organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Anthracen-9-yl)-2-phenyl-6-(pyridin-2-yl)pyridine

aDeparment of Chemistry, Anhui University, Hefei 230039, People's Republic of China
*Correspondence e-mail: jxyang@ahu.edu.cn

(Received 29 February 2012; accepted 21 March 2012; online 28 March 2012)

In the title compound, C30H20N2, the anthracene ring system is approximately planar [maximum deviation = 0.035 (2) Å] and is nearly perpendicular to the central pyridine ring, making a dihedral angle of 75.73 (7)°. The terminal pyridine ring and the phenyl ring are oriented at dihedral angles of 8.11 (10) and 13.22 (10)°, respectively, to the central pyridine ring.

Related literature

For applications of aromatic conjugated organic compounds, see: Nishihara et al. (1989[Nishihara, H., Haruna, M. & Suhara, T. (1989). In Optical Intergrated Circuits. New York: McGraw-Hill.]); Mi et al. (2003[Mi, B.-X., Wang, P.-F., Liu, M.-W., Kwong, H.-L., Wong, N.-B., Lee, C.-S. & Lee, S.-T. (2003). Chem. Mater. 15, 3148-3151.]); Roberto et al. (2000[Roberto, D., Ugo, R., Bruni, S., Cariati, E., Cariati, F., Fantucci, P., Invernizzi, I., Quici, S., Ledoux, I. & Zyss, J. (2000). Organometallics, 19, 1775-1788.]).

[Scheme 1]

Experimental

Crystal data
  • C30H20N2

  • Mr = 408.48

  • Monoclinic, P 21 /c

  • a = 12.6420 (3) Å

  • b = 14.8499 (4) Å

  • c = 11.8707 (3) Å

  • β = 104.006 (2)°

  • V = 2162.26 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • 35644 measured reflections

  • 4951 independent reflections

  • 3128 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.215

  • S = 1.33

  • 4951 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The aromatic conjugated organic compounds are investigated with great interest due to their potential applications in optical image processing, all-optical switching, organic light emitting diodes (OLEDs) and integrated optical devices (Nishihara et al., 1989; Mi et al., 2003; Roberto et al., 2000). As a part of our continuing studies of the synthesis and characterization of optical materials, we have prepared a new anthracene derivative containing two pyridine rings and investigated its crystal structure.

The molecule structure of (I) is shown in Fig. 1. Two pyridine rings makes the dihedral angle of 8.11 (10)°. The anthracen moiety is almost planar, and make the dihedral angles of 75.73 (7)° and 67.84 (2)° with two pyridine rings, respectively.

Related literature top

For applications of aromatic conjugated organic compounds, see: Nishihara et al. (1989); Mi et al. (2003); Roberto et al. (2000).

Experimental top

3-(Anthracen-9-yl)-1-phenylprop-2-en-1-one (1.54 g, 5.0 mmol), 2-acetylpyridine (1.82 g, 15 mmol) and NaOH (0.20 g, 5.0 mmol) were crashed together with a pestle and mortar for 3 h. The light yellow powder was added to a stirred solution of ammonium acetate (15.4 g, 200.0 mmol) in ethanol (200 ml). The reaction mixture was heated at reflux. Thin layer chromatography analysis tracking reaction, evaporated solvent, extracted with dichloromethane, and dried to afford the product. It was purified by flash column chromatography on silica. Elution with petroleum/ethyl acetate (10:1) gave a white solid (yield; 1.3 g, 65%). Single crystals of (I) were grown by slow evaporation of a dichloromethane/ethyl acetate (1:1) solution.

Refinement top

H atoms were positioned geometrically with C—H = 0.93 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

The aromatic conjugated organic compounds are investigated with great interest due to their potential applications in optical image processing, all-optical switching, organic light emitting diodes (OLEDs) and integrated optical devices (Nishihara et al., 1989; Mi et al., 2003; Roberto et al., 2000). As a part of our continuing studies of the synthesis and characterization of optical materials, we have prepared a new anthracene derivative containing two pyridine rings and investigated its crystal structure.

The molecule structure of (I) is shown in Fig. 1. Two pyridine rings makes the dihedral angle of 8.11 (10)°. The anthracen moiety is almost planar, and make the dihedral angles of 75.73 (7)° and 67.84 (2)° with two pyridine rings, respectively.

For applications of aromatic conjugated organic compounds, see: Nishihara et al. (1989); Mi et al. (2003); Roberto et al. (2000).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I).
4-(Anthracen-9-yl)-2-phenyl-6-(pyridin-2-yl)pyridine top
Crystal data top
C30H20N2F(000) = 856
Mr = 408.48Dx = 1.255 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5640 reflections
a = 12.6420 (3) Åθ = 2.2–22.7°
b = 14.8499 (4) ŵ = 0.07 mm1
c = 11.8707 (3) ÅT = 298 K
β = 104.006 (2)°Block, pale yellow
V = 2162.26 (9) Å30.2 × 0.2 × 0.2 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3128 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
φ and ω scansh = 1616
35644 measured reflectionsk = 1917
4951 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.215H-atom parameters constrained
S = 1.33 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
4951 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C30H20N2V = 2162.26 (9) Å3
Mr = 408.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6420 (3) ŵ = 0.07 mm1
b = 14.8499 (4) ÅT = 298 K
c = 11.8707 (3) Å0.2 × 0.2 × 0.2 mm
β = 104.006 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3128 reflections with I > 2σ(I)
35644 measured reflectionsRint = 0.038
4951 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.215H-atom parameters constrained
S = 1.33Δρmax = 0.20 e Å3
4951 reflectionsΔρmin = 0.20 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.56725 (12)0.37331 (10)0.11808 (12)0.0487 (4)
C180.64872 (14)0.37932 (12)0.21431 (15)0.0488 (5)
C200.47454 (15)0.29870 (13)0.05928 (15)0.0509 (5)
C100.82717 (15)0.18045 (13)0.18202 (16)0.0529 (5)
N20.71173 (15)0.45087 (13)0.40278 (15)0.0651 (5)
C160.65564 (15)0.24508 (14)0.05996 (16)0.0533 (5)
H160.65600.20010.00560.064*
C170.57066 (15)0.30714 (13)0.04214 (15)0.0481 (5)
C60.82357 (16)0.11106 (13)0.26209 (17)0.0551 (5)
C90.90771 (15)0.18139 (13)0.11945 (17)0.0547 (5)
C150.73990 (14)0.25080 (13)0.15945 (17)0.0522 (5)
C50.90315 (17)0.04023 (14)0.27789 (19)0.0619 (6)
C300.47702 (17)0.24029 (15)0.14691 (16)0.0588 (5)
H300.54070.20870.14640.071*
C250.63672 (15)0.44908 (12)0.29968 (16)0.0479 (4)
C80.98524 (16)0.10877 (15)0.13417 (18)0.0612 (6)
C190.73694 (15)0.31995 (13)0.23649 (17)0.0547 (5)
H190.79330.32690.30270.066*
C10.74384 (18)0.10684 (15)0.32911 (19)0.0646 (6)
H10.69080.15150.31990.078*
C290.69808 (19)0.51083 (16)0.48382 (18)0.0668 (6)
H290.74900.51170.55500.080*
C70.98102 (17)0.04122 (15)0.2135 (2)0.0675 (6)
H71.03220.00500.22390.081*
C130.99391 (19)0.24831 (18)0.0222 (2)0.0722 (6)
H130.99830.29480.07330.087*
C140.91720 (17)0.25100 (16)0.03936 (18)0.0634 (6)
H140.86920.29940.02940.076*
C260.54987 (18)0.50785 (16)0.2783 (2)0.0708 (6)
H260.49880.50660.20720.085*
C240.38033 (18)0.34689 (19)0.06388 (19)0.0791 (7)
H240.37810.38850.00600.095*
C40.8981 (2)0.02999 (16)0.3592 (2)0.0798 (7)
H40.94900.07640.36990.096*
C280.6140 (2)0.56951 (17)0.4665 (2)0.0732 (7)
H280.60750.60990.52430.088*
C20.7437 (2)0.03950 (17)0.4056 (2)0.0762 (7)
H20.69170.03910.44910.091*
C121.0679 (2)0.1750 (2)0.0096 (2)0.0813 (7)
H121.11960.17280.05360.098*
C111.06313 (19)0.10878 (18)0.0663 (2)0.0780 (7)
H111.11260.06150.07440.094*
C30.8214 (2)0.03005 (19)0.4202 (2)0.0858 (8)
H30.81970.07640.47240.103*
C270.5389 (2)0.56830 (18)0.3625 (2)0.0873 (8)
H270.48050.60820.34850.105*
C220.2928 (2)0.2736 (2)0.2388 (2)0.0911 (9)
H220.23140.26370.29890.109*
C210.3868 (2)0.22766 (18)0.23564 (19)0.0789 (7)
H210.38960.18720.29470.095*
C230.2893 (2)0.3338 (2)0.1538 (2)0.1001 (10)
H230.22580.36620.15610.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0500 (9)0.0484 (10)0.0466 (8)0.0047 (7)0.0096 (7)0.0033 (7)
C180.0479 (10)0.0460 (11)0.0515 (10)0.0006 (8)0.0099 (8)0.0042 (8)
C200.0507 (11)0.0549 (12)0.0459 (9)0.0089 (8)0.0092 (8)0.0081 (9)
C100.0471 (10)0.0473 (11)0.0576 (10)0.0069 (8)0.0006 (8)0.0051 (9)
N20.0652 (11)0.0657 (12)0.0604 (10)0.0019 (9)0.0072 (8)0.0023 (9)
C160.0526 (11)0.0504 (12)0.0537 (10)0.0086 (8)0.0069 (8)0.0021 (9)
C170.0492 (10)0.0491 (11)0.0455 (9)0.0037 (8)0.0105 (8)0.0064 (8)
C60.0487 (10)0.0481 (12)0.0603 (11)0.0038 (8)0.0028 (8)0.0032 (9)
C90.0477 (10)0.0511 (12)0.0578 (11)0.0050 (8)0.0021 (8)0.0067 (9)
C150.0483 (10)0.0449 (11)0.0603 (11)0.0059 (8)0.0069 (8)0.0028 (9)
C50.0532 (12)0.0502 (12)0.0728 (13)0.0069 (9)0.0032 (10)0.0010 (10)
C300.0584 (12)0.0651 (13)0.0499 (10)0.0119 (10)0.0073 (9)0.0045 (10)
C250.0503 (10)0.0412 (10)0.0519 (10)0.0012 (8)0.0116 (8)0.0042 (8)
C80.0476 (11)0.0617 (14)0.0687 (13)0.0084 (9)0.0031 (9)0.0096 (11)
C190.0495 (10)0.0497 (12)0.0583 (11)0.0041 (8)0.0001 (8)0.0009 (9)
C10.0580 (12)0.0584 (14)0.0726 (13)0.0030 (10)0.0064 (10)0.0001 (11)
C290.0793 (15)0.0669 (15)0.0522 (11)0.0039 (11)0.0117 (10)0.0084 (10)
C70.0564 (12)0.0540 (13)0.0845 (15)0.0153 (10)0.0024 (11)0.0009 (11)
C130.0628 (13)0.0835 (17)0.0662 (13)0.0037 (12)0.0080 (11)0.0032 (12)
C140.0548 (12)0.0640 (14)0.0648 (12)0.0050 (10)0.0017 (10)0.0022 (11)
C260.0701 (14)0.0677 (15)0.0673 (13)0.0178 (11)0.0026 (10)0.0121 (11)
C240.0676 (15)0.1003 (19)0.0601 (12)0.0295 (13)0.0026 (10)0.0151 (13)
C40.0747 (16)0.0581 (15)0.0971 (17)0.0133 (12)0.0022 (14)0.0174 (13)
C280.0850 (16)0.0680 (15)0.0690 (14)0.0044 (12)0.0233 (12)0.0180 (12)
C20.0725 (15)0.0716 (16)0.0825 (15)0.0037 (12)0.0151 (12)0.0121 (13)
C120.0626 (14)0.099 (2)0.0828 (16)0.0047 (14)0.0188 (12)0.0051 (15)
C110.0585 (13)0.0804 (17)0.0913 (17)0.0164 (12)0.0109 (12)0.0061 (15)
C30.0856 (18)0.0694 (17)0.0977 (18)0.0010 (13)0.0133 (15)0.0244 (14)
C270.0881 (18)0.0794 (18)0.0926 (18)0.0285 (14)0.0182 (14)0.0137 (15)
C220.0741 (17)0.128 (2)0.0582 (13)0.0138 (16)0.0095 (12)0.0087 (15)
C210.0836 (17)0.0906 (18)0.0563 (12)0.0096 (14)0.0047 (11)0.0143 (12)
C230.0695 (16)0.150 (3)0.0691 (15)0.0432 (17)0.0065 (12)0.0183 (17)
Geometric parameters (Å, º) top
N1—C171.341 (2)C1—H10.9300
N1—C181.343 (2)C29—C281.351 (3)
C18—C191.396 (3)C29—H290.9300
C18—C251.482 (3)C7—H70.9300
C20—C301.361 (3)C13—C141.349 (3)
C20—C241.379 (3)C13—C121.420 (4)
C20—C171.494 (2)C13—H130.9300
C10—C91.398 (3)C14—H140.9300
C10—C61.410 (3)C26—C271.375 (3)
C10—C151.496 (3)C26—H260.9300
N2—C291.352 (3)C24—C231.381 (3)
N2—C251.355 (2)C24—H240.9300
C16—C151.388 (2)C4—C31.344 (4)
C16—C171.392 (3)C4—H40.9300
C16—H160.9300C28—C271.363 (3)
C6—C11.429 (3)C28—H280.9300
C6—C51.436 (3)C2—C31.407 (4)
C9—C141.429 (3)C2—H20.9300
C9—C81.439 (3)C12—C111.345 (4)
C15—C191.382 (3)C12—H120.9300
C5—C71.385 (3)C11—H110.9300
C5—C41.433 (3)C3—H30.9300
C30—C211.365 (3)C27—H270.9300
C30—H300.9300C22—C231.357 (4)
C25—C261.377 (3)C22—C211.363 (4)
C8—C71.386 (3)C22—H220.9300
C8—C111.415 (3)C21—H210.9300
C19—H190.9300C23—H230.9300
C1—C21.351 (3)
C17—N1—C18118.52 (15)N2—C29—H29118.4
N1—C18—C19122.12 (17)C5—C7—C8122.16 (19)
N1—C18—C25116.33 (16)C5—C7—H7118.9
C19—C18—C25121.45 (16)C8—C7—H7118.9
C30—C20—C24118.68 (18)C14—C13—C12120.5 (2)
C30—C20—C17120.31 (17)C14—C13—H13119.8
C24—C20—C17120.95 (18)C12—C13—H13119.8
C9—C10—C6120.79 (17)C13—C14—C9121.8 (2)
C9—C10—C15119.89 (18)C13—C14—H14119.1
C6—C10—C15119.23 (19)C9—C14—H14119.1
C29—N2—C25118.27 (18)C27—C26—C25119.7 (2)
C15—C16—C17119.58 (18)C27—C26—H26120.1
C15—C16—H16120.2C25—C26—H26120.1
C17—C16—H16120.2C20—C24—C23120.5 (2)
N1—C17—C16122.14 (16)C20—C24—H24119.7
N1—C17—C20116.79 (16)C23—C24—H24119.7
C16—C17—C20120.93 (17)C3—C4—C5121.3 (2)
C10—C6—C1123.35 (18)C3—C4—H4119.4
C10—C6—C5119.2 (2)C5—C4—H4119.4
C1—C6—C5117.49 (19)C29—C28—C27118.6 (2)
C10—C9—C14123.36 (18)C29—C28—H28120.7
C10—C9—C8119.35 (19)C27—C28—H28120.7
C14—C9—C8117.3 (2)C1—C2—C3120.8 (3)
C19—C15—C16118.06 (16)C1—C2—H2119.6
C19—C15—C10122.51 (16)C3—C2—H2119.6
C16—C15—C10119.37 (17)C11—C12—C13119.7 (2)
C7—C5—C4122.2 (2)C11—C12—H12120.1
C7—C5—C6119.3 (2)C13—C12—H12120.1
C4—C5—C6118.5 (2)C12—C11—C8122.1 (2)
C20—C30—C21120.5 (2)C12—C11—H11118.9
C20—C30—H30119.7C8—C11—H11118.9
C21—C30—H30119.7C4—C3—C2120.4 (2)
N2—C25—C26120.42 (18)C4—C3—H3119.8
N2—C25—C18117.79 (16)C2—C3—H3119.8
C26—C25—C18121.73 (17)C28—C27—C26119.7 (2)
C7—C8—C11122.3 (2)C28—C27—H27120.1
C7—C8—C9119.2 (2)C26—C27—H27120.1
C11—C8—C9118.6 (2)C23—C22—C21119.6 (2)
C15—C19—C18119.54 (16)C23—C22—H22120.2
C15—C19—H19120.2C21—C22—H22120.2
C18—C19—H19120.2C22—C21—C30120.8 (2)
C2—C1—C6121.5 (2)C22—C21—H21119.6
C2—C1—H1119.3C30—C21—H21119.6
C6—C1—H1119.3C22—C23—C24119.8 (2)
C28—C29—N2123.2 (2)C22—C23—H23120.1
C28—C29—H29118.4C24—C23—H23120.1

Experimental details

Crystal data
Chemical formulaC30H20N2
Mr408.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.6420 (3), 14.8499 (4), 11.8707 (3)
β (°) 104.006 (2)
V3)2162.26 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
35644, 4951, 3128
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.215, 1.33
No. of reflections4951
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The work was supported by the National Natural Science Foundation of China (50873001, 21071001) and the Education Committee of Anhui Province, China (KJ2011Z338).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMi, B.-X., Wang, P.-F., Liu, M.-W., Kwong, H.-L., Wong, N.-B., Lee, C.-S. & Lee, S.-T. (2003). Chem. Mater. 15, 3148–3151.  Web of Science CrossRef CAS Google Scholar
First citationNishihara, H., Haruna, M. & Suhara, T. (1989). In Optical Intergrated Circuits. New York: McGraw–Hill.  Google Scholar
First citationRoberto, D., Ugo, R., Bruni, S., Cariati, E., Cariati, F., Fantucci, P., Invernizzi, I., Quici, S., Ledoux, I. & Zyss, J. (2000). Organometallics, 19, 1775–1788.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds