metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Diamminedi­chloridoplatinum(II) N,N-di­methyl­formamide monosolvate

aDepartment of Chemistry, Otterbein University, Westerville, OH 43081, USA
*Correspondence e-mail: djohnston@otterbein.edu

(Received 19 May 2012; accepted 25 May 2012; online 2 June 2012)

In the title compound, cis-[PtCl2(NH3)2]·C3H7NO, the metal complex mol­ecules are stacked parallel to the b axis, forming close Pt⋯Pt inter­actions of 3.4071 (7) and 3.5534 (8) Å and weak N—H⋯Cl hydrogen bonds between the ammine ligand and the Cl atoms of the neighboring complex. Conventional N—H⋯O hydrogen bonds are formed between ammine ligands and the O atom of adjacent N,N-dimethyl­formamide mol­ecules. The crystal was found to be a split crystal and was analyzed using two domains related by a rotation of ca 4.4° about the reciprocal axis (−0.351 1.000 0.742) and refined to give a minor component fraction of 0.084 (6).

Related literature

For a review of platinum anti­cancer coordination compounds, see: Reedijk (2009[Reedijk, J. (2009). Eur. J. Inorg. Chem. pp. 1303-1312.]). For the preparation of cis-diamminedichloridoplatinum(II), see: Kukushikin et al. (1998[Kukushikin, V. Y., Oskarsson, A., Elding, L. I., Farrell, N., Dunham, S. & Lippard, S. J. (1998). Inorg. Synth. 32, 141-144.]). For single-crystal X-ray and neutron diffraction studies of cis-diamminedichloridoplatinum(II), see: Milburn & Truter (1966[Milburn, G. H. W. & Truter, M. R. (1966). J. Chem. Soc. A, pp. 1609-1616.]); Ting et al. (2010[Ting, V. P., Schmidtmann, M., Wilson, C. C. & Weller, M. T. (2010). Angew. Chem. Int. Ed. 49, 9408-9411.]). For vibrational studies, see: Nakamoto et al. (1965[Nakamoto, K., McCarthy, P. J., Fujita, J., Condrate, R. A. & Behnke, G. T. (1965). Inorg. Chem. 4, 36-43.]). For crystallographic studies of dimethyl­formamide solvates and complexes of cis-diamminedichlorido­platinum(II) and related compounds, see: Raudaschl et al. (1983[Raudaschl, G., Lippert, B. & Hoeschele, J. D. (1983). Inorg. Chim. Acta, 78, L43-L44.], 1985[Raudaschl, G., Lippert, B., Hoeschele, J. D., Howard-Lock, H. E., Lock, C. J. L. & Pilon, P. (1985). Inorg. Chim. Acta, 106, 141-149.]); Raudaschl-Sieber et al. (1986[Raudaschl-Sieber, G., Lippert, B., Britten, J. F. & Beauchamp, A. L. (1986). Inorg. Chim. Acta, 124, 213-217.]); Alston et al. (1985[Alston, D. R., Stoddart, J. F. & Williams, D. J. (1985). J. Chem. Soc. Chem. Commun. pp. 532-533.]). For a crystallographic study of palladium analogs, see: Kirik et al. (1996[Kirik, S. D., Solovyov, L. A., Blokhin, A. I., Yakimov, I. S. & Blokhina, M. L. (1996). Acta Cryst. B52, 909-916.]). For a detailed analysis of linear chainstructures in platinum(II) complexes, see: Connick et al. (1997[Connick, W. B., Marsh, R. E., Schaefer, W. P. & Gray, H. B. (1997). Inorg. Chem. 36, 913-922.]). For an analysis of hydrogen bonding in platinum–ammine complexes, see: Brammer et al. (1987[Brammer, L., Charnock, J. M., Goggin, P. L., Goodfellow, R. J., Koetzle, T. F. & Orpen, A. G. (1987). J. Chem. Soc. Chem. Commun. pp. 443-445.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl2(NH3)2]·C3H7NO

  • Mr = 373.15

  • Triclinic, [P \overline 1]

  • a = 6.2344 (9) Å

  • b = 6.8196 (11) Å

  • c = 11.5833 (18) Å

  • α = 105.285 (4)°

  • β = 96.061 (4)°

  • γ = 97.809 (4)°

  • V = 465.47 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 15.59 mm−1

  • T = 200 K

  • 0.46 × 0.36 × 0.10 mm

Data collection
  • Bruker SMART X2S benchtop diffractometer

  • Absorption correction: multi-scan (TWINABS; Bruker, 2009[Bruker (2009). APEX2, GIS, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.05, Tmax = 0.30

  • 7440 measured reflections

  • 1620 independent reflections

  • 1484 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.072

  • S = 1.07

  • 1620 reflections

  • 96 parameters

  • H-atom parameters constrained

  • Δρmax = 1.44 e Å−3

  • Δρmin = −2.08 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1E⋯Cl1i 0.91 2.51 3.389 (7) 161
N2—H2E⋯Cl2i 0.91 2.53 3.403 (7) 162
N1—H1D⋯O1ii 0.91 2.13 3.023 (9) 167
N2—H2F⋯O1iii 0.91 2.31 3.198 (9) 165
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+2, -z+2; (iii) x-1, y, z-1.

Data collection: APEX2 and GIS (Bruker, 2009[Bruker (2009). APEX2, GIS, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, GIS, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and POV-RAY (Cason, 2004[Cason, C. J. (2004). POV-RAY. Persistence of Vision Raytracer Pty. Ltd, Williamstown, Victoria, Australia.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Cis-diamminedichloridoplatinum(II), also known as cisplatin, is a widely used anti-cancer drug that has been extensively studied since its clinical applications were first discovered (Reedijk, 2009). The structure of cisplatin was first determined crystallographically in 1966 (Milburn & Truter, 1966); a recent study has elaborated the structure of the two common polymorphs (Ting et al., 2010). A different DMF-solvate of cisplatin has been described previously (Raudaschl et al., 1983, Raudaschl et al. 1985, Raudaschl-Sieber et al. 1986). A crown ether complex of cisplatin has also been crystallographically characterized (Alston et al., 1985).

The title compound has a square-planar geometry (Fig. 1) and forms stacked chains along the crystallographic b axis with Pt—Pt distances of 3.4071 (7) and 3.5534 (8) Å and Pt—Pt—Pt angle of 156.90 (2) degrees as shown in Figures 2 and 3. Formation of extended platinum chains through stacking is a common motif in square-planar platinum compounds (Connick et al., 1997). Hydrogen bonds are formed between the ammine hydrogen atoms and the chlorine atoms on the closer of the two neighboring complexes. This type of hydrogen bonding has been proposed or observed in previous studies on cisplatin and related complexes (Milburn & Truter, 1966; Brammer et al., 1987; Ting et al., 2010).

Additional hydrogen bonds are formed between the ammine hydrogen atoms and the oxygen atom of the N,N-dimethylformamide as illustrated in Figure 4. Similar interactions are seen in the DMF-solvated cisplatin structure previously described (Raudaschl et al., 1983, Raudaschl et al., 1985, Raudaschl-Sieber et al., 1986). Interestingly, the previously described DMF solvate of cisplatin does not display stacking of the metal complexes seen in the title compound.

Related literature top

For a review of platinum anticancer coordination compounds, see: Reedijk (2009). For the preparation of cis-diamminedichloridoplatinum(II), see: Kukushikin et al. (1998). For single-crystal X-ray and neutron diffraction studies of cis-diamminedichloridoplatinum(II), see: Milburn & Truter (1966); Ting et al. (2010). For vibrational studies, see: Nakamoto et al. (1965). For crystallographic studies of dimethylformamide solvates and complexes of cis-diamminedichloridoplatinum(II) and related compounds, see: Raudaschl et al. (1983, 1985); Raudaschl-Sieber et al. (1986); Alston et al. (1985). For a crystallographic study of palladium analogs, see: Kirik et al. (1996). For a detailed analysis of linear chainstructures in platinum(II) complexes, see: Connick et al. (1997). For an analysis of hydrogen bonding in platinum–ammine complexes, see: Brammer et al. (1987).

Experimental top

The title complex was prepared by refluxing 2.00 g (4.82 mmol) of K2[PtCl4] with 1.60 g (20.8 mmol) of ammonium acetate and 2.0 g (26.8 mol) of KCl in 25 ml of water for two hours, during which the solution changed from a dark red to green. The solution was hot filtered and a greenish-yellow powder formed on cooling. The powder was recrystallized by vapor diffusion of diethylether into a DMF solution of the complex yielding yellow-orange crystals. Infrared spectra were in agreement with literature values (Nakamoto et al., 1965)

Data sets on multiple crystals showed evidence of at least two independent domains, either from agglomeration or from the crystal being cracked or split, perhaps during rapid cooling to 200 K.

Refinement top

The matrix relating the two domains, [1.007 0.033 - 0.041 - 0.010 1.013 - 0.022 0.118 0.060 0.975], corresponding to a rotation of 4.4 degrees about the reciprocal axis (-0.351 1.000 0.742), was determined using the CELL_NOW program (Bruker AXS, 2009). Integration and absorption correction (TWINABS, Bruker AXS 2009) gave 1558 unique reflections in domain 1, 1560 unique reflections in domain 2, and 211 unique overlapping reflections, or 14 percent overlapping reflections. The structure was solved using merged reflections from both domains (type HKLF 4 in SHELXL-97). The structure was refined using corrected reflections from only the major component including overlaps (type HKLF 5 in SHELXL-97).

Refinement produced a minor component fraction of 0.084 (6). All hydrogen atoms were positioned geometrically and refined with the atom positions constrained to appropriate positions with N—H distances of 0.91 Å and C—H distances of either 0.95 Å (amide) or 0.98 Å (methyl groups). A riding model was used for all H atoms with Uiso(H) = 1.2 times Uiso (amine, amide) or 1.5 times Uiso (methyl carbon atoms).

Structure description top

Cis-diamminedichloridoplatinum(II), also known as cisplatin, is a widely used anti-cancer drug that has been extensively studied since its clinical applications were first discovered (Reedijk, 2009). The structure of cisplatin was first determined crystallographically in 1966 (Milburn & Truter, 1966); a recent study has elaborated the structure of the two common polymorphs (Ting et al., 2010). A different DMF-solvate of cisplatin has been described previously (Raudaschl et al., 1983, Raudaschl et al. 1985, Raudaschl-Sieber et al. 1986). A crown ether complex of cisplatin has also been crystallographically characterized (Alston et al., 1985).

The title compound has a square-planar geometry (Fig. 1) and forms stacked chains along the crystallographic b axis with Pt—Pt distances of 3.4071 (7) and 3.5534 (8) Å and Pt—Pt—Pt angle of 156.90 (2) degrees as shown in Figures 2 and 3. Formation of extended platinum chains through stacking is a common motif in square-planar platinum compounds (Connick et al., 1997). Hydrogen bonds are formed between the ammine hydrogen atoms and the chlorine atoms on the closer of the two neighboring complexes. This type of hydrogen bonding has been proposed or observed in previous studies on cisplatin and related complexes (Milburn & Truter, 1966; Brammer et al., 1987; Ting et al., 2010).

Additional hydrogen bonds are formed between the ammine hydrogen atoms and the oxygen atom of the N,N-dimethylformamide as illustrated in Figure 4. Similar interactions are seen in the DMF-solvated cisplatin structure previously described (Raudaschl et al., 1983, Raudaschl et al., 1985, Raudaschl-Sieber et al., 1986). Interestingly, the previously described DMF solvate of cisplatin does not display stacking of the metal complexes seen in the title compound.

For a review of platinum anticancer coordination compounds, see: Reedijk (2009). For the preparation of cis-diamminedichloridoplatinum(II), see: Kukushikin et al. (1998). For single-crystal X-ray and neutron diffraction studies of cis-diamminedichloridoplatinum(II), see: Milburn & Truter (1966); Ting et al. (2010). For vibrational studies, see: Nakamoto et al. (1965). For crystallographic studies of dimethylformamide solvates and complexes of cis-diamminedichloridoplatinum(II) and related compounds, see: Raudaschl et al. (1983, 1985); Raudaschl-Sieber et al. (1986); Alston et al. (1985). For a crystallographic study of palladium analogs, see: Kirik et al. (1996). For a detailed analysis of linear chainstructures in platinum(II) complexes, see: Connick et al. (1997). For an analysis of hydrogen bonding in platinum–ammine complexes, see: Brammer et al. (1987).

Computing details top

Data collection: APEX2 and GIS (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and POV-RAY (Cason, 2004); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound drawn with 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound viewed along the b axis drawn with 50% probability displacement ellipsoids for non-H atoms.
[Figure 3] Fig. 3. A view showing the platinum-platinum interactions and hydrogen bonding between the ammine ligands and the chlorine atoms on neighboring complexes. Additional donor/acceptor distances and angles are listed in Table 1. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (iv) x, y + 1, z; (v) -x + 1, -y + 2, -z + 1.]
[Figure 4] Fig. 4. An illustration of the hydrogen bond interactions between the ammine ligands and the N,N-dimethylformamide solvent molecules. Additional donor/acceptor distances and angles are listed in Table 1. [Symmetry codes: (ii) -x + 2, -y + 2, -z + 2; (iii) x - 1, y, z - 1; (v) -x + 1, -y + 2, -z + 1.]
cis-Diamminedichloridoplatinum(II) N,N-dimethylformamide monosolvate top
Crystal data top
[PtCl2(NH3)2]·C3H7NOZ = 2
Mr = 373.15F(000) = 344
Triclinic, P1Dx = 2.662 Mg m3
a = 6.2344 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.8196 (11) ÅCell parameters from 1090 reflections
c = 11.5833 (18) Åθ = 3.3–24.8°
α = 105.285 (4)°µ = 15.59 mm1
β = 96.061 (4)°T = 200 K
γ = 97.809 (4)°Plate, clear yellow
V = 465.47 (12) Å30.46 × 0.36 × 0.10 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
1620 independent reflections
Radiation source: fine-focus sealed tube1484 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.043
Detector resolution: 8.3330 pixels mm-1θmax = 25.1°, θmin = 3.1°
ω scansh = 77
Absorption correction: multi-scan
(TWINABS; Bruker, 2009)
k = 87
Tmin = 0.05, Tmax = 0.30l = 013
7440 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2)]
1620 reflections(Δ/σ)max = 0.001
96 parametersΔρmax = 1.44 e Å3
0 restraintsΔρmin = 2.08 e Å3
Crystal data top
[PtCl2(NH3)2]·C3H7NOγ = 97.809 (4)°
Mr = 373.15V = 465.47 (12) Å3
Triclinic, P1Z = 2
a = 6.2344 (9) ÅMo Kα radiation
b = 6.8196 (11) ŵ = 15.59 mm1
c = 11.5833 (18) ÅT = 200 K
α = 105.285 (4)°0.46 × 0.36 × 0.10 mm
β = 96.061 (4)°
Data collection top
Bruker SMART X2S benchtop
diffractometer
1620 independent reflections
Absorption correction: multi-scan
(TWINABS; Bruker, 2009)
1484 reflections with I > 2σ(I)
Tmin = 0.05, Tmax = 0.30Rint = 0.043
7440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.07Δρmax = 1.44 e Å3
1620 reflectionsΔρmin = 2.08 e Å3
96 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.55286 (4)0.74780 (4)0.49265 (2)0.01388 (13)
Cl10.6813 (3)0.6374 (3)0.31075 (18)0.0250 (4)
Cl20.8971 (3)0.7991 (3)0.60324 (18)0.0244 (4)
N10.4361 (11)0.8403 (11)0.6522 (6)0.0211 (15)
H1D0.54430.92660.70890.025*
H1E0.38940.72810.67720.025*
H1F0.32220.90760.64190.025*
N20.2485 (11)0.6999 (11)0.3960 (6)0.0236 (15)
H2D0.17060.79430.43450.028*
H2E0.17860.57060.38970.028*
H2F0.26040.71350.32080.028*
O11.2567 (10)0.8302 (10)1.1506 (5)0.0335 (15)
N30.9601 (11)0.7534 (9)1.0048 (6)0.0254 (17)
C10.7242 (15)0.7227 (15)0.9760 (9)0.041 (2)
H1A0.65980.75111.05100.061*
H1B0.66940.57970.92790.061*
H1C0.68360.81650.92940.061*
C21.0852 (17)0.7125 (15)0.9063 (8)0.037 (2)
H2A1.24110.76120.93740.055*
H2B1.03890.78450.84760.055*
H2C1.06080.56370.86670.055*
C31.0583 (16)0.8090 (13)1.1198 (7)0.027 (2)
H30.96860.83391.18180.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01315 (19)0.01376 (19)0.01392 (18)0.00092 (13)0.00190 (12)0.00322 (13)
Cl10.0266 (11)0.0290 (11)0.0192 (10)0.0044 (9)0.0089 (8)0.0044 (8)
Cl20.0164 (10)0.0311 (12)0.0230 (10)0.0032 (9)0.0005 (8)0.0049 (9)
N10.018 (4)0.022 (4)0.019 (3)0.001 (3)0.000 (3)0.003 (3)
N20.020 (4)0.029 (4)0.023 (4)0.005 (3)0.003 (3)0.010 (3)
O10.030 (4)0.037 (4)0.025 (3)0.005 (3)0.005 (3)0.001 (3)
N30.031 (5)0.020 (4)0.022 (4)0.003 (3)0.001 (3)0.003 (3)
C10.036 (6)0.040 (6)0.045 (6)0.001 (5)0.007 (5)0.017 (5)
C20.049 (6)0.038 (6)0.022 (5)0.008 (5)0.001 (4)0.009 (4)
C30.042 (6)0.023 (5)0.013 (4)0.006 (4)0.001 (4)0.001 (4)
Geometric parameters (Å, º) top
Pt1—N12.034 (6)N3—C31.339 (10)
Pt1—N22.037 (6)N3—C21.437 (11)
Pt1—Cl12.3088 (19)N3—C11.447 (11)
Pt1—Cl22.313 (2)C1—H1A0.9800
N1—H1D0.9100C1—H1B0.9800
N1—H1E0.9100C1—H1C0.9800
N1—H1F0.9100C2—H2A0.9800
N2—H2D0.9100C2—H2B0.9800
N2—H2E0.9100C2—H2C0.9800
N2—H2F0.9100C3—H30.9500
O1—C31.229 (11)
N1—Pt1—N291.8 (3)C3—N3—C2120.9 (8)
N1—Pt1—Cl1178.99 (19)C3—N3—C1120.9 (8)
N2—Pt1—Cl187.6 (2)C2—N3—C1118.1 (8)
N1—Pt1—Cl287.9 (2)N3—C1—H1A109.5
N2—Pt1—Cl2179.34 (18)N3—C1—H1B109.5
Cl1—Pt1—Cl292.63 (7)H1A—C1—H1B109.5
Pt1—N1—H1D109.5N3—C1—H1C109.5
Pt1—N1—H1E109.5H1A—C1—H1C109.5
H1D—N1—H1E109.5H1B—C1—H1C109.5
Pt1—N1—H1F109.5N3—C2—H2A109.5
H1D—N1—H1F109.5N3—C2—H2B109.5
H1E—N1—H1F109.5H2A—C2—H2B109.5
Pt1—N2—H2D109.5N3—C2—H2C109.5
Pt1—N2—H2E109.5H2A—C2—H2C109.5
H2D—N2—H2E109.5H2B—C2—H2C109.5
Pt1—N2—H2F109.5O1—C3—N3124.3 (8)
H2D—N2—H2F109.5O1—C3—H3117.8
H2E—N2—H2F109.5N3—C3—H3117.8
C2—N3—C3—O10.3 (12)C1—N3—C3—O1177.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1E···Cl1i0.912.513.389 (7)161
N2—H2E···Cl2i0.912.533.403 (7)162
N1—H1D···O1ii0.912.133.023 (9)167
N2—H2F···O1iii0.912.313.198 (9)165
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z+2; (iii) x1, y, z1.

Experimental details

Crystal data
Chemical formula[PtCl2(NH3)2]·C3H7NO
Mr373.15
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)6.2344 (9), 6.8196 (11), 11.5833 (18)
α, β, γ (°)105.285 (4), 96.061 (4), 97.809 (4)
V3)465.47 (12)
Z2
Radiation typeMo Kα
µ (mm1)15.59
Crystal size (mm)0.46 × 0.36 × 0.10
Data collection
DiffractometerBruker SMART X2S benchtop
Absorption correctionMulti-scan
(TWINABS; Bruker, 2009)
Tmin, Tmax0.05, 0.30
No. of measured, independent and
observed [I > 2σ(I)] reflections
7440, 1620, 1484
Rint0.043
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.07
No. of reflections1620
No. of parameters96
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.44, 2.08

Computer programs: APEX2 and GIS (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and POV-RAY (Cason, 2004), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1E···Cl1i0.912.513.389 (7)161.3
N2—H2E···Cl2i0.912.533.403 (7)162.2
N1—H1D···O1ii0.912.133.023 (9)167.3
N2—H2F···O1iii0.912.313.198 (9)164.5
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z+2; (iii) x1, y, z1.
 

Acknowledgements

This work was supported in part by the National Science Foundation through grant DUE-0942850.

References

First citationAlston, D. R., Stoddart, J. F. & Williams, D. J. (1985). J. Chem. Soc. Chem. Commun. pp. 532–533.  CrossRef Web of Science Google Scholar
First citationBrammer, L., Charnock, J. M., Goggin, P. L., Goodfellow, R. J., Koetzle, T. F. & Orpen, A. G. (1987). J. Chem. Soc. Chem. Commun. pp. 443–445.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, GIS, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCason, C. J. (2004). POV-RAY. Persistence of Vision Raytracer Pty. Ltd, Williamstown, Victoria, Australia.  Google Scholar
First citationConnick, W. B., Marsh, R. E., Schaefer, W. P. & Gray, H. B. (1997). Inorg. Chem. 36, 913–922.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKirik, S. D., Solovyov, L. A., Blokhin, A. I., Yakimov, I. S. & Blokhina, M. L. (1996). Acta Cryst. B52, 909–916.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKukushikin, V. Y., Oskarsson, A., Elding, L. I., Farrell, N., Dunham, S. & Lippard, S. J. (1998). Inorg. Synth. 32, 141–144.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMilburn, G. H. W. & Truter, M. R. (1966). J. Chem. Soc. A, pp. 1609–1616.  CrossRef Google Scholar
First citationNakamoto, K., McCarthy, P. J., Fujita, J., Condrate, R. A. & Behnke, G. T. (1965). Inorg. Chem. 4, 36–43.  CrossRef CAS Web of Science Google Scholar
First citationRaudaschl, G., Lippert, B. & Hoeschele, J. D. (1983). Inorg. Chim. Acta, 78, L43–L44.  CrossRef CAS Web of Science Google Scholar
First citationRaudaschl, G., Lippert, B., Hoeschele, J. D., Howard-Lock, H. E., Lock, C. J. L. & Pilon, P. (1985). Inorg. Chim. Acta, 106, 141–149.  CSD CrossRef CAS Web of Science Google Scholar
First citationRaudaschl-Sieber, G., Lippert, B., Britten, J. F. & Beauchamp, A. L. (1986). Inorg. Chim. Acta, 124, 213–217.  CAS Google Scholar
First citationReedijk, J. (2009). Eur. J. Inorg. Chem. pp. 1303–1312.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTing, V. P., Schmidtmann, M., Wilson, C. C. & Weller, M. T. (2010). Angew. Chem. Int. Ed. 49, 9408–9411.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds