organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-(2-Meth­­oxy­benz­yl)-1,5-benzo­thia­zepin-4(5H)-one

aDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India, bDepartment of Physics, C. Abdul Hakeem College of Engineering & Technology, Melvisharam, Vellore 632 509, India, and cDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 10 June 2012; accepted 12 June 2012; online 16 June 2012)

In the title compound, C17H15NO2S, the seven-membered thia­zepine ring adopts a distorted twist-boat conformation. The dihedral angle between the mean planes of the benzothia­zepin ring system and the attached benzene ring is 47.7 (1)°. In the crystal, pairs of N—H⋯O hydrogen bonds link inversion-related mol­ecules into dimers, generating R22(8) ring motifs. These dimers are further connected into a chain along the a axis by C—H⋯O hydrogen bonds, resulting in R22(14) ring motifs. The crystal packing also features C—H⋯π inter­actions.

Related literature

For the pharmaceutical properties of thia­zepin derivatives, see: Tomascovic et al. (2000[Tomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479-493.]). For related structures, see: Sridevi et al. (2011[Sridevi, D., Bhaskaran, S., Usha, G., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o243.]); Sabari et al. 2011[Sabari, V., Jagadeesan, G., Selvakumar, R., Bakthadoss, M. & Aravindhan, S. (2011). Acta Cryst. E67, o3061.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15NO2S

  • Mr = 297.36

  • Triclinic, [P \overline 1]

  • a = 8.6665 (5) Å

  • b = 9.7612 (4) Å

  • c = 10.1328 (5) Å

  • α = 108.181 (3)°

  • β = 101.561 (2)°

  • γ = 103.217 (3)°

  • V = 757.83 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.951, Tmax = 0.968

  • 16048 measured reflections

  • 4137 independent reflections

  • 2797 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.146

  • S = 1.01

  • 4137 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.00 2.8545 (17) 171
C5—H5⋯O1ii 0.93 2.39 3.308 (2) 171
C3—H3⋯Cgiii 0.93 2.69 3.432 (2) 138
C17—H17CCgiv 0.96 2.90 3.664 (2) 137
Symmetry codes: (i) -x, -y+1, -z; (ii) x+1, y, z; (iii) -x+1, -y+2, -z+1; (iv) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is used as an intermediate for the synthesis of dosulepin, which is an antidepressant of the tricyclic family. Dosulepin prevents reabsorbing of serotonin and noradrenaline in the brain, helps to prolong the mood lightening effect of any released noradrenaline and serotonin, thus relieving depression. The dibenzo[c,e]thiazepin derivatives exhibit chiroptical properties (Tomascovic et al., 2000). As part of our studies in this area, we now describe the crystal structure of the title compound, (I).

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The seven membered thiazepine ring (N1/S1/C1/C2/C7/C8/C9) adopts twist-boat conformation as indicated by puckering parameters (Cremer & Pople, 1975) QT = 1.0218 (14) Å, θ2 = 74.4 (1)°, ϕ2 = 178.1 (1)° and ϕ3 = 174.3 (4)°. The dihedral angle between the benzothiazepin ring system and the benzene ring is 47.7 (1)°. The geometric parameters of the title molecule agree well with those reported for similar structures (Sridevi et al., 2011, Sabari et al., 2011).

In the crystal, the molecules at x, y, z and -x, 1-y, -z are linked by N1—H1···O1 hydrogen bonds into cyclic centrosymmetric R22(8) dimers (Bernstein et al., 1995). These dimers are further connected into chains along the a axis via C5—H5···O1 hydrogen bonds (Table 1), resulting in R22(14) ring motifs [Fig. 2; symmetry code as in Fig. 2].

The crystal packing also features two C—H···π interactions, the first one between a H3 atom and neighbouring benene ring (C11–C16), with a C3—H3···Cgiii seperation of 2.69 Å and the second one between methyl H17C atom and neighbouring benzene ring (C11–C16), with a C17—H17C···Cgiv seperation of 2.90 Å (Fig. 3 and Table 1; Cg is the centroid of the C11–C16 benzene ring, Symmetry code as in Fig.3).

Related literature top

For the pharmaceutical properties of thiazepin derivatives, see: Tomascovic et al. (2000). For related structures, see: Sridevi et al. (2011); Sabari et al. 2011). For ring-puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of (Z)-methyl 2-(bromomethyl)-3-(2-methoxyphenyl)acrylate 2 mmol) and o-aminothiophenol (2 mmol) in the presence of potassium tert-butoxide (4.8 mmol) in dry THF (10 ml) was stirred at room temperature for 1 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (20 ml) and extracted with ethyl acetate (3 x 20 ml). The organic layer was washed with brine (2 x 20 ml) and dried over anhydrous sodium sulfate. The organic layer was concentrated, which successfully provide the crude final product ((Z)-3-(2-methoxybenzyl)benzo[b][1,4]thiazepin-4(5H)-one). The final product was purified by column chromatography on silica gel to afford the title compound in good yield (42%). Recrystallisation from ethyl acetate solution afforded colourless blocks.

Refinement top

H atoms were positioned geometrically, with C–H = 0.93–0.97 Å and constrained to ride on their parent atom, with Uiso(H) =1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
Fig. 1. Molecular structure of the title compound showing displacement ellipsoids at the 30% probability level.

Fig. 2. The crystal packing of the title compound, showing the chains along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity. [Symmetry code: (i) -x, -y, -z; (v) -1 - x, 1 - y, z; (vi) -1 + x, y, z; (vii) -2 - x, 1 - y, -z; (viii) -2 + x, y, z].

Fig. 4. A view of the C—H···π interactions, in the crystal structure of the title compound. Cg is the centroid of the (C11–C16) benzene ring. [Symmetry code: (iii) 1 - x, 2 - y, 1 - z; (iv) -x, 2 - y, -z.]
(Z)-3-(2-Methoxybenzyl)-1,5-benzothiazepin-4(5H)-one top
Crystal data top
C17H15NO2SZ = 2
Mr = 297.36F(000) = 312
Triclinic, P1Dx = 1.303 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6665 (5) ÅCell parameters from 4197 reflections
b = 9.7612 (4) Åθ = 2.2–29.5°
c = 10.1328 (5) ŵ = 0.22 mm1
α = 108.181 (3)°T = 293 K
β = 101.561 (2)°Block, colourless
γ = 103.217 (3)°0.23 × 0.21 × 0.15 mm
V = 757.83 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4137 independent reflections
Radiation source: fine-focus sealed tube2797 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 10.0 pixels mm-1θmax = 29.5°, θmin = 2.2°
ω scansh = 1011
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.951, Tmax = 0.968l = 1314
16048 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.1349P]
where P = (Fo2 + 2Fc2)/3
4137 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H15NO2Sγ = 103.217 (3)°
Mr = 297.36V = 757.83 (7) Å3
Triclinic, P1Z = 2
a = 8.6665 (5) ÅMo Kα radiation
b = 9.7612 (4) ŵ = 0.22 mm1
c = 10.1328 (5) ÅT = 293 K
α = 108.181 (3)°0.23 × 0.21 × 0.15 mm
β = 101.561 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4137 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2797 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.968Rint = 0.041
16048 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
4137 reflectionsΔρmin = 0.26 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1759 (2)0.7930 (2)0.46956 (18)0.0507 (4)
H1A0.18770.87400.55330.061*
C20.3850 (2)0.64173 (18)0.39653 (19)0.0488 (4)
C30.5478 (2)0.6617 (2)0.4686 (2)0.0608 (5)
H30.57760.67750.56680.073*
C40.6642 (2)0.6582 (2)0.3954 (3)0.0722 (6)
H40.77260.67020.44370.087*
C50.6218 (2)0.6371 (3)0.2510 (3)0.0750 (7)
H50.70160.63480.20180.090*
C60.4611 (2)0.6192 (2)0.1781 (2)0.0599 (5)
H60.43320.60570.08030.072*
C70.34186 (19)0.62133 (17)0.25091 (18)0.0451 (4)
C80.07211 (19)0.67234 (17)0.20182 (16)0.0411 (3)
C90.11639 (19)0.80262 (17)0.34308 (17)0.0424 (4)
C100.0753 (2)0.93974 (18)0.33034 (18)0.0486 (4)
H10A0.09441.01260.42710.058*
H10B0.04160.91000.27930.058*
C110.1745 (2)1.01587 (18)0.25198 (17)0.0470 (4)
C120.1171 (2)1.11473 (19)0.19637 (17)0.0513 (4)
C130.2044 (3)1.1847 (2)0.1219 (2)0.0668 (5)
H130.16471.24890.08310.080*
C140.3502 (3)1.1584 (3)0.1058 (2)0.0756 (6)
H140.40841.20510.05560.091*
C150.4107 (3)1.0648 (3)0.1623 (2)0.0704 (6)
H150.51021.04900.15210.085*
C160.3221 (2)0.9936 (2)0.2350 (2)0.0568 (5)
H160.36290.92940.27320.068*
C170.0912 (3)1.2357 (2)0.1686 (2)0.0704 (6)
H17A0.01291.33610.21240.106*
H17B0.19291.23780.19170.106*
H17C0.11211.20020.06500.106*
N10.17774 (16)0.59507 (15)0.17075 (14)0.0454 (3)
H10.14000.51800.08990.055*
O10.06363 (14)0.63859 (14)0.11211 (12)0.0530 (3)
O20.02545 (17)1.13659 (15)0.22258 (14)0.0595 (3)
S10.23445 (6)0.63866 (6)0.49135 (5)0.05956 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0560 (10)0.0537 (9)0.0413 (8)0.0174 (8)0.0217 (7)0.0116 (7)
C20.0453 (9)0.0419 (8)0.0522 (9)0.0133 (7)0.0104 (7)0.0113 (7)
C30.0508 (10)0.0505 (10)0.0644 (11)0.0137 (8)0.0004 (9)0.0117 (8)
C40.0417 (10)0.0606 (12)0.0915 (16)0.0142 (9)0.0038 (10)0.0098 (11)
C50.0451 (11)0.0719 (13)0.1002 (18)0.0195 (9)0.0327 (11)0.0139 (12)
C60.0474 (10)0.0650 (11)0.0615 (11)0.0185 (8)0.0232 (8)0.0108 (9)
C70.0377 (8)0.0405 (8)0.0489 (9)0.0114 (6)0.0122 (7)0.0070 (6)
C80.0380 (8)0.0453 (8)0.0398 (7)0.0105 (6)0.0167 (6)0.0141 (6)
C90.0404 (8)0.0444 (8)0.0435 (8)0.0125 (6)0.0207 (7)0.0130 (6)
C100.0539 (10)0.0462 (8)0.0507 (9)0.0177 (7)0.0272 (8)0.0158 (7)
C110.0503 (9)0.0412 (8)0.0405 (8)0.0065 (7)0.0170 (7)0.0069 (6)
C120.0579 (10)0.0475 (9)0.0393 (8)0.0071 (8)0.0151 (7)0.0103 (7)
C130.0782 (14)0.0627 (12)0.0582 (11)0.0106 (10)0.0229 (10)0.0274 (9)
C140.0785 (15)0.0759 (14)0.0739 (14)0.0068 (11)0.0413 (12)0.0306 (11)
C150.0611 (12)0.0689 (13)0.0770 (14)0.0082 (10)0.0382 (11)0.0193 (11)
C160.0556 (10)0.0518 (9)0.0580 (10)0.0113 (8)0.0238 (9)0.0134 (8)
C170.0779 (14)0.0669 (12)0.0699 (13)0.0253 (11)0.0168 (11)0.0314 (10)
N10.0398 (7)0.0468 (7)0.0403 (7)0.0128 (6)0.0114 (5)0.0047 (5)
O10.0427 (6)0.0618 (7)0.0467 (6)0.0197 (5)0.0108 (5)0.0092 (5)
O20.0643 (8)0.0612 (8)0.0620 (8)0.0232 (6)0.0230 (6)0.0295 (6)
S10.0660 (3)0.0692 (3)0.0533 (3)0.0255 (2)0.0227 (2)0.0295 (2)
Geometric parameters (Å, º) top
C1—C91.323 (2)C10—C111.507 (2)
C1—S11.7571 (19)C10—H10A0.9700
C1—H1A0.9300C10—H10B0.9700
C2—C71.385 (2)C11—C161.381 (3)
C2—C31.391 (3)C11—C121.394 (3)
C2—S11.7687 (18)C12—O21.364 (2)
C3—C41.367 (3)C12—C131.386 (3)
C3—H30.9300C13—C141.376 (3)
C4—C51.371 (3)C13—H130.9300
C4—H40.9300C14—C151.365 (4)
C5—C61.382 (3)C14—H140.9300
C5—H50.9300C15—C161.385 (3)
C6—C71.386 (2)C15—H150.9300
C6—H60.9300C16—H160.9300
C7—N11.410 (2)C17—O21.421 (2)
C8—O11.2353 (19)C17—H17A0.9600
C8—N11.338 (2)C17—H17B0.9600
C8—C91.495 (2)C17—H17C0.9600
C9—C101.497 (2)N1—H10.8600
C9—C1—S1124.92 (13)C11—C10—H10B108.8
C9—C1—H1A117.5H10A—C10—H10B107.7
S1—C1—H1A117.5C16—C11—C12118.41 (16)
C7—C2—C3119.73 (17)C16—C11—C10122.51 (17)
C7—C2—S1120.79 (13)C12—C11—C10119.07 (15)
C3—C2—S1119.47 (15)O2—C12—C13124.34 (18)
C4—C3—C2120.2 (2)O2—C12—C11115.28 (15)
C4—C3—H3119.9C13—C12—C11120.37 (18)
C2—C3—H3119.9C14—C13—C12119.5 (2)
C3—C4—C5120.27 (18)C14—C13—H13120.2
C3—C4—H4119.9C12—C13—H13120.2
C5—C4—H4119.9C15—C14—C13121.1 (2)
C4—C5—C6120.4 (2)C15—C14—H14119.4
C4—C5—H5119.8C13—C14—H14119.4
C6—C5—H5119.8C14—C15—C16119.2 (2)
C5—C6—C7119.9 (2)C14—C15—H15120.4
C5—C6—H6120.1C16—C15—H15120.4
C7—C6—H6120.1C11—C16—C15121.4 (2)
C2—C7—C6119.57 (16)C11—C16—H16119.3
C2—C7—N1122.33 (15)C15—C16—H16119.3
C6—C7—N1118.03 (15)O2—C17—H17A109.5
O1—C8—N1120.15 (13)O2—C17—H17B109.5
O1—C8—C9118.65 (14)H17A—C17—H17B109.5
N1—C8—C9121.18 (14)O2—C17—H17C109.5
C1—C9—C8122.35 (15)H17A—C17—H17C109.5
C1—C9—C10122.86 (14)H17B—C17—H17C109.5
C8—C9—C10114.62 (14)C8—N1—C7129.58 (13)
C9—C10—C11113.97 (14)C8—N1—H1115.2
C9—C10—H10A108.8C7—N1—H1115.2
C11—C10—H10A108.8C12—O2—C17118.25 (15)
C9—C10—H10B108.8C1—S1—C298.07 (8)
C7—C2—C3—C41.3 (3)C16—C11—C12—O2177.21 (14)
S1—C2—C3—C4177.35 (15)C10—C11—C12—O21.7 (2)
C2—C3—C4—C50.9 (3)C16—C11—C12—C132.0 (2)
C3—C4—C5—C60.0 (3)C10—C11—C12—C13179.04 (16)
C4—C5—C6—C70.5 (3)O2—C12—C13—C14177.81 (17)
C3—C2—C7—C60.8 (3)C11—C12—C13—C141.4 (3)
S1—C2—C7—C6177.84 (13)C12—C13—C14—C150.2 (3)
C3—C2—C7—N1177.65 (15)C13—C14—C15—C161.0 (3)
S1—C2—C7—N11.0 (2)C12—C11—C16—C151.2 (3)
C5—C6—C7—C20.1 (3)C10—C11—C16—C15179.90 (17)
C5—C6—C7—N1176.89 (17)C14—C15—C16—C110.3 (3)
S1—C1—C9—C87.8 (2)O1—C8—N1—C7174.44 (16)
S1—C1—C9—C10177.20 (12)C9—C8—N1—C74.2 (3)
O1—C8—C9—C1131.77 (18)C2—C7—N1—C850.9 (3)
N1—C8—C9—C149.6 (2)C6—C7—N1—C8132.22 (18)
O1—C8—C9—C1043.6 (2)C13—C12—O2—C171.0 (3)
N1—C8—C9—C10135.01 (16)C11—C12—O2—C17179.81 (15)
C1—C9—C10—C11118.63 (18)C9—C1—S1—C258.22 (17)
C8—C9—C10—C1166.03 (18)C7—C2—S1—C160.82 (15)
C9—C10—C11—C1619.6 (2)C3—C2—S1—C1120.55 (15)
C9—C10—C11—C12161.57 (14)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.002.8545 (17)171
C5—H5···O1ii0.932.393.308 (2)171
C3—H3···Cgiii0.932.693.432 (2)138
C17—H17C···Cgiv0.962.903.664 (2)137
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y+2, z+1; (iv) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC17H15NO2S
Mr297.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.6665 (5), 9.7612 (4), 10.1328 (5)
α, β, γ (°)108.181 (3), 101.561 (2), 103.217 (3)
V3)757.83 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.23 × 0.21 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.951, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
16048, 4137, 2797
Rint0.041
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.146, 1.01
No. of reflections4137
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.26

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia (1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.002.8545 (17)171
C5—H5···O1ii0.932.393.308 (2)171
C3—H3···Cgiii0.932.693.432 (2)138
C17—H17C···Cgiv0.962.903.664 (2)137
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y+2, z+1; (iv) x, y+2, z.
 

Footnotes

Additional correspondence author, e-mail: bhakthadoss@yahoo.com.

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationSabari, V., Jagadeesan, G., Selvakumar, R., Bakthadoss, M. & Aravindhan, S. (2011). Acta Cryst. E67, o3061.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSridevi, D., Bhaskaran, S., Usha, G., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o243.  Web of Science CSD CrossRef IUCr Journals
First citationTomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479–493.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds