organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1229-o1230

(3β,18β,20β)-N-Eth­­oxy­carbonyl­methyl-3-nitrato-11-oxoolean-12-ene-29-carboxamide methanol monosolvate

aInstitute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria, and bInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: kurt.mereiter@tuwien.ac.at

(Received 16 March 2012; accepted 22 March 2012; online 31 March 2012)

The title compound, C34H52N2O7·CH4O, is the methanol solvate of a difunctionalized derivative of the therapeutic agent 18β-glycyrrhetinic acid, a penta­cyclic triterpene. The five six-membered rings of the glycyrrhetinic acid moiety show normal geometries, with four rings in chair conformations and the unsaturated ring in a half-chair conformation. This moiety is substituted by a nitrate ester group and an O-ethyl­glycine group. In the crystal, the nonsolvent mol­ecules are packed parallel to (010) in a herringbone fashion with the nitrato, ethyl­glycine and methanol-O atom being proximate. The methanol solvent mol­ecule is anchored via a donated O—H⋯Oac­yl and an accepted N—H⋯O hydrogen bond, giving rise to infinite zigzag chains of hydrogen bonds parallel to [100]. Two weak intermolecular C—H⋯O interactions to the methanol and to an acyl oxygen establish links along [100] and [010], respectively.

Related literature

For overviews on the therapeutic aspects of glycyrrhetinic acid, see: Baran et al. (1974[Baran, J. S., Langford, D. D., Liang, C. & Pitzele, B. S. (1974). J. Med. Chem. 17, 184-191.]); Asl & Hosseinzadeh (2008[Asl, M. N. & Hosseinzadeh, H. (2008). Phytother. Res. 22, 709-724.]). For the synthesis of new derivatives of 18β-glycyrrhetinic acid and their effect on 11β-hy­droxy­steroid dehydrogenase, see: Su et al. (2004[Su, X., Lawrence, H., Ganeshapillai, D., Cruttenden, A., Purohit, A., Reed, M. J., Vicker, N. & Potter, B. V. L. (2004). Bioorg. Med. Chem. 12, 4439—4457.]); Beseda et al. (2010[Beseda, I., Czollner, L., Shah, P. S., Khunt, R., Gaware, R., Kosma, P., Stanetty, C., del Ruiz-Ruiz, M. C., Amer, H., Mereiter, K., Da Cunha, T., Odermatt, A., Classen-Houben, D. & Jordis, U. (2010). Bioorg. Med. Chem. 18, 433-454.]); Amer et al. (2010[Amer, H., Mereiter, K., Stanetty, C., Hofinger, A., Czollner, L., Beseda, I., Jordis, U., Kueenburg, B., Classen-Houben, D. & Kosma, P. (2010). Tetrahedron, 66, 4390-4402.]). For the crystal structure of 18β-glycyrrhetinic acid, see: Campsteyn et al. (1977[Campsteyn, H., Dupont, L., Lamotte, J., Dideberg, O. & Vermeire, M. (1977). Acta Cryst. B33, 3443-3448.]); Alvarez-Larena et al. (2007[Alvarez-Larena, A., Brianso, J. L., Capparelli, M. V., Farran, J. & Piniella, J. F. (2007). Afinidad, 64, 278-283.]). For the crystal structures of derivatives of 18β-glycyrrhetinic acid, see: Beseda et al. (2010[Beseda, I., Czollner, L., Shah, P. S., Khunt, R., Gaware, R., Kosma, P., Stanetty, C., del Ruiz-Ruiz, M. C., Amer, H., Mereiter, K., Da Cunha, T., Odermatt, A., Classen-Houben, D. & Jordis, U. (2010). Bioorg. Med. Chem. 18, 433-454.]); Amer et al. (2010[Amer, H., Mereiter, K., Stanetty, C., Hofinger, A., Czollner, L., Beseda, I., Jordis, U., Kueenburg, B., Classen-Houben, D. & Kosma, P. (2010). Tetrahedron, 66, 4390-4402.]); Czollner et al. (2011[Czollner, L., Jordis, U. & Mereiter, K. (2011). Acta Cryst. E67, o3052-o3053.]).

[Scheme 1]

Experimental

Crystal data
  • C34H52N2O7·CH4O

  • Mr = 632.82

  • Orthorhombic, P 21 21 21

  • a = 10.1598 (8) Å

  • b = 11.1275 (9) Å

  • c = 30.387 (2) Å

  • V = 3435.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.55 × 0.53 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.88, Tmax = 1.00

  • 49017 measured reflections

  • 5565 independent reflections

  • 5044 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.122

  • S = 1.10

  • 5565 reflections

  • 416 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O8i 0.88 2.04 2.806 (3) 144
O8—H8⋯O5 0.84 1.89 2.728 (2) 177
C1—H1A⋯O4 0.99 2.34 2.968 (2) 120
C19—H19B⋯O8i 0.99 2.40 3.359 (3) 163
C25—H25A⋯O4 0.98 2.41 3.058 (3) 123
C34—H34B⋯O5ii 0.98 2.58 3.515 (4) 160
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT, SADABS and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), was synthesized within a research program (Beseda et al., 2010; Amer et al., 2010) designed to create new therapeutically useful derivatives of 18β-glycyrrhetinic acid (GA), an agent for the treatment of metabolic deseases (Baran et al., 1974; Asl & Hosseinzadeh, 2008). For new therapeutic applications, GA is typically modified on ring A (C1 - C5 and C10), on ring C (C8 - C15), and/or on the terminal carboxyl group of C29 (Su et al., 2004; Beseda et al., 2010; Czollner et al., 2011). In the title compound these modifications comprised the introduction of an O-ethylglycine group N-bonded to the COOH group of GA, and, as an uncommon feature, a nitrate ester group replacing the 3-hydroxy group of GA. The compound was then crystallized from methanol to give the stoichiometric crystalline methanol solvate (I). A view of the asymmetric unit is shown in Fig. 1. The GA fragment (C1 through C30, O1, O4, O5) features usual bond lengths, bond angles, and conformation (Campsteyn et al., 1977; Alvarez-Larena et al., 2007; Beseda et al., 2010; Czollner et al., 2011). There are four six-membered saturated carbocycles (A, B, D, and E) in chair and the unsaturated ring C in half-chair conformation (Fig. 2). The carboxamide group O5C29—N2 is endo-oriented with respect to the amide nitrogen N2 (C19—C20—C29—N2 = -28.1 (3)°), in contrast to a propargyl amide derivative of GA, where it is exo-oriented (Czollner et al., 2011; corresponding torsion angle 162.3°). In the crystal lattice of (I) the non-solvent molecules are arranged in undulating layers parallel to (010) and adopt a typical herring-bone pattern within these layers (Fig. 3). These layers repeat by 21 axes parallel to [010]. The oxygen and nitrogen bearing ends of the GA molecules and the methanol solvent molecules are accumulated in reagions near z 0, 1/2, and 1, and are crosslinked by O—H···O, N—H···O and C—H···O interactions (Table 1). The most prominent of them are the hydrogen bonds O8—H8···O5 and N2—H2n···O8i, which are donated and accepted by the methanol molecule. The methanol molecule and the carboxamide moiety O5C29—N2 thereby build up an infinite zigzag hydrogen bond chain parallel to [100], as shown in Fig. 3. The nitrato group (N1, O1, O2, O3) is stereochemically inactive by showing no C,N,O—H···O interactions within the usual geometrical limits (Table 1; cut-off values are H···O 2.60 Å, X—H···O 120°).

Related literature top

For overviews on the therapeutic aspects of glycyrrhetinic acid, see: Baran et al. (1974); Asl & Hosseinzadeh (2008). For the synthesis of new derivatives of 18β-glycyrrhetinic acid and their effect on 11β-hydroxysteroid dehydrogenase, see: Su et al. (2004); Beseda et al. (2010); Amer et al. (2010). For the crystal structure of 18β-glycyrrhetinic acid, see: Campsteyn et al. (1977); Alvarez-Larena et al. (2007). For the crystal structures of derivatives of 18β-glycyrrhetinic acid, see: Beseda et al. (2010); Amer et al. (2010); Czollner et al. (2011).

Experimental top

To a stirred solution of acetic anhydride (5 ml) and concentrated nitric acid (2 ml) was added N-(ethoxycarbonyl-methyl)-3-hydroxy-11-oxo-olean-12-ene-29-carboxamide (555 mg, 1.0 mmol; compound 26f of Beseda et al., 2010) at 273 K. After 30 min the reaction mixture was dropped to 200 ml of ice water. The solid product obtained was filtered, dried and recrystallized from 3 ml of dichloromethane and 5 ml of n-hexane to yield 400 mg (66.6%) of the desired product as colourless powder. An analytical sample of (I) was then obtained by recrystallization from methanol.

Refinement top

All H atoms were placed in calculated positions and thereafter treated as riding. A torsional parameter was refined for each methyl group. Uiso(H) = 1.2Ueq(Cnon-methyl) and Uiso(H) = 1.5Ueq(Cmethyl) were used. Because of insignificant anomalous dispersion effects, the 4435 Friedel pairs were merged prior to the final refinement. The absolute structure of the parent compound 18β-glycyrrhetinic acid is known.

Structure description top

Kitagawa, I. (2002). Pure Appl. Chem. 74, 1189–1198.

Claßen-Houben, D., Schuster, D., Da Cunha, T., Odermatt, A., Wolber, G., Jordis, U. & Kueenburg, B. (2009). J. Steroid Biochem. Mol. Biol., 113(3-5), 248–252.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT, SADABS and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with displacement ellipsoids for the non-H atoms drawn at the 50% probability level. Red capitals are the ring designations.
[Figure 2] Fig. 2. The molecular structure of (I) in a side-view showing the conformation of the rings more clearly. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A section of the structure of (I), in a view down the b axis, showing the methanol–acyl O—H···O and amide–methanol N—H···O hydrogen bonds, as dashed red lines, forming a zigzag chain along [100].
(3β,18β,20β)-N-Ethoxycarbonylmethyl-3-nitrato-11-oxoolean-12-ene-29- carboxamide methanol monosolvate top
Crystal data top
C34H52N2O7·CH4OF(000) = 1376
Mr = 632.82Dx = 1.224 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9832 reflections
a = 10.1598 (8) Åθ = 2.4–30.4°
b = 11.1275 (9) ŵ = 0.09 mm1
c = 30.387 (2) ÅT = 100 K
V = 3435.3 (5) Å3Plate, colourless
Z = 40.55 × 0.53 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5565 independent reflections
Radiation source: fine-focus sealed tube5044 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 30.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.88, Tmax = 1.00k = 1515
49017 measured reflectionsl = 4242
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0659P)2 + 1.0649P]
where P = (Fo2 + 2Fc2)/3
5565 reflections(Δ/σ)max < 0.001
416 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C34H52N2O7·CH4OV = 3435.3 (5) Å3
Mr = 632.82Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.1598 (8) ŵ = 0.09 mm1
b = 11.1275 (9) ÅT = 100 K
c = 30.387 (2) Å0.55 × 0.53 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5565 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5044 reflections with I > 2σ(I)
Tmin = 0.88, Tmax = 1.00Rint = 0.036
49017 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.10Δρmax = 0.68 e Å3
5565 reflectionsΔρmin = 0.38 e Å3
416 parameters
Special details top

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.24049 (15)0.35130 (14)0.11927 (4)0.0235 (3)
O21.36996 (17)0.22076 (15)0.15496 (6)0.0312 (4)
O31.43774 (19)0.3126 (2)0.09603 (6)0.0416 (5)
O40.97494 (15)0.54091 (15)0.30766 (5)0.0278 (3)
O50.43899 (16)0.36705 (16)0.49446 (6)0.0332 (4)
O60.7628 (3)0.6180 (2)0.45042 (6)0.0531 (6)
O70.7763 (2)0.66683 (18)0.52248 (6)0.0458 (5)
N11.35858 (19)0.28882 (17)0.12425 (6)0.0266 (4)
N20.64623 (18)0.40002 (17)0.47119 (6)0.0259 (4)
H2N0.70790.38300.45180.031*
C11.09373 (18)0.41293 (17)0.23173 (6)0.0171 (3)
H1A1.12450.46670.25560.021*
H1B1.09030.33020.24370.021*
C21.19274 (18)0.41682 (17)0.19389 (6)0.0181 (3)
H2A1.20260.50060.18350.022*
H2B1.27960.38880.20450.022*
C31.14771 (19)0.33810 (17)0.15614 (6)0.0179 (3)
H31.14640.25230.16590.021*
C41.01167 (19)0.37181 (18)0.13737 (6)0.0192 (3)
C50.91408 (18)0.37368 (16)0.17714 (6)0.0162 (3)
H50.91310.28910.18830.019*
C60.77159 (19)0.39889 (18)0.16342 (6)0.0208 (4)
H6A0.76040.48580.15750.025*
H6B0.75100.35440.13600.025*
C70.67731 (19)0.35989 (18)0.20001 (6)0.0210 (4)
H7A0.68260.27150.20330.025*
H7B0.58630.38000.19100.025*
C80.70534 (17)0.41850 (16)0.24500 (6)0.0152 (3)
C90.85615 (17)0.41574 (16)0.25560 (6)0.0145 (3)
H90.87590.32940.26180.017*
C100.95365 (18)0.45125 (15)0.21774 (5)0.0146 (3)
C110.87786 (18)0.47971 (17)0.29951 (6)0.0180 (3)
C120.77583 (18)0.46438 (17)0.33337 (6)0.0178 (3)
H120.79230.49720.36170.021*
C130.66101 (17)0.40716 (16)0.32705 (6)0.0160 (3)
C140.63076 (18)0.34767 (16)0.28289 (6)0.0159 (3)
C150.48044 (18)0.34403 (18)0.27359 (6)0.0197 (4)
H15A0.45300.42290.26160.024*
H15B0.46310.28280.25070.024*
C160.39605 (19)0.31545 (18)0.31388 (7)0.0217 (4)
H16A0.41510.23240.32370.026*
H16B0.30200.31920.30550.026*
C170.42072 (18)0.40218 (18)0.35212 (7)0.0200 (4)
C180.56722 (18)0.39382 (17)0.36569 (6)0.0178 (3)
H180.58510.46180.38630.021*
C190.5989 (2)0.27590 (18)0.39060 (6)0.0212 (4)
H19A0.58890.20750.37000.025*
H19B0.69210.27810.40010.025*
C200.5117 (2)0.25336 (19)0.43106 (7)0.0242 (4)
C210.3676 (2)0.2538 (2)0.41571 (8)0.0278 (4)
H21A0.35250.18530.39560.033*
H21B0.30900.24370.44150.033*
C220.3332 (2)0.3711 (2)0.39203 (7)0.0262 (4)
H22A0.33900.43780.41350.031*
H22B0.24070.36640.38200.031*
C230.9709 (2)0.2695 (2)0.10587 (7)0.0273 (4)
H23A1.04420.25080.08610.041*
H23B0.89440.29490.08850.041*
H23C0.94810.19790.12300.041*
C241.0178 (2)0.4897 (2)0.11115 (7)0.0269 (4)
H24A1.06410.55080.12850.040*
H24B0.92820.51740.10480.040*
H24C1.06490.47610.08350.040*
C250.9541 (2)0.58783 (17)0.20873 (6)0.0210 (4)
H25A0.94100.63130.23640.032*
H25B0.88290.60780.18820.032*
H25C1.03880.61110.19580.032*
C260.6570 (2)0.54965 (17)0.24300 (7)0.0209 (4)
H26A0.69960.59090.21830.031*
H26B0.67930.59060.27060.031*
H26C0.56140.55080.23890.031*
C270.6788 (2)0.21528 (16)0.28652 (7)0.0207 (4)
H27A0.76260.21290.30250.031*
H27B0.69100.18190.25690.031*
H27C0.61310.16760.30240.031*
C280.3869 (2)0.53116 (18)0.33834 (7)0.0234 (4)
H28A0.39800.58510.36360.035*
H28B0.29550.53440.32810.035*
H28C0.44570.55640.31450.035*
C290.5290 (2)0.34592 (19)0.46787 (7)0.0241 (4)
C300.5474 (2)0.1303 (2)0.45119 (8)0.0312 (5)
H30A0.48980.11390.47630.047*
H30B0.63930.13140.46100.047*
H30C0.53590.06730.42900.047*
C310.6742 (2)0.4853 (2)0.50557 (7)0.0288 (4)
H31A0.73110.44680.52790.035*
H31B0.59080.50860.52010.035*
C320.7418 (3)0.5969 (2)0.48836 (8)0.0343 (5)
C330.8405 (4)0.7825 (3)0.51337 (11)0.0540 (8)
H33A0.89600.77560.48670.065*
H33B0.89760.80520.53840.065*
C340.7380 (4)0.8759 (3)0.50655 (12)0.0644 (10)
H34A0.68150.85270.48180.097*
H34B0.78030.95300.50010.097*
H34C0.68460.88350.53330.097*
O80.38763 (16)0.1963 (2)0.55652 (6)0.0416 (5)
H80.40160.25060.53790.062*
C350.5070 (2)0.1671 (3)0.57816 (8)0.0371 (5)
H35A0.53360.23420.59700.056*
H35B0.57570.15180.55620.056*
H35C0.49410.09500.59620.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0232 (7)0.0269 (7)0.0203 (6)0.0070 (6)0.0020 (5)0.0015 (5)
O20.0276 (8)0.0276 (7)0.0384 (8)0.0093 (7)0.0014 (7)0.0064 (7)
O30.0313 (9)0.0535 (12)0.0399 (9)0.0083 (9)0.0150 (8)0.0041 (9)
O40.0220 (7)0.0355 (8)0.0259 (7)0.0126 (7)0.0030 (6)0.0124 (6)
O50.0256 (7)0.0384 (9)0.0356 (8)0.0058 (7)0.0138 (7)0.0080 (7)
O60.0758 (15)0.0490 (11)0.0345 (9)0.0191 (12)0.0162 (10)0.0097 (8)
O70.0582 (13)0.0365 (9)0.0427 (10)0.0103 (9)0.0196 (9)0.0067 (8)
N10.0239 (8)0.0255 (8)0.0305 (9)0.0041 (7)0.0031 (7)0.0032 (7)
N20.0236 (8)0.0304 (9)0.0238 (8)0.0012 (7)0.0078 (7)0.0030 (7)
C10.0158 (7)0.0190 (8)0.0166 (7)0.0007 (7)0.0027 (6)0.0005 (6)
C20.0171 (8)0.0192 (8)0.0181 (7)0.0003 (7)0.0011 (6)0.0013 (6)
C30.0190 (8)0.0178 (7)0.0169 (7)0.0040 (7)0.0012 (7)0.0005 (6)
C40.0205 (8)0.0216 (8)0.0156 (7)0.0025 (7)0.0044 (7)0.0018 (6)
C50.0180 (8)0.0153 (7)0.0153 (7)0.0008 (6)0.0040 (6)0.0027 (6)
C60.0185 (8)0.0246 (9)0.0192 (8)0.0032 (7)0.0056 (7)0.0002 (7)
C70.0174 (8)0.0230 (9)0.0226 (8)0.0012 (7)0.0072 (7)0.0036 (7)
C80.0131 (7)0.0136 (7)0.0188 (7)0.0003 (6)0.0042 (6)0.0010 (6)
C90.0135 (7)0.0136 (7)0.0164 (7)0.0016 (6)0.0027 (6)0.0010 (6)
C100.0163 (7)0.0121 (7)0.0153 (7)0.0001 (6)0.0026 (6)0.0003 (6)
C110.0161 (8)0.0189 (8)0.0192 (8)0.0019 (7)0.0014 (6)0.0027 (6)
C120.0161 (8)0.0187 (8)0.0184 (7)0.0010 (7)0.0017 (6)0.0007 (6)
C130.0132 (7)0.0136 (7)0.0213 (8)0.0013 (6)0.0020 (6)0.0025 (6)
C140.0132 (7)0.0123 (7)0.0221 (8)0.0003 (6)0.0034 (6)0.0003 (6)
C150.0138 (8)0.0183 (8)0.0270 (9)0.0022 (7)0.0068 (7)0.0003 (7)
C160.0136 (8)0.0190 (8)0.0324 (10)0.0016 (7)0.0039 (7)0.0018 (7)
C170.0128 (7)0.0185 (8)0.0286 (9)0.0001 (6)0.0002 (7)0.0041 (7)
C180.0127 (7)0.0181 (8)0.0224 (8)0.0001 (6)0.0007 (6)0.0029 (7)
C190.0171 (8)0.0215 (8)0.0251 (9)0.0029 (7)0.0010 (7)0.0056 (7)
C200.0204 (9)0.0222 (9)0.0300 (10)0.0016 (8)0.0051 (8)0.0098 (8)
C210.0189 (9)0.0272 (10)0.0374 (11)0.0037 (8)0.0045 (8)0.0112 (9)
C220.0146 (8)0.0294 (10)0.0346 (10)0.0004 (8)0.0036 (8)0.0086 (9)
C230.0278 (10)0.0332 (11)0.0209 (8)0.0019 (9)0.0054 (8)0.0098 (8)
C240.0278 (10)0.0320 (10)0.0208 (9)0.0063 (9)0.0019 (8)0.0072 (8)
C250.0241 (9)0.0130 (7)0.0260 (9)0.0010 (7)0.0022 (7)0.0001 (7)
C260.0195 (8)0.0165 (8)0.0268 (9)0.0050 (7)0.0015 (7)0.0041 (7)
C270.0185 (8)0.0131 (7)0.0306 (9)0.0001 (7)0.0015 (7)0.0015 (7)
C280.0178 (8)0.0200 (8)0.0323 (10)0.0023 (7)0.0011 (8)0.0037 (7)
C290.0208 (9)0.0240 (9)0.0273 (9)0.0051 (8)0.0054 (8)0.0114 (8)
C300.0324 (11)0.0251 (10)0.0362 (11)0.0044 (9)0.0045 (10)0.0124 (9)
C310.0334 (11)0.0295 (10)0.0233 (9)0.0013 (9)0.0068 (9)0.0064 (8)
C320.0373 (12)0.0313 (11)0.0343 (11)0.0010 (10)0.0121 (10)0.0040 (9)
C330.0566 (19)0.0508 (17)0.0546 (17)0.0206 (16)0.0115 (15)0.0036 (14)
C340.079 (2)0.0497 (18)0.064 (2)0.0230 (19)0.014 (2)0.0164 (16)
O80.0170 (7)0.0702 (14)0.0375 (9)0.0064 (8)0.0026 (7)0.0239 (9)
C350.0225 (10)0.0544 (15)0.0344 (11)0.0013 (11)0.0057 (9)0.0076 (11)
Geometric parameters (Å, º) top
O1—N11.395 (2)C16—H16B0.9900
O1—C31.472 (2)C17—C281.534 (3)
O2—N11.207 (2)C17—C221.543 (3)
O3—N11.205 (3)C17—C181.547 (3)
O4—C111.224 (2)C18—C191.549 (3)
O5—C291.243 (3)C18—H181.0000
O6—C321.196 (3)C19—C201.536 (3)
O7—C321.343 (3)C19—H19A0.9900
O7—C331.469 (4)C19—H19B0.9900
N2—C291.338 (3)C20—C291.531 (3)
N2—C311.440 (3)C20—C211.537 (3)
N2—H2N0.8800C20—C301.543 (3)
C1—C21.528 (3)C21—C221.531 (3)
C1—C101.545 (3)C21—H21A0.9900
C1—H1A0.9900C21—H21B0.9900
C1—H1B0.9900C22—H22A0.9900
C2—C31.514 (3)C22—H22B0.9900
C2—H2A0.9900C23—H23A0.9800
C2—H2B0.9900C23—H23B0.9800
C3—C41.542 (3)C23—H23C0.9800
C3—H31.0000C24—H24A0.9800
C4—C241.536 (3)C24—H24B0.9800
C4—C231.544 (3)C24—H24C0.9800
C4—C51.563 (3)C25—H25A0.9800
C5—C61.532 (3)C25—H25B0.9800
C5—C101.559 (2)C25—H25C0.9800
C5—H51.0000C26—H26A0.9800
C6—C71.530 (3)C26—H26B0.9800
C6—H6A0.9900C26—H26C0.9800
C6—H6B0.9900C27—H27A0.9800
C7—C81.541 (2)C27—H27B0.9800
C7—H7A0.9900C27—H27C0.9800
C7—H7B0.9900C28—H28A0.9800
C8—C261.541 (3)C28—H28B0.9800
C8—C91.566 (2)C28—H28C0.9800
C8—C141.588 (3)C30—H30A0.9800
C9—C111.528 (2)C30—H30B0.9800
C9—C101.569 (2)C30—H30C0.9800
C9—H91.0000C31—C321.513 (3)
C10—C251.544 (2)C31—H31A0.9900
C11—C121.470 (3)C31—H31B0.9900
C12—C131.343 (2)C33—C341.486 (6)
C12—H120.9500C33—H33A0.9900
C13—C181.519 (3)C33—H33B0.9900
C13—C141.527 (3)C34—H34A0.9800
C14—C151.554 (3)C34—H34B0.9800
C14—C271.556 (2)C34—H34C0.9800
C15—C161.528 (3)O8—C351.417 (3)
C15—H15A0.9900O8—H80.8400
C15—H15B0.9900C35—H35A0.9800
C16—C171.531 (3)C35—H35B0.9800
C16—H16A0.9900C35—H35C0.9800
N1—O1—C3114.75 (14)C13—C18—C19109.26 (15)
C32—O7—C33118.6 (2)C17—C18—C19112.42 (15)
O3—N1—O2128.6 (2)C13—C18—H18107.3
O3—N1—O1112.79 (18)C17—C18—H18107.3
O2—N1—O1118.61 (17)C19—C18—H18107.3
C29—N2—C31121.79 (18)C20—C19—C18114.16 (16)
C29—N2—H2N119.1C20—C19—H19A108.7
C31—N2—H2N119.1C18—C19—H19A108.7
C2—C1—C10113.04 (14)C20—C19—H19B108.7
C2—C1—H1A109.0C18—C19—H19B108.7
C10—C1—H1A109.0H19A—C19—H19B107.6
C2—C1—H1B109.0C29—C20—C19114.11 (17)
C10—C1—H1B109.0C29—C20—C21109.22 (18)
H1A—C1—H1B107.8C19—C20—C21107.84 (17)
C3—C2—C1110.78 (15)C29—C20—C30106.28 (17)
C3—C2—H2A109.5C19—C20—C30109.05 (18)
C1—C2—H2A109.5C21—C20—C30110.33 (18)
C3—C2—H2B109.5C22—C21—C20111.27 (17)
C1—C2—H2B109.5C22—C21—H21A109.4
H2A—C2—H2B108.1C20—C21—H21A109.4
O1—C3—C2108.99 (15)C22—C21—H21B109.4
O1—C3—C4105.56 (14)C20—C21—H21B109.4
C2—C3—C4114.24 (15)H21A—C21—H21B108.0
O1—C3—H3109.3C21—C22—C17115.40 (18)
C2—C3—H3109.3C21—C22—H22A108.4
C4—C3—H3109.3C17—C22—H22A108.4
C24—C4—C3111.32 (17)C21—C22—H22B108.4
C24—C4—C23108.59 (16)C17—C22—H22B108.4
C3—C4—C23106.91 (16)H22A—C22—H22B107.5
C24—C4—C5114.53 (16)C4—C23—H23A109.5
C3—C4—C5106.60 (14)C4—C23—H23B109.5
C23—C4—C5108.59 (16)H23A—C23—H23B109.5
C6—C5—C10110.96 (15)C4—C23—H23C109.5
C6—C5—C4113.04 (14)H23A—C23—H23C109.5
C10—C5—C4117.11 (15)H23B—C23—H23C109.5
C6—C5—H5104.8C4—C24—H24A109.5
C10—C5—H5104.8C4—C24—H24B109.5
C4—C5—H5104.8H24A—C24—H24B109.5
C7—C6—C5109.99 (15)C4—C24—H24C109.5
C7—C6—H6A109.7H24A—C24—H24C109.5
C5—C6—H6A109.7H24B—C24—H24C109.5
C7—C6—H6B109.7C10—C25—H25A109.5
C5—C6—H6B109.7C10—C25—H25B109.5
H6A—C6—H6B108.2H25A—C25—H25B109.5
C6—C7—C8114.13 (16)C10—C25—H25C109.5
C6—C7—H7A108.7H25A—C25—H25C109.5
C8—C7—H7A108.7H25B—C25—H25C109.5
C6—C7—H7B108.7C8—C26—H26A109.5
C8—C7—H7B108.7C8—C26—H26B109.5
H7A—C7—H7B107.6H26A—C26—H26B109.5
C26—C8—C7107.86 (15)C8—C26—H26C109.5
C26—C8—C9109.78 (15)H26A—C26—H26C109.5
C7—C8—C9110.79 (15)H26B—C26—H26C109.5
C26—C8—C14110.28 (14)C14—C27—H27A109.5
C7—C8—C14110.18 (14)C14—C27—H27B109.5
C9—C8—C14107.95 (14)H27A—C27—H27B109.5
C11—C9—C8108.15 (14)C14—C27—H27C109.5
C11—C9—C10115.58 (14)H27A—C27—H27C109.5
C8—C9—C10117.53 (14)H27B—C27—H27C109.5
C11—C9—H9104.7C17—C28—H28A109.5
C8—C9—H9104.7C17—C28—H28B109.5
C10—C9—H9104.7H28A—C28—H28B109.5
C25—C10—C1108.51 (15)C17—C28—H28C109.5
C25—C10—C5113.92 (14)H28A—C28—H28C109.5
C1—C10—C5107.61 (14)H28B—C28—H28C109.5
C25—C10—C9112.32 (15)O5—C29—N2121.4 (2)
C1—C10—C9108.08 (13)O5—C29—C20121.2 (2)
C5—C10—C9106.15 (14)N2—C29—C20117.40 (18)
O4—C11—C12119.42 (17)C20—C30—H30A109.5
O4—C11—C9123.50 (17)C20—C30—H30B109.5
C12—C11—C9117.08 (15)H30A—C30—H30B109.5
C13—C12—C11124.57 (17)C20—C30—H30C109.5
C13—C12—H12117.7H30A—C30—H30C109.5
C11—C12—H12117.7H30B—C30—H30C109.5
C12—C13—C18118.73 (16)N2—C31—C32112.32 (18)
C12—C13—C14120.39 (16)N2—C31—H31A109.1
C18—C13—C14120.69 (15)C32—C31—H31A109.1
C13—C14—C15111.65 (15)N2—C31—H31B109.1
C13—C14—C27106.56 (15)C32—C31—H31B109.1
C15—C14—C27107.25 (15)H31A—C31—H31B107.9
C13—C14—C8109.02 (14)O6—C32—O7125.7 (2)
C15—C14—C8110.50 (15)O6—C32—C31125.2 (2)
C27—C14—C8111.82 (15)O7—C32—C31109.10 (19)
C16—C15—C14114.29 (16)O7—C33—C34109.2 (3)
C16—C15—H15A108.7O7—C33—H33A109.8
C14—C15—H15A108.7C34—C33—H33A109.8
C16—C15—H15B108.7O7—C33—H33B109.8
C14—C15—H15B108.7C34—C33—H33B109.8
H15A—C15—H15B107.6H33A—C33—H33B108.3
C15—C16—C17112.65 (16)C33—C34—H34A109.5
C15—C16—H16A109.1C33—C34—H34B109.5
C17—C16—H16A109.1H34A—C34—H34B109.5
C15—C16—H16B109.1C33—C34—H34C109.5
C17—C16—H16B109.1H34A—C34—H34C109.5
H16A—C16—H16B107.8H34B—C34—H34C109.5
C16—C17—C28110.23 (16)C35—O8—H8109.5
C16—C17—C22111.17 (16)O8—C35—H35A109.5
C28—C17—C22107.16 (17)O8—C35—H35B109.5
C16—C17—C18108.77 (16)H35A—C35—H35B109.5
C28—C17—C18110.14 (16)O8—C35—H35C109.5
C22—C17—C18109.36 (16)H35A—C35—H35C109.5
C13—C18—C17113.05 (15)H35B—C35—H35C109.5
C3—O1—N1—O3171.98 (18)C12—C13—C14—C2791.53 (19)
C3—O1—N1—O27.6 (3)C18—C13—C14—C2783.32 (19)
C10—C1—C2—C357.2 (2)C12—C13—C14—C829.3 (2)
N1—O1—C3—C277.22 (19)C18—C13—C14—C8155.85 (15)
N1—O1—C3—C4159.65 (15)C26—C8—C14—C1361.40 (18)
C1—C2—C3—O1175.89 (14)C7—C8—C14—C13179.64 (15)
C1—C2—C3—C458.1 (2)C9—C8—C14—C1358.54 (18)
O1—C3—C4—C2447.73 (19)C26—C8—C14—C1561.66 (19)
C2—C3—C4—C2472.0 (2)C7—C8—C14—C1557.31 (19)
O1—C3—C4—C2370.72 (19)C9—C8—C14—C15178.41 (15)
C2—C3—C4—C23169.56 (16)C26—C8—C14—C27178.96 (15)
O1—C3—C4—C5173.29 (14)C7—C8—C14—C2762.08 (18)
C2—C3—C4—C553.6 (2)C9—C8—C14—C2759.02 (18)
C24—C4—C5—C659.7 (2)C13—C14—C15—C1639.6 (2)
C3—C4—C5—C6176.67 (16)C27—C14—C15—C1676.7 (2)
C23—C4—C5—C661.8 (2)C8—C14—C15—C16161.15 (15)
C24—C4—C5—C1071.1 (2)C14—C15—C16—C1755.7 (2)
C3—C4—C5—C1052.5 (2)C15—C16—C17—C2860.9 (2)
C23—C4—C5—C10167.32 (16)C15—C16—C17—C22179.60 (16)
C10—C5—C6—C764.4 (2)C15—C16—C17—C1859.9 (2)
C4—C5—C6—C7161.69 (16)C12—C13—C18—C17144.52 (17)
C5—C6—C7—C856.1 (2)C14—C13—C18—C1740.5 (2)
C6—C7—C8—C2675.1 (2)C12—C13—C18—C1989.5 (2)
C6—C7—C8—C945.1 (2)C14—C13—C18—C1985.45 (19)
C6—C7—C8—C14164.45 (15)C16—C17—C18—C1351.0 (2)
C26—C8—C9—C1158.58 (18)C28—C17—C18—C1369.9 (2)
C7—C8—C9—C11177.61 (14)C22—C17—C18—C13172.58 (16)
C14—C8—C9—C1161.66 (18)C16—C17—C18—C1973.29 (19)
C26—C8—C9—C1074.52 (19)C28—C17—C18—C19165.80 (16)
C7—C8—C9—C1044.5 (2)C22—C17—C18—C1948.3 (2)
C14—C8—C9—C10165.23 (14)C13—C18—C19—C20179.00 (16)
C2—C1—C10—C2570.77 (19)C17—C18—C19—C2054.6 (2)
C2—C1—C10—C552.94 (19)C18—C19—C20—C2964.7 (2)
C2—C1—C10—C9167.18 (14)C18—C19—C20—C2156.9 (2)
C6—C5—C10—C2564.3 (2)C18—C19—C20—C30176.67 (18)
C4—C5—C10—C2567.5 (2)C29—C20—C21—C2268.4 (2)
C6—C5—C10—C1175.38 (15)C19—C20—C21—C2256.1 (2)
C4—C5—C10—C152.79 (19)C30—C20—C21—C22175.09 (19)
C6—C5—C10—C959.85 (18)C20—C21—C22—C1756.4 (3)
C4—C5—C10—C9168.32 (15)C16—C17—C22—C2169.3 (2)
C11—C9—C10—C2555.9 (2)C28—C17—C22—C21170.23 (18)
C8—C9—C10—C2573.8 (2)C18—C17—C22—C2150.9 (2)
C11—C9—C10—C163.80 (19)C31—N2—C29—O50.0 (3)
C8—C9—C10—C1166.48 (15)C31—N2—C29—C20177.81 (18)
C11—C9—C10—C5179.00 (15)C19—C20—C29—O5154.10 (19)
C8—C9—C10—C551.27 (19)C21—C20—C29—O533.3 (2)
C8—C9—C11—O4144.77 (19)C30—C20—C29—O585.7 (2)
C10—C9—C11—O410.6 (3)C19—C20—C29—N228.1 (3)
C8—C9—C11—C1235.9 (2)C21—C20—C29—N2148.88 (18)
C10—C9—C11—C12170.02 (16)C30—C20—C29—N292.1 (2)
O4—C11—C12—C13174.69 (19)C29—N2—C31—C32134.1 (2)
C9—C11—C12—C135.9 (3)C33—O7—C32—O62.8 (4)
C11—C12—C13—C18177.53 (17)C33—O7—C32—C31178.3 (3)
C11—C12—C13—C142.6 (3)N2—C31—C32—O64.9 (4)
C12—C13—C14—C15151.67 (17)N2—C31—C32—O7174.1 (2)
C18—C13—C14—C1533.5 (2)C32—O7—C33—C3487.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O8i0.882.042.806 (3)144
O8—H8···O50.841.892.728 (2)177
C1—H1A···O40.992.342.968 (2)120
C19—H19B···O8i0.992.403.359 (3)163
C25—H25A···O40.982.413.058 (3)123
C34—H34B···O5ii0.982.583.515 (4)160
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC34H52N2O7·CH4O
Mr632.82
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)10.1598 (8), 11.1275 (9), 30.387 (2)
V3)3435.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.55 × 0.53 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.88, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
49017, 5565, 5044
Rint0.036
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.10
No. of reflections5565
No. of parameters416
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.38

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SAINT, SADABS and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O8i0.882.042.806 (3)144.3
O8—H8···O50.841.892.728 (2)176.9
C1—H1A···O40.992.342.968 (2)120.1
C19—H19B···O8i0.992.403.359 (3)162.7
C25—H25A···O40.982.413.058 (3)123.0
C34—H34B···O5ii0.982.583.515 (4)160.4
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+3/2, z+1.
 

Acknowledgements

The work was supported by the ZIT Zentrum für Innovation und Technologie GmbH (Vienna Spot of Excellence, 182081).

References

First citationAlvarez-Larena, A., Brianso, J. L., Capparelli, M. V., Farran, J. & Piniella, J. F. (2007). Afinidad, 64, 278–283.  CAS Google Scholar
First citationAmer, H., Mereiter, K., Stanetty, C., Hofinger, A., Czollner, L., Beseda, I., Jordis, U., Kueenburg, B., Classen-Houben, D. & Kosma, P. (2010). Tetrahedron, 66, 4390–4402.  Web of Science CSD CrossRef CAS Google Scholar
First citationAsl, M. N. & Hosseinzadeh, H. (2008). Phytother. Res. 22, 709–724.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBaran, J. S., Langford, D. D., Liang, C. & Pitzele, B. S. (1974). J. Med. Chem. 17, 184–191.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBeseda, I., Czollner, L., Shah, P. S., Khunt, R., Gaware, R., Kosma, P., Stanetty, C., del Ruiz-Ruiz, M. C., Amer, H., Mereiter, K., Da Cunha, T., Odermatt, A., Classen-Houben, D. & Jordis, U. (2010). Bioorg. Med. Chem. 18, 433–454.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampsteyn, H., Dupont, L., Lamotte, J., Dideberg, O. & Vermeire, M. (1977). Acta Cryst. B33, 3443–3448.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCzollner, L., Jordis, U. & Mereiter, K. (2011). Acta Cryst. E67, o3052–o3053.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, X., Lawrence, H., Ganeshapillai, D., Cruttenden, A., Purohit, A., Reed, M. J., Vicker, N. & Potter, B. V. L. (2004). Bioorg. Med. Chem. 12, 4439—4457.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1229-o1230
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds