organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(Adamantan-1-yl)-4-ethyl-1-[(4-phenyl­piperazin-1-yl)meth­yl]-1H-1,2,4-triazole-5(4H)-thione

aCollege of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and bDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo – CINN, C/ Julián Clavería, 8, 33006 Oviedo, Asturias, Spain
*Correspondence e-mail: sgg@uniovi.es

(Received 1 June 2012; accepted 30 June 2012; online 7 July 2012)

The title compound, C25H35N5S, has an approximately C-shaped conformation. The dihedral angle between the triazole and phenyl planes is 79.5 (2)°. The crystal structure consists of infinite chains parallel to the b axis, constructed by C—H⋯S hydrogen bonds between translation-related mol­ecules. Adjacent chains are linked via weak C—H⋯C inter­actions between the adamantyl and phenyl groups.

Related literature

For the biological activity of adamantane derivatives and adamantyl-1,2,4-triazoles, see: Vernier et al. (1969[Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642-665.]); Al-Deeb et al. (2006[Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40-47.]); Al-Omar et al. (2010[Al-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526-2550.]); El-Emam & Ibrahim (1991[El-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug. Res. 41, 1260-1264.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]); Kadi et al. (2007[Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.], 2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]). For related adamantyl-1,2,4-triazole structures, see: Al-Tamimi et al. (2010[Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.]); Al-Abdullah et al. (2012[Al-Abdullah, E. S., Asiri, H. H., El-Emam, A. A. & Ng, S. W. (2012). Acta Cryst. E68, o531.]); El-Emam et al. (2012[El-Emam, A. A., Alrashood, K. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o657-o658.]); Lahsasni et al. (2012[Lahsasni, S., El-Emam, A. A., El-Brollosy, N. R., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, o1439-o1440.]).

[Scheme 1]

Experimental

Crystal data
  • C25H35N5S

  • Mr = 437.65

  • Orthorhombic, P n a 21

  • a = 27.382 (4) Å

  • b = 6.5083 (7) Å

  • c = 13.369 (2) Å

  • V = 2382.4 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.36 mm−1

  • T = 293 K

  • 0.16 × 0.06 × 0.02 mm

Data collection
  • Oxford Diffraction Xcalibur Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.919, Tmax = 1.000

  • 5844 measured reflections

  • 3016 independent reflections

  • 1828 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.128

  • S = 1.00

  • 3016 reflections

  • 282 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 632 Friedel pairs

  • Flack parameter: 0.00 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯S1i 0.97 2.90 3.836 (5) 162
C5—H5A⋯C20ii 0.97 2.80 3.750 (6) 167
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Adamantane derivatives were early recognized for their diverse biological activities including antiviral activity against the influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al., 2004). In addition, adamantane derivatives were reported to exhibit marked antibacterial (Kadi et al., 2007, 2010) and anti-inflammatory (El-Emam & Ibrahim, 1991) activities. In continuation to our interest in the chemical and pharmacological properties of adamantane derivatives, we synthesized the title compound (I) as a potential bioactive agent. The structure consists of infinite chains parallel to the b axis, constructed by translations of a single molecule. The molecules in the the same chain are connected through C—H···S interactions with a H···S distance of 2.90 Å. Moreover, chains are linked via the weak C5—H5B···C20 interaction with a bond distance of 2.80 Å. The plane of the 1,2,4-triazole ring includes the S,C(ethyl group), C (adamantyl group) and C15 substituent atoms with deviations from the L.S. plane (in Å) of 0.0582, -0.1062, 0.0568 and -0.0964, respectively. The phenyl ring plane includes atom N5 with a deviation of 0.0668 Å. The angle between these two planes is 79.5 (2)°.

Related literature top

For the biological activity of adamantane derivatives and adamantyl-1,2,4-triazoles, see: Vernier et al. (1969); Al-Deeb et al. (2006); Al-Omar et al. (2010); El-Emam & Ibrahim (1991); El-Emam et al. (2004); Kadi et al. (2007, 2010). For related adamantyl-1,2,4-triazole structures, see: Al-Tamimi et al. (2010); Al-Abdullah et al. (2012); El-Emam et al. (2012); Lahsasni et al. (2012).

Experimental top

A mixture of 527 mg (2 mmol) of 3-(1-adamantyl)-4-ethyl-4H-1,2,4-triazole-5-thiol (El-Emam & Ibrahim, 1991), 1-phenylpiperazine (325 mg, 2 mmol) and 37% formaldehyde solution (1 ml), in ethanol (8 ml), was heated under reflux for 15 min when a clear solution was obtained. Stirring was continued for 12 h at room temperature and the mixture was allowed to stand overnight. Cold water (5 ml) was slowly added and the mixture was stirred for 20 min. The precipitated crude product was filtered, washed with water, dried, and crystallized from ethanol to yield 770 mg (88%) of the title compound (C25H35N5S) as colorless needle crystals. M.P.: 139–141°C. Single crystals suitable for X-ray analysis were obtained by slow evaporation of CHCl3:EtOH solution (1:1; 5 ml) at room temperature. 1H NMR (CDCl3, 500.13 MHz): δ 1.13 (t, 3H, CH2CH3, J = 7.0 Hz), 1.67–1.73 (m, 6H, Adamantane-H), 1.96 (s, 6H, Adamantane-H), 2.03 (s, 3H, Adamantane-H), 2.88 (s, 4H, Piperazine-H), 3.09 (s, 4H, Piperazine-H), 4.17 (q, 2H, CH2CH3, J = 7.0 Hz), 5.08 (s, 2H, CH2), 6.46–6.83 (m, 3H, Ar—H), 7.15–7.17 (m, 2H, Ar—H). 13C NMR (CDCl3, 125.76 MHz): δ 13.81 (CH2CH3), 27.95, 35.24, 36.31, 39.90 (Adamantane-C), 43.43 (CH2CH3), 49.40, 50.37 (Piperazine-C), 68.80 (CH2), 116.32, 119.99, 129.12, 151.27 (Ar—C), 156.10 (Triazole C-5), 168.75 (C=S).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 or 1.5 (for methyl groups) Ueq(C).

Structure description top

Adamantane derivatives were early recognized for their diverse biological activities including antiviral activity against the influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al., 2004). In addition, adamantane derivatives were reported to exhibit marked antibacterial (Kadi et al., 2007, 2010) and anti-inflammatory (El-Emam & Ibrahim, 1991) activities. In continuation to our interest in the chemical and pharmacological properties of adamantane derivatives, we synthesized the title compound (I) as a potential bioactive agent. The structure consists of infinite chains parallel to the b axis, constructed by translations of a single molecule. The molecules in the the same chain are connected through C—H···S interactions with a H···S distance of 2.90 Å. Moreover, chains are linked via the weak C5—H5B···C20 interaction with a bond distance of 2.80 Å. The plane of the 1,2,4-triazole ring includes the S,C(ethyl group), C (adamantyl group) and C15 substituent atoms with deviations from the L.S. plane (in Å) of 0.0582, -0.1062, 0.0568 and -0.0964, respectively. The phenyl ring plane includes atom N5 with a deviation of 0.0668 Å. The angle between these two planes is 79.5 (2)°.

For the biological activity of adamantane derivatives and adamantyl-1,2,4-triazoles, see: Vernier et al. (1969); Al-Deeb et al. (2006); Al-Omar et al. (2010); El-Emam & Ibrahim (1991); El-Emam et al. (2004); Kadi et al. (2007, 2010). For related adamantyl-1,2,4-triazole structures, see: Al-Tamimi et al. (2010); Al-Abdullah et al. (2012); El-Emam et al. (2012); Lahsasni et al. (2012).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP-style plot of title compound with labeling. Ellipsoids are given at the 50% probability level.
3-(Adamantan-1-yl)-4-ethyl-1-[(4-phenylpiperazin-1-yl)methyl]-1H-1,2,4- triazole-5(4H)-thione top
Crystal data top
C25H35N5SF(000) = 944
Mr = 437.65Dx = 1.220 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2c -2nCell parameters from 728 reflections
a = 27.382 (4) Åθ = 3.7–70.5°
b = 6.5083 (7) ŵ = 1.36 mm1
c = 13.369 (2) ÅT = 293 K
V = 2382.4 (5) Å3Prism, colourless
Z = 40.16 × 0.06 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur Gemini R
diffractometer
3016 independent reflections
Radiation source: Enhance (Cu) X-ray Source1828 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
Detector resolution: 10.2673 pixels mm-1θmax = 70.7°, θmin = 4.6°
ω scansh = 2732
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 77
Tmin = 0.919, Tmax = 1.000l = 916
5844 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0292P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3016 reflectionsΔρmax = 0.17 e Å3
282 parametersΔρmin = 0.18 e Å3
1 restraintAbsolute structure: Flack (1983), 632 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (4)
Crystal data top
C25H35N5SV = 2382.4 (5) Å3
Mr = 437.65Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 27.382 (4) ŵ = 1.36 mm1
b = 6.5083 (7) ÅT = 293 K
c = 13.369 (2) Å0.16 × 0.06 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur Gemini R
diffractometer
3016 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1828 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 1.000Rint = 0.086
5844 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.128Δρmax = 0.17 e Å3
S = 1.00Δρmin = 0.18 e Å3
3016 reflectionsAbsolute structure: Flack (1983), 632 Friedel pairs
282 parametersAbsolute structure parameter: 0.00 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47530 (6)0.0990 (2)0.88657 (13)0.0661 (4)
N10.40642 (17)0.4993 (7)1.0508 (3)0.0559 (11)
N20.42569 (16)0.4251 (7)0.9622 (3)0.0533 (11)
N30.44288 (16)0.2016 (7)1.0746 (3)0.0495 (10)
N40.37594 (16)0.5467 (7)0.8271 (4)0.0536 (11)
N50.30519 (17)0.5670 (7)0.6693 (3)0.0540 (11)
C10.41610 (19)0.3589 (8)1.1182 (4)0.0486 (12)
C20.39947 (19)0.3789 (8)1.2243 (4)0.0498 (12)
C30.3646 (2)0.1977 (9)1.2515 (5)0.0634 (15)
H3A0.33700.19581.20600.076*
H3B0.38190.06811.24520.076*
C40.3465 (3)0.2256 (11)1.3600 (5)0.0765 (19)
H40.32530.11001.37760.092*
C50.3177 (2)0.4225 (11)1.3669 (6)0.0805 (19)
H5A0.30450.43781.43390.097*
H5B0.29060.41861.32020.097*
C60.3508 (3)0.6039 (11)1.3427 (5)0.0764 (19)
H60.33230.73221.34780.092*
C70.3692 (2)0.5759 (9)1.2349 (5)0.0671 (16)
H7A0.34160.57011.18970.081*
H7B0.38910.69321.21620.081*
C80.4414 (2)0.3859 (11)1.2987 (4)0.0672 (16)
H8A0.46270.49991.28240.081*
H8B0.46020.26011.29370.081*
C90.4223 (3)0.4110 (12)1.4070 (5)0.082 (2)
H90.44990.41531.45370.099*
C100.3897 (3)0.2300 (12)1.4314 (5)0.092 (2)
H10A0.37810.24131.49970.110*
H10B0.40810.10331.42540.110*
C110.3934 (3)0.6097 (11)1.4138 (5)0.089 (2)
H11A0.38150.62821.48160.107*
H11B0.41430.72501.39750.107*
C120.4659 (2)0.0198 (9)1.1198 (5)0.0650 (17)
H12A0.45990.09921.07790.078*
H12B0.45140.00601.18480.078*
C130.5207 (2)0.0501 (14)1.1319 (6)0.096 (3)
H13A0.53520.07451.15630.143*
H13B0.52670.15931.17860.143*
H13C0.53480.08471.06830.143*
C140.4485 (2)0.2439 (8)0.9739 (4)0.0487 (12)
C150.42363 (18)0.5519 (8)0.8724 (4)0.0561 (14)
H15A0.43180.69260.88950.067*
H15B0.44770.50310.82460.067*
C160.3704 (2)0.3810 (9)0.7556 (5)0.0640 (15)
H16A0.37840.25140.78750.077*
H16B0.39290.40130.70040.077*
C170.3181 (2)0.3728 (9)0.7154 (5)0.0670 (17)
H17A0.31530.26320.66660.080*
H17B0.29570.34360.76990.080*
C180.3126 (2)0.7352 (11)0.7401 (5)0.077 (2)
H18A0.29070.71840.79640.092*
H18B0.30490.86460.70780.092*
C190.3642 (2)0.7407 (10)0.7770 (5)0.0707 (17)
H19A0.38630.76190.72110.085*
H19B0.36830.85400.82340.085*
C200.2619 (2)0.5739 (9)0.6120 (4)0.0587 (14)
C210.2322 (2)0.4026 (11)0.5996 (4)0.0650 (16)
H210.23930.28100.63310.078*
C220.1913 (2)0.4140 (12)0.5361 (5)0.0732 (18)
H220.17190.29830.52600.088*
C230.1798 (2)0.5956 (12)0.4890 (5)0.0775 (19)
H230.15230.60350.44820.093*
C240.2089 (3)0.7651 (12)0.5023 (5)0.0766 (19)
H240.20060.88800.47110.092*
C250.2496 (2)0.7563 (10)0.5605 (4)0.0688 (16)
H250.26950.87140.56650.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0731 (8)0.0694 (8)0.0558 (8)0.0032 (8)0.0078 (9)0.0078 (9)
N10.061 (3)0.059 (3)0.048 (3)0.003 (2)0.000 (2)0.004 (2)
N20.059 (2)0.056 (3)0.045 (2)0.000 (2)0.003 (2)0.003 (2)
N30.053 (2)0.050 (2)0.046 (2)0.002 (2)0.003 (2)0.005 (2)
N40.056 (2)0.053 (3)0.052 (2)0.001 (2)0.006 (2)0.001 (2)
N50.058 (3)0.048 (2)0.056 (3)0.001 (2)0.010 (2)0.004 (2)
C10.048 (3)0.046 (3)0.051 (3)0.001 (2)0.005 (3)0.005 (2)
C20.051 (3)0.047 (3)0.052 (3)0.001 (3)0.002 (3)0.003 (2)
C30.073 (4)0.059 (3)0.058 (4)0.006 (3)0.010 (3)0.007 (3)
C40.102 (5)0.066 (4)0.062 (4)0.014 (4)0.024 (4)0.007 (3)
C50.078 (4)0.087 (5)0.077 (5)0.008 (4)0.023 (4)0.015 (4)
C60.089 (4)0.070 (4)0.070 (4)0.012 (4)0.016 (4)0.011 (3)
C70.085 (4)0.054 (3)0.063 (4)0.011 (3)0.008 (3)0.004 (3)
C80.066 (3)0.082 (4)0.055 (4)0.000 (3)0.005 (3)0.011 (3)
C90.090 (4)0.106 (5)0.051 (4)0.007 (5)0.012 (4)0.012 (4)
C100.133 (7)0.087 (5)0.056 (4)0.025 (5)0.017 (5)0.003 (4)
C110.117 (6)0.078 (4)0.072 (5)0.007 (5)0.012 (4)0.030 (3)
C120.082 (4)0.057 (3)0.056 (3)0.018 (3)0.007 (4)0.010 (3)
C130.072 (4)0.143 (7)0.072 (4)0.038 (5)0.004 (4)0.019 (5)
C140.048 (3)0.055 (3)0.043 (3)0.006 (3)0.001 (3)0.000 (2)
C150.058 (3)0.063 (3)0.048 (3)0.002 (3)0.000 (3)0.010 (3)
C160.071 (3)0.049 (3)0.072 (4)0.005 (3)0.010 (3)0.004 (3)
C170.077 (4)0.051 (3)0.073 (4)0.002 (3)0.015 (3)0.006 (3)
C180.083 (4)0.063 (4)0.084 (5)0.015 (4)0.019 (4)0.009 (4)
C190.084 (4)0.058 (4)0.070 (4)0.000 (4)0.012 (4)0.005 (3)
C200.059 (3)0.062 (3)0.055 (3)0.006 (3)0.001 (3)0.001 (3)
C210.061 (3)0.071 (4)0.062 (4)0.006 (3)0.002 (3)0.003 (3)
C220.061 (3)0.089 (5)0.070 (4)0.001 (4)0.006 (3)0.005 (4)
C230.069 (4)0.099 (6)0.064 (4)0.020 (4)0.011 (3)0.011 (4)
C240.086 (5)0.082 (5)0.062 (4)0.023 (4)0.018 (4)0.001 (4)
C250.077 (4)0.064 (4)0.065 (4)0.007 (3)0.012 (4)0.006 (3)
Geometric parameters (Å, º) top
S1—C141.670 (6)C9—C111.520 (10)
N1—C11.311 (7)C9—H90.9800
N1—N21.384 (6)C10—H10A0.9700
N2—C141.344 (7)C10—H10B0.9700
N2—C151.459 (7)C11—H11A0.9700
N3—C141.383 (7)C11—H11B0.9700
N3—C11.388 (7)C12—C131.522 (9)
N3—C121.471 (7)C12—H12A0.9700
N4—C151.440 (7)C12—H12B0.9700
N4—C161.449 (7)C13—H13A0.9600
N4—C191.465 (7)C13—H13B0.9600
N5—C201.412 (7)C13—H13C0.9600
N5—C171.450 (8)C15—H15A0.9700
N5—C181.461 (8)C15—H15B0.9700
C1—C21.495 (8)C16—C171.530 (8)
C2—C81.518 (8)C16—H16A0.9700
C2—C71.533 (8)C16—H16B0.9700
C2—C31.560 (8)C17—H17A0.9700
C3—C41.544 (8)C17—H17B0.9700
C3—H3A0.9700C18—C191.496 (9)
C3—H3B0.9700C18—H18A0.9700
C4—C51.509 (9)C18—H18B0.9700
C4—C101.520 (10)C19—H19A0.9700
C4—H40.9800C19—H19B0.9700
C5—C61.525 (9)C20—C211.390 (8)
C5—H5A0.9700C20—C251.413 (8)
C5—H5B0.9700C21—C221.408 (9)
C6—C111.504 (10)C21—H210.9300
C6—C71.538 (9)C22—C231.376 (10)
C6—H60.9800C22—H220.9300
C7—H7A0.9700C23—C241.373 (10)
C7—H7B0.9700C23—H230.9300
C8—C91.548 (9)C24—C251.361 (9)
C8—H8A0.9700C24—H240.9300
C8—H8B0.9700C25—H250.9300
C9—C101.514 (11)
C1—N1—N2105.6 (4)C6—C11—C9110.2 (6)
C14—N2—N1112.6 (4)C6—C11—H11A109.6
C14—N2—C15127.6 (5)C9—C11—H11A109.6
N1—N2—C15119.5 (4)C6—C11—H11B109.6
C14—N3—C1108.7 (4)C9—C11—H11B109.6
C14—N3—C12120.9 (5)H11A—C11—H11B108.1
C1—N3—C12130.3 (4)N3—C12—C13111.2 (5)
C15—N4—C16112.9 (5)N3—C12—H12A109.4
C15—N4—C19111.8 (5)C13—C12—H12A109.4
C16—N4—C19108.5 (5)N3—C12—H12B109.4
C20—N5—C17117.6 (5)C13—C12—H12B109.4
C20—N5—C18116.4 (5)H12A—C12—H12B108.0
C17—N5—C18110.1 (5)C12—C13—H13A109.5
N1—C1—N3109.4 (5)C12—C13—H13B109.5
N1—C1—C2122.0 (5)H13A—C13—H13B109.5
N3—C1—C2128.6 (5)C12—C13—H13C109.5
C1—C2—C8113.2 (4)H13A—C13—H13C109.5
C1—C2—C7108.9 (5)H13B—C13—H13C109.5
C8—C2—C7108.8 (5)N2—C14—N3103.6 (5)
C1—C2—C3110.0 (4)N2—C14—S1128.2 (4)
C8—C2—C3109.4 (5)N3—C14—S1128.1 (4)
C7—C2—C3106.3 (5)N4—C15—N2111.6 (4)
C4—C3—C2109.0 (5)N4—C15—H15A109.3
C4—C3—H3A109.9N2—C15—H15A109.3
C2—C3—H3A109.9N4—C15—H15B109.3
C4—C3—H3B109.9N2—C15—H15B109.3
C2—C3—H3B109.9H15A—C15—H15B108.0
H3A—C3—H3B108.3N4—C16—C17110.8 (5)
C5—C4—C10110.7 (6)N4—C16—H16A109.5
C5—C4—C3109.0 (6)C17—C16—H16A109.5
C10—C4—C3110.0 (6)N4—C16—H16B109.5
C5—C4—H4109.0C17—C16—H16B109.5
C10—C4—H4109.0H16A—C16—H16B108.1
C3—C4—H4109.0N5—C17—C16110.3 (5)
C4—C5—C6109.4 (5)N5—C17—H17A109.6
C4—C5—H5A109.8C16—C17—H17A109.6
C6—C5—H5A109.8N5—C17—H17B109.6
C4—C5—H5B109.8C16—C17—H17B109.6
C6—C5—H5B109.8H17A—C17—H17B108.1
H5A—C5—H5B108.2N5—C18—C19111.3 (5)
C11—C6—C5110.3 (6)N5—C18—H18A109.4
C11—C6—C7110.0 (5)C19—C18—H18A109.4
C5—C6—C7107.6 (6)N5—C18—H18B109.4
C11—C6—H6109.6C19—C18—H18B109.4
C5—C6—H6109.6H18A—C18—H18B108.0
C7—C6—H6109.6N4—C19—C18109.7 (6)
C2—C7—C6111.2 (5)N4—C19—H19A109.7
C2—C7—H7A109.4C18—C19—H19A109.7
C6—C7—H7A109.4N4—C19—H19B109.7
C2—C7—H7B109.4C18—C19—H19B109.7
C6—C7—H7B109.4H19A—C19—H19B108.2
H7A—C7—H7B108.0C21—C20—N5122.0 (5)
C2—C8—C9111.2 (5)C21—C20—C25118.4 (5)
C2—C8—H8A109.4N5—C20—C25119.4 (6)
C9—C8—H8A109.4C20—C21—C22119.7 (6)
C2—C8—H8B109.4C20—C21—H21120.1
C9—C8—H8B109.4C22—C21—H21120.1
H8A—C8—H8B108.0C23—C22—C21120.2 (7)
C10—C9—C11110.0 (7)C23—C22—H22119.9
C10—C9—C8108.5 (6)C21—C22—H22119.9
C11—C9—C8108.8 (6)C24—C23—C22119.9 (6)
C10—C9—H9109.9C24—C23—H23120.0
C11—C9—H9109.9C22—C23—H23120.0
C8—C9—H9109.9C25—C24—C23121.1 (7)
C9—C10—C4109.8 (6)C25—C24—H24119.5
C9—C10—H10A109.7C23—C24—H24119.5
C4—C10—H10A109.7C24—C25—C20120.6 (7)
C9—C10—H10B109.7C24—C25—H25119.7
C4—C10—H10B109.7C20—C25—H25119.7
H10A—C10—H10B108.2
C1—N1—N2—C141.9 (6)C10—C9—C11—C658.7 (7)
C1—N1—N2—C15176.4 (5)C8—C9—C11—C660.0 (8)
N2—N1—C1—N32.4 (6)C14—N3—C12—C1374.2 (7)
N2—N1—C1—C2177.8 (5)C1—N3—C12—C13101.9 (7)
C14—N3—C1—N12.2 (6)N1—N2—C14—N30.5 (6)
C12—N3—C1—N1174.2 (5)C15—N2—C14—N3174.4 (5)
C14—N3—C1—C2178.0 (5)N1—N2—C14—S1178.2 (4)
C12—N3—C1—C25.6 (9)C15—N2—C14—S17.9 (9)
N1—C1—C2—C8118.6 (6)C1—N3—C14—N21.0 (6)
N3—C1—C2—C861.1 (8)C12—N3—C14—N2175.9 (5)
N1—C1—C2—C72.5 (7)C1—N3—C14—S1176.7 (4)
N3—C1—C2—C7177.7 (5)C12—N3—C14—S16.4 (8)
N1—C1—C2—C3118.7 (6)C16—N4—C15—N288.9 (6)
N3—C1—C2—C361.5 (7)C19—N4—C15—N2148.5 (5)
C1—C2—C3—C4178.0 (5)C14—N2—C15—N4107.8 (6)
C8—C2—C3—C457.1 (7)N1—N2—C15—N478.7 (6)
C7—C2—C3—C460.2 (7)C15—N4—C16—C17175.9 (5)
C2—C3—C4—C562.4 (7)C19—N4—C16—C1759.7 (6)
C2—C3—C4—C1059.2 (7)C20—N5—C17—C16168.3 (5)
C10—C4—C5—C658.4 (7)C18—N5—C17—C1655.2 (7)
C3—C4—C5—C662.7 (8)N4—C16—C17—N557.9 (7)
C4—C5—C6—C1158.6 (7)C20—N5—C18—C19165.7 (5)
C4—C5—C6—C761.4 (8)C17—N5—C18—C1957.2 (7)
C1—C2—C7—C6179.7 (5)C15—N4—C19—C18174.4 (5)
C8—C2—C7—C656.5 (7)C16—N4—C19—C1860.4 (6)
C3—C2—C7—C661.2 (6)N5—C18—C19—N459.8 (7)
C11—C6—C7—C258.1 (8)C17—N5—C20—C210.2 (8)
C5—C6—C7—C262.1 (7)C18—N5—C20—C21133.6 (6)
C1—C2—C8—C9178.9 (5)C17—N5—C20—C25176.0 (6)
C7—C2—C8—C957.6 (7)C18—N5—C20—C2550.2 (7)
C3—C2—C8—C958.2 (7)N5—C20—C21—C22175.6 (5)
C2—C8—C9—C1059.9 (8)C25—C20—C21—C220.6 (8)
C2—C8—C9—C1159.7 (8)C20—C21—C22—C232.1 (9)
C11—C9—C10—C458.0 (7)C21—C22—C23—C241.3 (10)
C8—C9—C10—C460.8 (8)C22—C23—C24—C251.0 (10)
C5—C4—C10—C958.6 (7)C23—C24—C25—C202.5 (10)
C3—C4—C10—C961.9 (8)C21—C20—C25—C241.7 (9)
C5—C6—C11—C958.9 (7)N5—C20—C25—C24178.0 (6)
C7—C6—C11—C959.6 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···S1i0.972.903.836 (5)162
C5—H5A···C20ii0.972.803.750 (6)167
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC25H35N5S
Mr437.65
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)27.382 (4), 6.5083 (7), 13.369 (2)
V3)2382.4 (5)
Z4
Radiation typeCu Kα
µ (mm1)1.36
Crystal size (mm)0.16 × 0.06 × 0.02
Data collection
DiffractometerOxford Diffraction Xcalibur Gemini R
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.919, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5844, 3016, 1828
Rint0.086
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.128, 1.00
No. of reflections3016
No. of parameters282
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18
Absolute structureFlack (1983), 632 Friedel pairs
Absolute structure parameter0.00 (4)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···S1i0.972.903.836 (5)162
C5—H5A···C20ii0.972.803.750 (6)167
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University, is greatly appreciated. The authors are grateful for financial support from the Spanish Ministerio de Economía y Competitividad (MAT2010-15094, MAT2006-01997, Factoría de Cristalización – Consolider Ingenio 2010, and FPI grant BES-2011-046948 to MSM-A.) and FEDER.

References

First citationAl-Abdullah, E. S., Asiri, H. H., El-Emam, A. A. & Ng, S. W. (2012). Acta Cryst. E68, o531.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40–47.  CAS Google Scholar
First citationAl-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526–2550.  Web of Science CAS PubMed Google Scholar
First citationAl-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Emam, A. A., Alrashood, K. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o657–o658.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationEl-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug. Res. 41, 1260–1264.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLahsasni, S., El-Emam, A. A., El-Brollosy, N. R., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, o1439–o1440.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642–665.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds