organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Methyl-1-[(4-methyl­phen­yl)sulfon­yl]-1H-pyrazol-3-yl 4-methyl­benzene­sulfonate

aUniversity of Gujrat, Department of Chemistry, Hafiz Hayat Campus, Gujrat, Pakistan, and bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 17 June 2012; accepted 19 June 2012; online 23 June 2012)

In the title compound, C18H18N2O5S2, the tolyl rings are oriented at a dihedral angle of 16.15 (11)° with respect to one another. The 5-methyl-1H-pyrazol-3-ol ring is roughly planar (r.m.s. deviation = 0.0231 Å) and subtends angles of 73.82 (8) and 89.85 (8)° with the tolyl rings. In the crystal, very weak ππ inter­actions between tolyl groups, with centroid–centroid distances of 4.1364 (19) and 4.0630 (16) Å, together with a C—H⋯π contact generate a three-dimensional network.

Related literature

For related structures, see: Gogoi et al. (2009[Gogoi, S., Zhao, C.-G. & Ding, D. (2009). Org. Lett. 11, 2246-2252.]); Murtaza et al. (2012[Murtaza, S., Kausar, N., Abbas, A., Tahir, M. N. & Zulfiqar, M. (2012). Acta Cryst. E68, o1616.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N2O5S2

  • Mr = 406.46

  • Monoclinic, C 2/c

  • a = 22.296 (2) Å

  • b = 8.0444 (7) Å

  • c = 20.915 (2) Å

  • β = 98.521 (6)°

  • V = 3709.7 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.910, Tmax = 0.933

  • 15506 measured reflections

  • 4124 independent reflections

  • 2548 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.128

  • S = 1.01

  • 4124 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18b⋯Cg2i 0.96 2.66 3.471 (3) 142
Symmetry code: (i) [-x, y-1, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I), (Fig. 1) has been synthesized as part of a study of enzyme inhibition and other biological activities of molecules incoorporating pyrazole moiety, an important component of many drugs. (I), was also prepared as a continuation of our work on sulfonyl derivatives, such as ethyl (3E)-3-[2-(4-bromophenylsulfonyl)hydrazin-1-ylidene]butanoate (Murtaza et al., 2012). The crystal structure of 1(R)-4-(3-hydroxy-5-methyl-pyrazol-1-yl)-octan-2-one (Gogoi et al. 2009) has also been published and contains a 5-methyl-1H-pyrazol-3-ol unit similar to the one observed here.

In (I) , Fig. 1, the tolyl groups A (C1—C7) and B (C12—C18) are planar with r.m.s. deviations of 0.0137 and 0.0043 Å, respectively. The dihedral angle between the A/B planes is 16.15 (11)°. The central group, 5-methyl-1H-pyrazol-3-ol, C (C8—C11/N1/N2/O3) is also planar with an r.m.s. deviation of 0.0231 Å. The sulfonyl groups D (O1/S1/O2) and E (O4/S2/O5) are of course planar. The dihedral angles between A/C, A/D, A/E, B/C, B/D and B/E are 89.85 (8)°, 43.20 (9)°, 67.25 (13)°, 73.82 (8)°, 31.56 (9)° and 33.61 (12)°, respectively.

C18—H18b···π contacts form between dissimilar tolyl rings (Table 1). Weak ππ interactions are also found between like ring systems Cg2···Cg2i [i = 1/2 - x, 1/2 - y, 1 - z] and Cg3···Cg3ii [ii = - x, y, 1/2 - z] at distances of 4.1364 (19) and 4.0630 (16) %A respectively, where Cg2 and Cg3 are the centroids of the (C1—C6) and (C12—C17), benzene rings. These interactions play a role in stabilizing the structure, generating a three dimensional network.

Related literature top

For related structures, see: Gogoi et al. (2009); Murtaza et al. (2012).

Experimental top

A solution of 3-methyl-1H-pyrazol-5-ol (0.1 g, 1 mmol) was prepared in anhydrous tetrahydrofuran (THF) and NaH (0.048 g, 2 mmol) was added to it at room temperature. A separately prepared solution of 4-methyl benzenesulfonyl chloride (0.19 g, 0.001 mol) in THF (10 ml) was added dropwise to the above mixture. The mixture was stirred for 2 h and solvent was evaporated to yield white prisms of (I).

M. p. 483 K.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C), where x = 1.5 for CH3 and x = 1.2 for other H-atoms.

Structure description top

The title compound (I), (Fig. 1) has been synthesized as part of a study of enzyme inhibition and other biological activities of molecules incoorporating pyrazole moiety, an important component of many drugs. (I), was also prepared as a continuation of our work on sulfonyl derivatives, such as ethyl (3E)-3-[2-(4-bromophenylsulfonyl)hydrazin-1-ylidene]butanoate (Murtaza et al., 2012). The crystal structure of 1(R)-4-(3-hydroxy-5-methyl-pyrazol-1-yl)-octan-2-one (Gogoi et al. 2009) has also been published and contains a 5-methyl-1H-pyrazol-3-ol unit similar to the one observed here.

In (I) , Fig. 1, the tolyl groups A (C1—C7) and B (C12—C18) are planar with r.m.s. deviations of 0.0137 and 0.0043 Å, respectively. The dihedral angle between the A/B planes is 16.15 (11)°. The central group, 5-methyl-1H-pyrazol-3-ol, C (C8—C11/N1/N2/O3) is also planar with an r.m.s. deviation of 0.0231 Å. The sulfonyl groups D (O1/S1/O2) and E (O4/S2/O5) are of course planar. The dihedral angles between A/C, A/D, A/E, B/C, B/D and B/E are 89.85 (8)°, 43.20 (9)°, 67.25 (13)°, 73.82 (8)°, 31.56 (9)° and 33.61 (12)°, respectively.

C18—H18b···π contacts form between dissimilar tolyl rings (Table 1). Weak ππ interactions are also found between like ring systems Cg2···Cg2i [i = 1/2 - x, 1/2 - y, 1 - z] and Cg3···Cg3ii [ii = - x, y, 1/2 - z] at distances of 4.1364 (19) and 4.0630 (16) %A respectively, where Cg2 and Cg3 are the centroids of the (C1—C6) and (C12—C17), benzene rings. These interactions play a role in stabilizing the structure, generating a three dimensional network.

For related structures, see: Gogoi et al. (2009); Murtaza et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.
5-Methyl-1-[(4-methylphenyl)sulfonyl]-1H-pyrazol-3-yl 4-methylbenzenesulfonate top
Crystal data top
C18H18N2O5S2F(000) = 1696
Mr = 406.46Dx = 1.456 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2548 reflections
a = 22.296 (2) Åθ = 1.9–27.2°
b = 8.0444 (7) ŵ = 0.32 mm1
c = 20.915 (2) ÅT = 296 K
β = 98.521 (6)°Prism, white
V = 3709.7 (6) Å30.30 × 0.25 × 0.22 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4124 independent reflections
Radiation source: fine-focus sealed tube2548 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 7.80 pixels mm-1θmax = 27.2°, θmin = 1.9°
ω scansh = 2826
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1010
Tmin = 0.910, Tmax = 0.933l = 2626
15506 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.6607P]
where P = (Fo2 + 2Fc2)/3
4124 reflections(Δ/σ)max = 0.001
247 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C18H18N2O5S2V = 3709.7 (6) Å3
Mr = 406.46Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.296 (2) ŵ = 0.32 mm1
b = 8.0444 (7) ÅT = 296 K
c = 20.915 (2) Å0.30 × 0.25 × 0.22 mm
β = 98.521 (6)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4124 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2548 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.933Rint = 0.055
15506 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.01Δρmax = 0.27 e Å3
4124 reflectionsΔρmin = 0.35 e Å3
247 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22735 (4)0.04624 (9)0.37485 (3)0.0494 (3)
S20.06192 (3)0.04283 (8)0.11235 (3)0.0429 (2)
O10.29151 (9)0.0548 (3)0.38078 (10)0.0662 (8)
O20.19810 (11)0.1021 (2)0.38973 (10)0.0691 (9)
O30.08101 (8)0.1414 (2)0.17980 (9)0.0460 (7)
O40.11514 (9)0.0014 (2)0.08671 (10)0.0550 (7)
O50.01762 (9)0.1490 (2)0.07870 (10)0.0614 (8)
N10.20378 (10)0.0816 (3)0.29509 (10)0.0418 (8)
N20.14243 (10)0.0735 (3)0.27469 (11)0.0421 (8)
C10.19849 (13)0.2141 (3)0.41327 (12)0.0435 (9)
C20.22831 (14)0.3644 (4)0.41528 (14)0.0540 (11)
C30.20366 (17)0.4966 (4)0.44373 (16)0.0641 (13)
C40.15110 (16)0.4839 (4)0.46975 (14)0.0571 (11)
C50.12313 (15)0.3307 (4)0.46813 (14)0.0610 (11)
C60.14649 (14)0.1940 (4)0.44013 (13)0.0529 (11)
C70.12476 (17)0.6330 (4)0.49855 (16)0.0890 (16)
C80.23506 (12)0.1375 (3)0.24822 (14)0.0439 (9)
C90.30235 (13)0.1595 (5)0.25488 (17)0.0719 (14)
C100.19296 (12)0.1638 (3)0.19549 (14)0.0476 (10)
C110.13808 (12)0.1233 (3)0.21468 (13)0.0365 (9)
C120.02738 (11)0.1363 (3)0.13625 (12)0.0370 (8)
C130.05269 (12)0.2897 (3)0.12767 (13)0.0452 (9)
C140.02264 (14)0.4301 (3)0.14397 (13)0.0489 (10)
C150.03075 (13)0.4199 (3)0.16949 (13)0.0439 (9)
C160.05397 (13)0.2635 (4)0.17760 (15)0.0525 (11)
C170.02588 (12)0.1226 (3)0.16106 (14)0.0498 (10)
C180.06254 (15)0.5728 (4)0.18785 (15)0.0629 (11)
H20.264110.375920.397870.0648*
H30.223450.598640.445370.0767*
H50.087730.318960.486290.0733*
H60.127400.091050.439550.0635*
H7A0.156760.696010.523140.1338*
H7B0.096660.597250.526360.1338*
H7C0.104020.701110.464580.1338*
H9A0.313060.198930.214750.1079*
H9B0.321950.054850.265750.1079*
H9C0.315210.238760.288430.1079*
H100.199580.201080.155030.0571*
H130.089140.298440.111290.0542*
H140.038880.534170.137540.0585*
H160.089910.253890.194890.0630*
H170.042670.018660.166550.0597*
H18A0.042910.669550.173830.0943*
H18B0.104070.570560.167540.0943*
H18C0.061010.576200.233940.0943*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0648 (6)0.0397 (4)0.0433 (4)0.0083 (4)0.0063 (4)0.0018 (3)
S20.0445 (4)0.0383 (4)0.0456 (4)0.0034 (3)0.0055 (3)0.0012 (3)
O10.0546 (14)0.0807 (16)0.0598 (14)0.0248 (12)0.0034 (11)0.0045 (12)
O20.1157 (19)0.0378 (12)0.0559 (13)0.0012 (12)0.0201 (13)0.0062 (10)
O30.0365 (11)0.0416 (11)0.0582 (12)0.0028 (9)0.0017 (9)0.0106 (9)
O40.0536 (13)0.0568 (12)0.0595 (13)0.0117 (10)0.0242 (10)0.0075 (10)
O50.0614 (14)0.0494 (12)0.0672 (13)0.0001 (10)0.0109 (11)0.0170 (10)
N10.0385 (14)0.0469 (14)0.0401 (12)0.0011 (10)0.0059 (11)0.0008 (10)
N20.0385 (14)0.0420 (13)0.0472 (13)0.0038 (10)0.0108 (11)0.0029 (10)
C10.0525 (19)0.0386 (15)0.0381 (14)0.0019 (13)0.0029 (13)0.0020 (12)
C20.057 (2)0.0473 (18)0.0584 (18)0.0057 (15)0.0110 (15)0.0004 (15)
C30.088 (3)0.0406 (18)0.062 (2)0.0000 (17)0.006 (2)0.0058 (15)
C40.076 (2)0.054 (2)0.0385 (15)0.0171 (18)0.0003 (16)0.0036 (14)
C50.065 (2)0.077 (2)0.0431 (16)0.0067 (18)0.0148 (15)0.0024 (16)
C60.064 (2)0.0512 (19)0.0443 (16)0.0074 (15)0.0105 (15)0.0002 (14)
C70.124 (3)0.079 (3)0.061 (2)0.044 (2)0.004 (2)0.015 (2)
C80.0373 (17)0.0417 (16)0.0534 (16)0.0076 (13)0.0095 (14)0.0074 (13)
C90.040 (2)0.097 (3)0.080 (2)0.0111 (18)0.0128 (17)0.018 (2)
C100.0427 (18)0.0506 (18)0.0497 (17)0.0090 (14)0.0071 (14)0.0124 (13)
C110.0338 (16)0.0290 (14)0.0473 (15)0.0018 (11)0.0077 (12)0.0048 (12)
C120.0335 (15)0.0333 (14)0.0438 (14)0.0009 (12)0.0042 (12)0.0002 (11)
C130.0416 (17)0.0442 (16)0.0522 (16)0.0055 (13)0.0149 (13)0.0022 (13)
C140.063 (2)0.0357 (16)0.0491 (16)0.0035 (14)0.0120 (15)0.0033 (13)
C150.0488 (18)0.0433 (16)0.0387 (14)0.0092 (13)0.0032 (13)0.0009 (12)
C160.0391 (17)0.0541 (19)0.067 (2)0.0019 (15)0.0167 (15)0.0012 (15)
C170.0439 (18)0.0376 (16)0.070 (2)0.0036 (13)0.0156 (15)0.0027 (14)
C180.074 (2)0.053 (2)0.0589 (19)0.0227 (17)0.0003 (17)0.0030 (15)
Geometric parameters (Å, º) top
S1—O11.419 (2)C13—C141.382 (4)
S1—O21.416 (2)C14—C151.377 (4)
S1—N11.697 (2)C15—C161.381 (4)
S1—C11.743 (3)C15—C181.498 (4)
S2—O31.6193 (19)C16—C171.364 (4)
S2—O41.413 (2)C2—H20.9300
S2—O51.412 (2)C3—H30.9300
S2—C121.742 (3)C5—H50.9300
O3—C111.378 (3)C6—H60.9300
N1—N21.373 (3)C7—H7A0.9600
N1—C81.361 (4)C7—H7B0.9600
N2—C111.307 (4)C7—H7C0.9600
C1—C21.378 (4)C9—H9A0.9600
C1—C61.371 (4)C9—H9B0.9600
C2—C31.373 (5)C9—H9C0.9600
C3—C41.367 (5)C10—H100.9300
C4—C51.379 (5)C13—H130.9300
C4—C71.500 (5)C14—H140.9300
C5—C61.383 (4)C16—H160.9300
C8—C91.497 (4)C17—H170.9300
C8—C101.355 (4)C18—H18A0.9600
C10—C111.382 (4)C18—H18B0.9600
C12—C131.380 (3)C18—H18C0.9600
C12—C171.369 (4)
O1—S1—O2120.84 (14)C14—C15—C18121.3 (2)
O1—S1—N1103.83 (12)C16—C15—C18121.1 (3)
O1—S1—C1111.00 (14)C15—C16—C17122.1 (3)
O2—S1—N1105.76 (12)C12—C17—C16119.1 (2)
O2—S1—C1109.76 (13)C1—C2—H2121.00
N1—S1—C1103.99 (12)C3—C2—H2121.00
O3—S2—O4108.61 (11)C2—C3—H3119.00
O3—S2—O5102.25 (11)C4—C3—H3119.00
O3—S2—C12103.03 (11)C4—C5—H5119.00
O4—S2—O5121.22 (12)C6—C5—H5119.00
O4—S2—C12110.23 (11)C1—C6—H6121.00
O5—S2—C12109.70 (12)C5—C6—H6121.00
S2—O3—C11120.84 (16)C4—C7—H7A109.00
S1—N1—N2116.53 (17)C4—C7—H7B109.00
S1—N1—C8130.3 (2)C4—C7—H7C109.00
N2—N1—C8112.7 (2)H7A—C7—H7B109.00
N1—N2—C11102.3 (2)H7A—C7—H7C109.00
S1—C1—C2119.0 (2)H7B—C7—H7C109.00
S1—C1—C6119.4 (2)C8—C9—H9A109.00
C2—C1—C6121.7 (3)C8—C9—H9B109.00
C1—C2—C3118.1 (3)C8—C9—H9C109.00
C2—C3—C4122.5 (3)H9A—C9—H9B109.00
C3—C4—C5117.9 (3)H9A—C9—H9C109.00
C3—C4—C7120.6 (3)H9B—C9—H9C109.00
C5—C4—C7121.4 (3)C8—C10—H10127.00
C4—C5—C6121.6 (3)C11—C10—H10127.00
C1—C6—C5118.3 (3)C12—C13—H13121.00
N1—C8—C9125.9 (3)C14—C13—H13121.00
N1—C8—C10105.7 (2)C13—C14—H14119.00
C9—C8—C10128.4 (3)C15—C14—H14119.00
C8—C10—C11105.3 (2)C15—C16—H16119.00
O3—C11—N2118.2 (2)C17—C16—H16119.00
O3—C11—C10127.6 (2)C12—C17—H17120.00
N2—C11—C10114.1 (2)C16—C17—H17120.00
S2—C12—C13119.7 (2)C15—C18—H18A109.00
S2—C12—C17119.17 (19)C15—C18—H18B109.00
C13—C12—C17121.1 (2)C15—C18—H18C109.00
C12—C13—C14118.5 (2)H18A—C18—H18B109.00
C13—C14—C15121.7 (2)H18A—C18—H18C109.00
C14—C15—C16117.6 (2)H18B—C18—H18C109.00
O1—S1—N1—N2177.3 (2)N2—N1—C8—C101.1 (3)
O1—S1—N1—C811.9 (3)N1—N2—C11—O3175.7 (2)
O2—S1—N1—N249.2 (2)N1—N2—C11—C100.4 (3)
O2—S1—N1—C8140.0 (2)S1—C1—C2—C3177.7 (2)
C1—S1—N1—N266.5 (2)C6—C1—C2—C31.6 (4)
C1—S1—N1—C8104.4 (3)S1—C1—C6—C5177.5 (2)
O1—S1—C1—C231.7 (3)C2—C1—C6—C51.8 (4)
O1—S1—C1—C6148.9 (2)C1—C2—C3—C40.0 (5)
O2—S1—C1—C2167.9 (2)C2—C3—C4—C51.4 (5)
O2—S1—C1—C612.8 (3)C2—C3—C4—C7178.1 (3)
N1—S1—C1—C279.4 (2)C3—C4—C5—C61.2 (5)
N1—S1—C1—C6100.0 (2)C7—C4—C5—C6178.3 (3)
O4—S2—O3—C1122.9 (2)C4—C5—C6—C10.4 (4)
O5—S2—O3—C11152.18 (18)N1—C8—C10—C110.8 (3)
C12—S2—O3—C1193.98 (19)C9—C8—C10—C11179.3 (3)
O3—S2—C12—C13116.7 (2)C8—C10—C11—O3174.6 (2)
O3—S2—C12—C1765.8 (2)C8—C10—C11—N20.3 (3)
O4—S2—C12—C130.9 (3)S2—C12—C13—C14176.7 (2)
O4—S2—C12—C17178.5 (2)C17—C12—C13—C140.8 (4)
O5—S2—C12—C13135.0 (2)S2—C12—C17—C16177.7 (2)
O5—S2—C12—C1742.5 (3)C13—C12—C17—C160.2 (4)
S2—O3—C11—N2123.4 (2)C12—C13—C14—C151.3 (4)
S2—O3—C11—C1061.9 (3)C13—C14—C15—C160.8 (4)
S1—N1—N2—C11173.28 (18)C13—C14—C15—C18179.2 (3)
C8—N1—N2—C110.9 (3)C14—C15—C16—C170.2 (4)
S1—N1—C8—C99.3 (4)C18—C15—C16—C17179.8 (3)
S1—N1—C8—C10172.1 (2)C15—C16—C17—C120.7 (5)
N2—N1—C8—C9179.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C18—H18b···Cg2i0.962.663.471 (3)142
Symmetry code: (i) x, y1, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H18N2O5S2
Mr406.46
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)22.296 (2), 8.0444 (7), 20.915 (2)
β (°) 98.521 (6)
V3)3709.7 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.30 × 0.25 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.910, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
15506, 4124, 2548
Rint0.055
(sin θ/λ)max1)0.643
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.128, 1.01
No. of reflections4124
No. of parameters247
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C18—H18b···Cg2i0.962.663.471 (3)142
Symmetry code: (i) x, y1, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, former Vice Chancellor of the University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGogoi, S., Zhao, C.-G. & Ding, D. (2009). Org. Lett. 11, 2246–2252.  Web of Science CSD CrossRef Google Scholar
First citationMurtaza, S., Kausar, N., Abbas, A., Tahir, M. N. & Zulfiqar, M. (2012). Acta Cryst. E68, o1616.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds