2)/3
2686 reflections(Δ/σ)max = 0.001
143 parametersΔρmax = 0.75 e Å3
1 restraintΔρmin = 0.71 e Å3
Crystal data top
C8H8IN3O2V = 994.3 (3) Å3
Mr = 305.07Z = 4
Monoclinic, P2/cMo Kα radiation
a = 9.1066 (18) ŵ = 3.20 mm1
b = 7.6277 (15) ÅT = 120 K
c = 14.375 (3) Å0.25 × 0.13 × 0.12 mm
β = 95.31 (3)°
Data collection top
Stoe IPDS 2T
diffractometer
2686 independent reflections
Absorption correction: numerical
(shape of crystal determined optically; X-RED32 and X-SHAPE, Stoe & Cie, 2005)
2362 reflections with I > 2σ(I)
Tmin = 0.502, Tmax = 0.700Rint = 0.041
10438 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0291 restraint
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.75 e Å3
2686 reflectionsΔρmin = 0.71 e Å3
143 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.71642 (2)0.52615 (2)1.210107 (13)0.02620 (6)
O21.52011 (18)1.0591 (2)0.88088 (11)0.0160 (3)
N21.3349 (2)0.9116 (3)0.93933 (14)0.0149 (4)
C81.3955 (2)0.9896 (3)0.86612 (16)0.0137 (4)
N31.3205 (2)0.9864 (3)0.78198 (15)0.0166 (4)
N11.1902 (2)0.8602 (3)0.93061 (14)0.0134 (4)
O10.9242 (2)0.8354 (3)0.84348 (13)0.0217 (4)
C10.9856 (3)0.7452 (3)1.00333 (17)0.0139 (4)
C20.8840 (3)0.7661 (3)0.92413 (17)0.0150 (4)
C71.1398 (3)0.7979 (3)1.00415 (16)0.0137 (4)
H71.20360.78601.05990.016*
C60.9357 (3)0.6755 (3)1.08517 (17)0.0165 (5)
H61.00280.66091.13930.020*
C40.6899 (3)0.6494 (3)1.00927 (19)0.0191 (5)
H40.58950.61721.01150.023*
C30.7373 (3)0.7178 (3)0.92780 (18)0.0187 (5)
H30.66910.73190.87420.022*
C50.7893 (3)0.6278 (3)1.08752 (18)0.0173 (5)
H21.380 (4)0.917 (4)0.990 (3)0.022 (8)*
H3A1.244 (4)0.929 (5)0.773 (3)0.029 (9)*
H3B1.359 (4)1.028 (5)0.738 (3)0.028 (9)*
H11.016 (2)0.849 (5)0.849 (3)0.037 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03341 (10)0.02256 (9)0.02507 (9)0.00405 (7)0.01569 (7)0.00293 (7)
O20.0139 (7)0.0241 (10)0.0102 (8)0.0040 (6)0.0015 (6)0.0006 (6)
N20.0121 (9)0.0243 (10)0.0081 (9)0.0052 (8)0.0003 (7)0.0002 (8)
C80.0143 (9)0.0174 (12)0.0095 (9)0.0005 (8)0.0019 (8)0.0004 (8)
N30.0153 (9)0.0243 (11)0.0101 (9)0.0040 (8)0.0007 (7)0.0005 (8)
N10.0112 (9)0.0159 (9)0.0132 (9)0.0012 (7)0.0011 (7)0.0023 (7)
O10.0150 (9)0.0375 (11)0.0121 (8)0.0015 (7)0.0009 (7)0.0058 (7)
C10.0149 (11)0.0130 (12)0.0141 (10)0.0002 (8)0.0032 (8)0.0014 (8)
C20.0147 (11)0.0174 (11)0.0131 (11)0.0005 (8)0.0020 (8)0.0005 (9)
C70.0130 (10)0.0171 (11)0.0109 (10)0.0006 (8)0.0010 (8)0.0011 (8)
C60.0176 (11)0.0180 (12)0.0140 (11)0.0003 (9)0.0030 (9)0.0010 (9)
C40.0147 (11)0.0188 (12)0.0249 (13)0.0037 (9)0.0070 (9)0.0054 (10)
C30.0149 (11)0.0231 (13)0.0181 (12)0.0001 (9)0.0017 (9)0.0031 (9)
C50.0204 (11)0.0137 (11)0.0194 (12)0.0014 (8)0.0106 (9)0.0005 (9)
Geometric parameters (Å, º) top
I1—C52.089 (2)C1—C61.404 (3)
O2—C81.253 (3)C1—C21.408 (3)
N2—C81.369 (3)C1—C71.460 (3)
N2—N11.369 (3)C2—C31.391 (3)
N2—H20.80 (4)C7—H70.9500
C8—N31.333 (3)C6—C51.385 (3)
N3—H3A0.82 (4)C6—H60.9500
N3—H3B0.81 (4)C4—C51.387 (4)
N1—C71.282 (3)C4—C31.387 (4)
O1—C21.355 (3)C4—H40.9500
O1—H10.841 (18)C3—H30.9500
C8—N2—N1120.5 (2)C3—C2—C1120.0 (2)
C8—N2—H2118 (2)N1—C7—C1120.9 (2)
N1—N2—H2120 (2)N1—C7—H7119.6
O2—C8—N3122.8 (2)C1—C7—H7119.6
O2—C8—N2118.5 (2)C5—C6—C1120.4 (2)
N3—C8—N2118.7 (2)C5—C6—H6119.8
C8—N3—H3A121 (3)C1—C6—H6119.8
C8—N3—H3B118 (3)C5—C4—C3119.9 (2)
H3A—N3—H3B120 (4)C5—C4—H4120.0
C7—N1—N2116.5 (2)C3—C4—H4120.0
C2—O1—H1108 (3)C4—C3—C2120.4 (2)
C6—C1—C2118.8 (2)C4—C3—H3119.8
C6—C1—C7118.9 (2)C2—C3—H3119.8
C2—C1—C7122.3 (2)C6—C5—C4120.4 (2)
O1—C2—C3118.2 (2)C6—C5—I1120.0 (2)
O1—C2—C1121.8 (2)C4—C5—I1119.59 (17)
N1—N2—C8—O2169.1 (2)C2—C1—C6—C50.2 (4)
N1—N2—C8—N311.9 (3)C7—C1—C6—C5178.5 (2)
C8—N2—N1—C7175.9 (2)C5—C4—C3—C20.3 (4)
C6—C1—C2—O1178.8 (2)O1—C2—C3—C4178.8 (2)
C7—C1—C2—O10.6 (4)C1—C2—C3—C40.1 (4)
C6—C1—C2—C30.1 (4)C1—C6—C5—C40.4 (4)
C7—C1—C2—C3178.3 (2)C1—C6—C5—I1179.51 (18)
N2—N1—C7—C1177.8 (2)C3—C4—C5—C60.5 (4)
C6—C1—C7—N1179.1 (2)C3—C4—C5—I1179.59 (19)
C2—C1—C7—N12.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O2i0.81 (4)2.13 (4)2.920 (3)163 (3)
N2—H2···O2ii0.80 (4)2.00 (4)2.800 (3)176 (3)
O1—H1···N10.84 (2)1.88 (3)2.628 (3)147 (4)
Symmetry codes: (i) x+3, y, z+3/2; (ii) x+3, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC8H8IN3O2
Mr305.07
Crystal system, space groupMonoclinic, P2/c
Temperature (K)120
a, b, c (Å)9.1066 (18), 7.6277 (15), 14.375 (3)
β (°) 95.31 (3)
V3)994.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.20
Crystal size (mm)0.25 × 0.13 × 0.12
Data collection
DiffractometerStoe IPDS 2T
Absorption correctionNumerical
(shape of crystal determined optically; X-RED32 and X-SHAPE, Stoe & Cie, 2005)
Tmin, Tmax0.502, 0.700
No. of measured, independent and
observed [I > 2σ(I)] reflections
10438, 2686, 2362
Rint0.041
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.056, 1.13
No. of reflections2686
No. of parameters143
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.75, 0.71

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O2i0.81 (4)2.13 (4)2.920 (3)163 (3)
N2—H2···O2ii0.80 (4)2.00 (4)2.800 (3)176 (3)
O1—H1···N10.841 (18)1.88 (3)2.628 (3)147 (4)
Symmetry codes: (i) x+3, y, z+3/2; (ii) x+3, y+2, z+2.
 

Acknowledgements

The authors are grateful to the Islamic Azad University (Tabriz Branch) and the Islamic Azad University (Ardabil Branch) for financial support.

References

First citationAbboud, K. A., Summers, S. P. & Palenik, G. J. (1995). Acta Cryst. C51, 1707–1709.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationArapov, O. V., Alferva, O. F., Levocheskaya, E. I. & Krasilnikov, I. (1987). Radiobiologiya, 27, 843–846.  CAS Google Scholar
First citationBikas, R., Anarjan, P. M., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBikas, R., Anarjan, P. M., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o413–o414.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBikas, R., Hosseini Monfared, H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010). Acta Cryst. E66, o2015.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCarvalho, S. R., da Silva, E. F., de Souza, M. V. N., Lourenco, M. C. S. & Vicente, F. R. (2008). Bioorg. Med. Chem. Lett. 18, 538–541.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMonfared, H. H., Bikas, R. & Mayer, P. (2010a). Acta Cryst. E66, o236–o237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMonfared, H. H., Bikas, R. & Mayer, P. (2010b). Inorg. Chim. Acta, 363, 574–2583.  Web of Science CSD CrossRef Google Scholar
First citationPickart, L., Goodwin, W. H., Burgua, W., Murphy, T. B. & Johnson, D. K. (1983). Biochem. Pharmacol. 32, 3868–3871.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds