organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Acetyl-1-(2,5-di­methyl­phen­yl)thio­urea

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 27 June 2012; accepted 28 June 2012; online 4 July 2012)

In the title compound, C11H14N2OS, the thioamide C=S and amide C=O bonds are anti to each other; the N—H bonds are also anti to each other. The mol­ecular conformation is stabilized by an N—H⋯O hydrogen bond. In the crystal, the mol­ecules are linked into inversion dimers by pairs of N—H⋯S hydrogen bonds.

Related literature

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda et al. (2001[Gowda, B. T., Paulus, H. & Fuess, H. (2001). Z. Naturforsch. Teil A, 56, 386-394.]); Kumar et al. (2012[Kumar, S., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o2191.]); Shahwar et al. (2012[Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160.]), of N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.]) and of N-chloro­aryl­sulfonamides, see: Gowda & Ramachandra (1989[Gowda, B. T. & Ramachandra, P. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 1067-1071.]); Shetty & Gowda (2004[Shetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63-72.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N2OS

  • Mr = 222.30

  • Triclinic, [P \overline 1]

  • a = 5.0312 (2) Å

  • b = 10.9329 (6) Å

  • c = 11.0568 (7) Å

  • α = 105.711 (5)°

  • β = 100.020 (5)°

  • γ = 93.037 (4)°

  • V = 573.31 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.42 × 0.38 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.899, Tmax = 0.950

  • 3641 measured reflections

  • 2344 independent reflections

  • 2068 reflections with I > 2σ(I)

  • Rint = 0.007

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.101

  • S = 1.05

  • 2344 reflections

  • 145 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.85 (2) 1.94 (2) 2.6382 (19) 139 (2)
N2—H2N⋯S1i 0.85 (2) 2.55 (2) 3.3904 (15) 169 (2)
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiourea and its derivatives are known to exhibit a wide variety of biological activities. As part of studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2001; Kumar et al., 2012: Shahwar et al., 2012); N-(aryl)-methanesulfonamides (Gowda et al., 2007) and N-chloroarylsulfonamides (Gowda & Ramachandra, 1989; Shetty & Gowda, 2004), in the present work, the crystal structure of 3-acetyl-1-(2,5-dimethylphenyl)thiourea has been determined (Fig. 1).

The conformation of the two N—H bonds are anti to each other. Furthermore, the conformations of the amide CS and the CO are also anti to each other and both the bonds are anti to the adjacent N—H bonds, similar to the anti conformation observed in 3-acetyl-1-(2,3-dimethylphenyl)thiourea (I)(Kumar et al., 2012). The adjacent N—H bond is syn to the ortho-methyl group, compared to the anti conformation observed with respect to the ortho- and meta-methyl groups in the benzene ring of (I).

The side chain is oriented itself with respect to the phenyl ring with the C2—C1—N1—C7 and C6—C1—N1—C7 torsion angles of 83.44 (22)° and -100.65 (1/5)°, compared to the corresponding values of 83.59 (47)° and -99.89 (44)° in (I). The dihedral angle between the phenyl ring and the side chain is 79.0 (4)°, compared to the value of 81.33 (10)° in (I).

The hydrogen atom of the NH attached to the phenyl ring and the amide oxygen are involved in intramolecular hydrogen bonding. In the crystal, the molecules form inversion type dimers through N—H···S intermolecular hydrogen bonds (Table 1, Fig.2).

Related literature top

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (2001); Kumar et al. (2012); Shahwar et al. (2012), of N-(aryl)-methanesulfonamides, see: Gowda et al. (2007) and of N-chloroarylsulfonamides, see: Gowda & Ramachandra (1989); Shetty & Gowda (2004).

Experimental top

3-Acetyl-1-(2,5-dimethylphenyl)thiourea was synthesized by adding a solution of acetyl chloride (0.10 mol) in acetone (30 ml) dropwise to a suspension of ammonium thiocyanate (0.10 mol) in acetone (30 ml). The reaction mixture was refluxed for 30 min. After cooling to room temperature, a solution of 2,5-dimethylaniline (0.10 mol) in acetone (10 ml) was added and refluxed for 3 h. The reaction mixture was poured into acidified cold water. The precipitated title compound was recrystallized to constant melting point from acetonitrile. The purity of the compound was checked and characterized by its infrared spectrum.

Prism like colourless single crystals used in X-ray diffraction studies were grown in acetonitrile solution by slow evaporation of the solvent at room temperature.

Refinement top

All H atoms bonded to C were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) (1.5 for methyl H atoms) and with aromatic C—H = 0.93 Å and methyl C—H = 0.96 Å. The amino H atoms were refined isotropically with the N—H distances restrained to 0.86 (2)Å.

To improve values of R1, wR2, and GOOF one bad reflection (-1 3 3) was omitted from the refinement.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
3-Acetyl-1-(2,5-dimethylphenyl)thiourea top
Crystal data top
C11H14N2OSZ = 2
Mr = 222.30F(000) = 236
Triclinic, P1Dx = 1.288 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.0312 (2) ÅCell parameters from 2369 reflections
b = 10.9329 (6) Åθ = 3.1–27.7°
c = 11.0568 (7) ŵ = 0.26 mm1
α = 105.711 (5)°T = 293 K
β = 100.020 (5)°Prism, colourless
γ = 93.037 (4)°0.42 × 0.38 × 0.20 mm
V = 573.31 (6) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2344 independent reflections
Radiation source: fine-focus sealed tube2068 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.007
Rotation method data acquisition using ω and phi scansθmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 56
Tmin = 0.899, Tmax = 0.950k = 1113
3641 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.2328P]
where P = (Fo2 + 2Fc2)/3
2344 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.23 e Å3
2 restraintsΔρmin = 0.20 e Å3
Crystal data top
C11H14N2OSγ = 93.037 (4)°
Mr = 222.30V = 573.31 (6) Å3
Triclinic, P1Z = 2
a = 5.0312 (2) ÅMo Kα radiation
b = 10.9329 (6) ŵ = 0.26 mm1
c = 11.0568 (7) ÅT = 293 K
α = 105.711 (5)°0.42 × 0.38 × 0.20 mm
β = 100.020 (5)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2344 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2068 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.950Rint = 0.007
3641 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0362 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.23 e Å3
2344 reflectionsΔρmin = 0.20 e Å3
145 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6145 (3)0.73651 (15)0.28289 (15)0.0372 (4)
C20.6492 (3)0.61308 (15)0.21687 (15)0.0377 (4)
C30.5232 (4)0.51510 (16)0.25210 (17)0.0439 (4)
H30.54000.43080.20960.053*
C40.3747 (4)0.53925 (17)0.34786 (17)0.0458 (4)
H40.29470.47110.36880.055*
C50.3422 (3)0.66295 (17)0.41356 (16)0.0416 (4)
C60.4659 (3)0.76177 (16)0.37962 (16)0.0412 (4)
H60.44890.84600.42230.049*
C70.6584 (3)0.89287 (15)0.16443 (16)0.0366 (3)
C81.0446 (4)1.06364 (16)0.24317 (18)0.0442 (4)
C91.1609 (4)1.17630 (19)0.2102 (2)0.0571 (5)
H9A1.01901.22770.19150.069*
H9B1.24231.14730.13650.069*
H9C1.29621.22630.28130.069*
C100.8130 (4)0.58529 (19)0.11363 (18)0.0491 (4)
H10A0.99140.63020.14630.059*
H10B0.72590.61270.04250.059*
H10C0.82680.49510.08590.059*
C110.1781 (4)0.6891 (2)0.5173 (2)0.0587 (5)
H11A0.23160.63890.57480.070*
H11B0.01110.66680.47970.070*
H11C0.20890.77810.56380.070*
N10.7489 (3)0.84398 (14)0.25857 (15)0.0438 (4)
H1N0.895 (3)0.8817 (18)0.3093 (18)0.053*
N20.8099 (3)1.00118 (13)0.16102 (15)0.0401 (3)
H2N0.751 (4)1.0323 (18)0.1002 (17)0.048*
O11.1487 (3)1.03056 (13)0.33502 (14)0.0603 (4)
S10.37879 (9)0.83331 (4)0.05301 (4)0.04690 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0373 (8)0.0377 (8)0.0365 (8)0.0001 (6)0.0019 (6)0.0171 (7)
C20.0372 (8)0.0410 (9)0.0350 (8)0.0040 (7)0.0017 (6)0.0144 (7)
C30.0538 (10)0.0346 (8)0.0432 (9)0.0047 (7)0.0056 (8)0.0130 (7)
C40.0507 (10)0.0440 (9)0.0473 (10)0.0005 (8)0.0075 (8)0.0229 (8)
C50.0399 (9)0.0522 (10)0.0353 (8)0.0072 (7)0.0031 (7)0.0189 (7)
C60.0457 (9)0.0378 (8)0.0376 (9)0.0091 (7)0.0003 (7)0.0105 (7)
C70.0362 (8)0.0345 (8)0.0414 (9)0.0029 (6)0.0082 (7)0.0143 (7)
C80.0419 (9)0.0344 (8)0.0515 (10)0.0002 (7)0.0051 (8)0.0077 (7)
C90.0523 (11)0.0441 (10)0.0693 (13)0.0127 (8)0.0051 (9)0.0144 (9)
C100.0482 (10)0.0552 (11)0.0459 (10)0.0076 (8)0.0112 (8)0.0161 (8)
C110.0547 (11)0.0795 (14)0.0489 (11)0.0162 (10)0.0157 (9)0.0248 (10)
N10.0429 (8)0.0393 (8)0.0466 (8)0.0065 (6)0.0055 (6)0.0191 (6)
N20.0376 (7)0.0360 (7)0.0477 (8)0.0014 (6)0.0024 (6)0.0183 (6)
O10.0610 (8)0.0489 (8)0.0598 (9)0.0096 (6)0.0144 (7)0.0165 (6)
S10.0406 (2)0.0483 (3)0.0527 (3)0.00880 (18)0.00441 (19)0.0269 (2)
Geometric parameters (Å, º) top
C1—C61.385 (2)C8—O11.213 (2)
C1—C21.386 (2)C8—N21.375 (2)
C1—N11.436 (2)C8—C91.495 (2)
C2—C31.393 (2)C9—H9A0.9600
C2—C101.497 (2)C9—H9B0.9600
C3—C41.376 (3)C9—H9C0.9600
C3—H30.9300C10—H10A0.9600
C4—C51.384 (3)C10—H10B0.9600
C4—H40.9300C10—H10C0.9600
C5—C61.388 (2)C11—H11A0.9600
C5—C111.502 (3)C11—H11B0.9600
C6—H60.9300C11—H11C0.9600
C7—N11.319 (2)N1—H1N0.852 (15)
C7—N21.387 (2)N2—H2N0.849 (15)
C7—S11.6692 (17)
C6—C1—C2122.16 (15)C8—C9—H9A109.5
C6—C1—N1117.34 (15)C8—C9—H9B109.5
C2—C1—N1120.37 (15)H9A—C9—H9B109.5
C1—C2—C3116.24 (15)C8—C9—H9C109.5
C1—C2—C10122.39 (15)H9A—C9—H9C109.5
C3—C2—C10121.37 (16)H9B—C9—H9C109.5
C4—C3—C2122.01 (16)C2—C10—H10A109.5
C4—C3—H3119.0C2—C10—H10B109.5
C2—C3—H3119.0H10A—C10—H10B109.5
C3—C4—C5121.29 (16)C2—C10—H10C109.5
C3—C4—H4119.4H10A—C10—H10C109.5
C5—C4—H4119.4H10B—C10—H10C109.5
C4—C5—C6117.50 (16)C5—C11—H11A109.5
C4—C5—C11121.20 (17)C5—C11—H11B109.5
C6—C5—C11121.31 (17)H11A—C11—H11B109.5
C1—C6—C5120.80 (15)C5—C11—H11C109.5
C1—C6—H6119.6H11A—C11—H11C109.5
C5—C6—H6119.6H11B—C11—H11C109.5
N1—C7—N2116.17 (15)C7—N1—C1124.80 (14)
N1—C7—S1124.34 (12)C7—N1—H1N116.3 (14)
N2—C7—S1119.49 (12)C1—N1—H1N118.9 (14)
O1—C8—N2122.97 (16)C8—N2—C7128.05 (15)
O1—C8—C9122.62 (17)C8—N2—H2N116.1 (14)
N2—C8—C9114.41 (16)C7—N2—H2N115.9 (14)
C6—C1—C2—C30.7 (2)C4—C5—C6—C10.4 (2)
N1—C1—C2—C3176.46 (14)C11—C5—C6—C1179.34 (16)
C6—C1—C2—C10179.04 (16)N2—C7—N1—C1176.57 (15)
N1—C1—C2—C103.3 (2)S1—C7—N1—C13.1 (3)
C1—C2—C3—C40.6 (3)C6—C1—N1—C7100.6 (2)
C10—C2—C3—C4179.20 (17)C2—C1—N1—C783.4 (2)
C2—C3—C4—C50.4 (3)O1—C8—N2—C71.7 (3)
C3—C4—C5—C60.3 (3)C9—C8—N2—C7178.47 (17)
C3—C4—C5—C11179.49 (17)N1—C7—N2—C80.6 (3)
C2—C1—C6—C50.7 (2)S1—C7—N2—C8179.70 (14)
N1—C1—C6—C5176.52 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.85 (2)1.94 (2)2.6382 (19)139 (2)
N2—H2N···S1i0.85 (2)2.55 (2)3.3904 (15)169 (2)
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC11H14N2OS
Mr222.30
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.0312 (2), 10.9329 (6), 11.0568 (7)
α, β, γ (°)105.711 (5), 100.020 (5), 93.037 (4)
V3)573.31 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.42 × 0.38 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.899, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
3641, 2344, 2068
Rint0.007
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.101, 1.05
No. of reflections2344
No. of parameters145
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.852 (15)1.939 (17)2.6382 (19)138.5 (19)
N2—H2N···S1i0.849 (15)2.554 (15)3.3904 (15)168.9 (18)
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

References

First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.  Web of Science CSD CrossRef IUCr Journals
First citationGowda, B. T., Paulus, H. & Fuess, H. (2001). Z. Naturforsch. Teil A, 56, 386–394.  CAS
First citationGowda, B. T. & Ramachandra, P. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 1067–1071.  CrossRef
First citationKumar, S., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o2191.  CSD CrossRef IUCr Journals
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
First citationShahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160.  CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationShetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63–72.  CAS
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds