organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Meth­­oxy­imino)-2-{2-[(2-methyl­phen­oxy)meth­yl]phen­yl}acetohydrazide

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics and Electronics, University of Jammu, Jammu Tawi 180 006, India, bDepartment of Chemistry, Shivaji University, Kolhapur, 416 004, India, and cNational Research Centre for Grapes, Pune 412 307, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 29 June 2012; accepted 5 July 2012; online 10 July 2012)

In the title mol­ecule, C17H19N3O3, the dihedral angle between the two benzene rings is 57.17 (5)°. In the crystal, N—H⋯O and N—H⋯N hydrogen bonds connect mol­ecules to form chains along [001]. In addition, a weak C—H⋯π inter­action is observed.

Related literature

For the biological activities of kresoxim-methyl {methyl 2(E)-meth­oxy­imino-2-[2-(2-tolyl­oxymeth­yl)phen­yl] acetate}, which is a starting material in the synthesis of the title compound, see: Anke et al. (1977[Anke, T., Oberwinkler, F., Steglich, W. & Schramm, G. (1977). J. Antibiot. 30, 806-810.]); Balba (2007[Balba, H. (2007). J. Environ. Sci. Health Part B, 42, 441-451.]); Ichinari et al. (1999[Ichinari, M., Masuko, M., Takenaka, H., Hasegawa, R., Ichiba, T., Hayase, Y. & Takeda, R. (1999). Pestic. Sci. 55, 347-349.]); Grossmann & Retzlaff (1997[Grossmann, N. & Retzlaff, G. (1997). Pestic. Sci. 50, 11-20.]); Ypema (1998[Ypema, H. L. (1998). Plant Dis. 83, 4-17.]). For the crystal structure of kresoxim-methyl, see: Chopra et al. (2004[Chopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2421-o2423.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19N3O3

  • Mr = 313.35

  • Monoclinic, C 2/c

  • a = 21.4015 (6) Å

  • b = 20.7277 (4) Å

  • c = 7.6975 (2) Å

  • β = 109.103 (3)°

  • V = 3226.60 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.906, Tmax = 1.000

  • 55120 measured reflections

  • 3174 independent reflections

  • 2532 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.105

  • S = 1.02

  • 3174 reflections

  • 222 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg refers to the centroid of the C8–C13 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H72⋯O1i 0.86 (2) 2.40 (2) 3.220 (2) 158 (2)
N6—H61⋯N7ii 0.87 (2) 2.34 (1) 3.191 (2) 166 (1)
C5—H5BCgiii 0.96 2.69 3.461 (2) 138
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Kresoxim-methyl is an active agrochemical (Chopra et al., 2004), strobilurin fungicide (Anke et al., 1977), with broad spectrum biological activity (Ypema, 1998; Ichinari et al., 1999; Grossmann & Retzlaff 1997). This type of compound is easily metabolized in nature as well as in living systems, and that is the reason studies on their fate in soil, plants and animal systems (Balba, 2007) are very important. Herein, we present the crystal structure of the title compound (I) which was synthesized from kresoxim-methyl.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related structure (Chopra et al., 2004). The dihedral angles formed by the two benzene rings (C8-C13/C16-C21) is 57.17 (5)°. In the crystal, molecules are connected by N—H···O and N—H···N hydrogen bonds into chains along [001] (Fig. 2). In addition a weak C—H···π interaction is observed.

Related literature top

For the biological activities of kresoxim-methyl {methyl 2(E)-methoxyimino-2-[2-(2-tolyloxymethyl)phenyl] acetate}, which is a starting material in the synthesis of the title compound, see: Anke et al. (1977); Balba (2007); Ichinari et al. (1999); Grossmann & Retzlaff (1997); Ypema (1998). For the crystal structure of kresoxim-methyl, see: Chopra et al. (2004).

Experimental top

Kresoxim-methyl (0.313 g, 0.001 mol) was dissolved in 5 ml methanol and to it hydrazine hydrate (0.1 g, 0.002 mol) solution was added and refluxed at 343K for 1 h. The reaction mixture was then cooled and solvent was removed under reduced presser to give a solid product. The compound was dissolved in methanol, and by the process of slow evaporation this crystalline compound was separated out, m.p. 397K.

Refinement top

H atoms bonded to N atoms were located in a difference map and refined independently with the constraint of N—H = 0.86 (1)Å. Other H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Kresoxim-methyl is an active agrochemical (Chopra et al., 2004), strobilurin fungicide (Anke et al., 1977), with broad spectrum biological activity (Ypema, 1998; Ichinari et al., 1999; Grossmann & Retzlaff 1997). This type of compound is easily metabolized in nature as well as in living systems, and that is the reason studies on their fate in soil, plants and animal systems (Balba, 2007) are very important. Herein, we present the crystal structure of the title compound (I) which was synthesized from kresoxim-methyl.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related structure (Chopra et al., 2004). The dihedral angles formed by the two benzene rings (C8-C13/C16-C21) is 57.17 (5)°. In the crystal, molecules are connected by N—H···O and N—H···N hydrogen bonds into chains along [001] (Fig. 2). In addition a weak C—H···π interaction is observed.

For the biological activities of kresoxim-methyl {methyl 2(E)-methoxyimino-2-[2-(2-tolyloxymethyl)phenyl] acetate}, which is a starting material in the synthesis of the title compound, see: Anke et al. (1977); Balba (2007); Ichinari et al. (1999); Grossmann & Retzlaff (1997); Ypema (1998). For the crystal structure of kresoxim-methyl, see: Chopra et al. (2004).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure viewed along the b axis.
2-(Methoxyimino)-2-{2-[(2-methylphenoxy)methyl]phenyl}acetohydrazide top
Crystal data top
C17H19N3O3F(000) = 1328
Mr = 313.35Dx = 1.290 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 21236 reflections
a = 21.4015 (6) Åθ = 3.5–29.1°
b = 20.7277 (4) ŵ = 0.09 mm1
c = 7.6975 (2) ÅT = 293 K
β = 109.103 (3)°Block, white
V = 3226.60 (14) Å30.3 × 0.2 × 0.2 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3174 independent reflections
Radiation source: fine-focus sealed tube2532 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scanh = 2626
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2525
Tmin = 0.906, Tmax = 1.000l = 99
55120 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0448P)2 + 1.9045P]
where P = (Fo2 + 2Fc2)/3
3174 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.18 e Å3
3 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H19N3O3V = 3226.60 (14) Å3
Mr = 313.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.4015 (6) ŵ = 0.09 mm1
b = 20.7277 (4) ÅT = 293 K
c = 7.6975 (2) Å0.3 × 0.2 × 0.2 mm
β = 109.103 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3174 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2532 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 1.000Rint = 0.042
55120 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0403 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.18 e Å3
3174 reflectionsΔρmin = 0.17 e Å3
222 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.10242 (6)0.35418 (5)0.94034 (15)0.0383 (3)
N60.08078 (6)0.46145 (6)0.74149 (16)0.0391 (3)
N70.06911 (8)0.51996 (6)0.64119 (18)0.0453 (3)
O150.23561 (6)0.35236 (5)0.70574 (15)0.0510 (3)
O40.11743 (6)0.29666 (5)1.03992 (13)0.0466 (3)
O10.06825 (6)0.40146 (5)0.48718 (13)0.0521 (3)
C170.28955 (8)0.44911 (8)0.6901 (2)0.0519 (4)
C180.34451 (11)0.48795 (10)0.7505 (3)0.0694 (6)
H180.34370.52820.69650.083*
C190.40054 (11)0.46909 (12)0.8882 (3)0.0808 (7)
H190.43720.49610.92520.097*
C200.40213 (10)0.41013 (11)0.9710 (3)0.0706 (6)
H200.44000.39721.06450.085*
C210.34756 (8)0.36974 (9)0.9158 (2)0.0546 (4)
H210.34840.33000.97280.066*
C160.29186 (8)0.38918 (8)0.7750 (2)0.0444 (4)
C220.22894 (10)0.47007 (10)0.5382 (3)0.0728 (6)
H22A0.23390.51420.50690.109*
H22B0.19100.46620.57800.109*
H22C0.22310.44320.43240.109*
C140.23124 (8)0.29575 (7)0.8055 (2)0.0453 (4)
H14A0.23060.30740.92700.054*
H14B0.26950.26850.81980.054*
C130.16963 (7)0.26008 (7)0.70408 (19)0.0382 (3)
C120.17407 (9)0.20035 (8)0.6249 (2)0.0523 (4)
H120.21550.18380.63530.063*
C110.11869 (11)0.16554 (8)0.5321 (3)0.0603 (5)
H110.12280.12570.48140.072*
C100.05738 (10)0.18966 (9)0.5143 (2)0.0593 (5)
H100.01980.16630.45070.071*
C90.05121 (8)0.24886 (8)0.5911 (2)0.0473 (4)
H90.00940.26500.57830.057*
C80.10689 (7)0.28413 (6)0.68670 (18)0.0347 (3)
C20.09848 (7)0.34665 (6)0.77269 (18)0.0320 (3)
C50.11414 (11)0.30815 (9)1.2204 (2)0.0608 (5)
H5A0.14810.33821.28400.091*
H5B0.12050.26831.28730.091*
H5C0.07160.32571.21060.091*
C10.08095 (7)0.40622 (7)0.65305 (18)0.0334 (3)
H610.0840 (8)0.4629 (7)0.8568 (13)0.041 (4)*
H710.0964 (9)0.5477 (8)0.707 (3)0.081 (7)*
H720.0295 (6)0.5333 (11)0.627 (3)0.090 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0523 (7)0.0327 (6)0.0321 (6)0.0099 (5)0.0169 (5)0.0061 (5)
N60.0587 (8)0.0320 (6)0.0273 (6)0.0039 (5)0.0149 (6)0.0027 (5)
N70.0656 (10)0.0306 (7)0.0381 (7)0.0039 (7)0.0147 (7)0.0031 (5)
O150.0515 (7)0.0461 (6)0.0510 (7)0.0027 (5)0.0109 (5)0.0143 (5)
O40.0752 (8)0.0367 (6)0.0327 (5)0.0146 (5)0.0244 (5)0.0094 (4)
O10.0866 (9)0.0427 (6)0.0291 (5)0.0151 (6)0.0215 (5)0.0035 (4)
C170.0549 (10)0.0522 (10)0.0582 (10)0.0013 (8)0.0317 (8)0.0044 (8)
C180.0698 (14)0.0621 (12)0.0891 (15)0.0130 (10)0.0435 (12)0.0013 (11)
C190.0598 (13)0.0881 (16)0.1030 (18)0.0239 (12)0.0382 (13)0.0213 (14)
C200.0448 (11)0.0892 (16)0.0760 (13)0.0057 (10)0.0172 (9)0.0183 (12)
C210.0504 (10)0.0566 (10)0.0577 (10)0.0075 (8)0.0188 (8)0.0050 (8)
C160.0443 (9)0.0451 (9)0.0491 (9)0.0019 (7)0.0226 (7)0.0006 (7)
C220.0763 (14)0.0638 (12)0.0795 (14)0.0005 (10)0.0271 (11)0.0313 (10)
C140.0445 (9)0.0439 (9)0.0489 (9)0.0101 (7)0.0171 (7)0.0141 (7)
C130.0481 (9)0.0341 (7)0.0373 (7)0.0075 (6)0.0209 (6)0.0088 (6)
C120.0712 (12)0.0402 (9)0.0566 (10)0.0157 (8)0.0360 (9)0.0073 (7)
C110.0990 (16)0.0358 (9)0.0598 (11)0.0025 (9)0.0446 (11)0.0069 (8)
C100.0804 (13)0.0514 (10)0.0523 (10)0.0246 (9)0.0303 (9)0.0129 (8)
C90.0503 (9)0.0516 (9)0.0451 (9)0.0055 (7)0.0225 (7)0.0034 (7)
C80.0457 (8)0.0328 (7)0.0299 (7)0.0028 (6)0.0184 (6)0.0041 (5)
C20.0339 (7)0.0331 (7)0.0307 (7)0.0043 (5)0.0130 (6)0.0027 (5)
C50.0999 (15)0.0554 (10)0.0335 (8)0.0123 (10)0.0307 (9)0.0089 (7)
C10.0367 (7)0.0359 (7)0.0297 (7)0.0058 (6)0.0136 (6)0.0028 (5)
Geometric parameters (Å, º) top
N3—C21.2750 (17)C22—H22A0.9600
N3—O41.3968 (14)C22—H22B0.9600
N6—C11.3326 (17)C22—H22C0.9600
N6—N71.4153 (17)C14—C131.490 (2)
N6—H610.868 (9)C14—H14A0.9700
N7—H710.858 (10)C14—H14B0.9700
N7—H720.864 (10)C13—C121.397 (2)
O15—C161.3767 (19)C13—C81.397 (2)
O15—C141.4222 (17)C12—C111.372 (3)
O4—C51.4335 (18)C12—H120.9300
O1—C11.2192 (16)C11—C101.369 (3)
C17—C181.375 (3)C11—H110.9300
C17—C161.397 (2)C10—C91.387 (2)
C17—C221.498 (3)C10—H100.9300
C18—C191.372 (3)C9—C81.387 (2)
C18—H180.9300C9—H90.9300
C19—C201.374 (3)C8—C21.4926 (18)
C19—H190.9300C2—C11.5123 (18)
C20—C211.386 (3)C5—H5A0.9600
C20—H200.9300C5—H5B0.9600
C21—C161.383 (2)C5—H5C0.9600
C21—H210.9300
C2—N3—O4112.21 (11)C13—C14—H14A109.8
C1—N6—N7119.14 (11)O15—C14—H14B109.8
C1—N6—H61122.7 (10)C13—C14—H14B109.8
N7—N6—H61117.9 (10)H14A—C14—H14B108.3
N6—N7—H71106.7 (15)C12—C13—C8118.36 (15)
N6—N7—H72109.5 (16)C12—C13—C14119.56 (14)
H71—N7—H72108 (2)C8—C13—C14122.07 (13)
C16—O15—C14116.85 (12)C11—C12—C13121.52 (16)
N3—O4—C5108.33 (11)C11—C12—H12119.2
C18—C17—C16117.83 (17)C13—C12—H12119.2
C18—C17—C22121.37 (17)C10—C11—C12119.78 (15)
C16—C17—C22120.80 (16)C10—C11—H11120.1
C19—C18—C17122.0 (2)C12—C11—H11120.1
C19—C18—H18119.0C11—C10—C9120.17 (17)
C17—C18—H18119.0C11—C10—H10119.9
C18—C19—C20119.6 (2)C9—C10—H10119.9
C18—C19—H19120.2C10—C9—C8120.50 (16)
C20—C19—H19120.2C10—C9—H9119.7
C19—C20—C21120.3 (2)C8—C9—H9119.7
C19—C20—H20119.8C9—C8—C13119.66 (13)
C21—C20—H20119.8C9—C8—C2119.06 (13)
C16—C21—C20119.22 (18)C13—C8—C2121.27 (13)
C16—C21—H21120.4N3—C2—C8125.28 (12)
C20—C21—H21120.4N3—C2—C1115.94 (11)
O15—C16—C21124.22 (15)C8—C2—C1118.73 (11)
O15—C16—C17114.76 (14)O4—C5—H5A109.5
C21—C16—C17121.01 (16)O4—C5—H5B109.5
C17—C22—H22A109.5H5A—C5—H5B109.5
C17—C22—H22B109.5O4—C5—H5C109.5
H22A—C22—H22B109.5H5A—C5—H5C109.5
C17—C22—H22C109.5H5B—C5—H5C109.5
H22A—C22—H22C109.5O1—C1—N6124.57 (13)
H22B—C22—H22C109.5O1—C1—C2119.84 (12)
O15—C14—C13109.25 (12)N6—C1—C2115.59 (11)
O15—C14—H14A109.8
C2—N3—O4—C5174.13 (14)C12—C11—C10—C90.5 (3)
C16—C17—C18—C190.7 (3)C11—C10—C9—C80.1 (2)
C22—C17—C18—C19179.34 (19)C10—C9—C8—C130.7 (2)
C17—C18—C19—C200.9 (3)C10—C9—C8—C2178.03 (13)
C18—C19—C20—C210.1 (3)C12—C13—C8—C90.6 (2)
C19—C20—C21—C160.8 (3)C14—C13—C8—C9179.88 (13)
C14—O15—C16—C2110.5 (2)C12—C13—C8—C2178.12 (12)
C14—O15—C16—C17170.36 (13)C14—C13—C8—C21.2 (2)
C20—C21—C16—O15178.15 (15)O4—N3—C2—C81.5 (2)
C20—C21—C16—C171.0 (2)O4—N3—C2—C1178.76 (11)
C18—C17—C16—O15178.97 (15)C9—C8—C2—N396.60 (18)
C22—C17—C16—O151.1 (2)C13—C8—C2—N382.08 (18)
C18—C17—C16—C210.2 (2)C9—C8—C2—C180.61 (16)
C22—C17—C16—C21179.71 (17)C13—C8—C2—C1100.71 (15)
C16—O15—C14—C13176.27 (12)N7—N6—C1—O14.0 (2)
O15—C14—C13—C12111.95 (15)N7—N6—C1—C2175.93 (13)
O15—C14—C13—C868.73 (17)N3—C2—C1—O1170.98 (14)
C8—C13—C12—C110.1 (2)C8—C2—C1—O16.5 (2)
C14—C13—C12—C11179.25 (14)N3—C2—C1—N69.09 (19)
C13—C12—C11—C100.6 (3)C8—C2—C1—N6173.44 (13)
Hydrogen-bond geometry (Å, º) top
Please define Cg
D—H···AD—HH···AD···AD—H···A
N7—H72···O1i0.86 (2)2.40 (2)3.220 (2)158 (2)
N6—H61···N7ii0.87 (2)2.34 (1)3.191 (2)166 (1)
C5—H5B···Cgiii0.962.693.461 (2)138
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC17H19N3O3
Mr313.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)21.4015 (6), 20.7277 (4), 7.6975 (2)
β (°) 109.103 (3)
V3)3226.60 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.906, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
55120, 3174, 2532
Rint0.042
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.105, 1.02
No. of reflections3174
No. of parameters222
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Please define Cg
D—H···AD—HH···AD···AD—H···A
N7—H72···O1i0.86 (2)2.40 (2)3.220 (2)158 (2)
N6—H61···N7ii0.87 (2)2.34 (1)3.191 (2)166 (1)
C5—H5B···Cgiii0.962.693.461 (2)137.90
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

RK acknowledges the Department of Science and Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003.

References

First citationAnke, T., Oberwinkler, F., Steglich, W. & Schramm, G. (1977). J. Antibiot. 30, 806–810.  CrossRef CAS PubMed Google Scholar
First citationBalba, H. (2007). J. Environ. Sci. Health Part B, 42, 441–451.  Web of Science CrossRef CAS Google Scholar
First citationChopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2421–o2423.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGrossmann, N. & Retzlaff, G. (1997). Pestic. Sci. 50, 11–20.  CrossRef CAS Web of Science Google Scholar
First citationIchinari, M., Masuko, M., Takenaka, H., Hasegawa, R., Ichiba, T., Hayase, Y. & Takeda, R. (1999). Pestic. Sci. 55, 347–349.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYpema, H. L. (1998). Plant Dis. 83, 4–17.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds