organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Acetyl­phenyl (2E)-3-(4-fluoro­phen­yl)acrylate

aSchool of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa, bChemistry Deparment, University of Cape Town, Rondebosch, 7701, and cSchool of Engineering, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
*Correspondence e-mail: Koorbanally@ukzn.ac.za

(Received 4 September 2012; accepted 25 September 2012; online 29 September 2012)

In the title compound, C17H13FO3, the dihedral angle between the benzene rings is 70.34 (5)°. In the crystal, molecules are linked via pairs of bifurcated C—H⋯(O,O) hydrogen bonds, forming inversion dimers. These dimers are linked via C—H⋯O and C—H⋯F inter­actions, forming a three-dimensional structure.

Related literature

For the preparation, see: Pinto et al. (2000[Pinto, D. C. G. A., Silva, A. M. S. & Cavaleiro, J. A. S. (2000). New J. Chem. 24, 85-92.]). For related structures, see: Santos et al. (2009[Santos, C. M. M., Silva, A. M. S. & Cavaleiro, J. A. S. (2009). Eur. J. Org. Chem. pp. 2642-2660.]); Ren, Li et al. (2006[Ren, R., Li, X.-M., Li, Q. & Zhang, S.-S. (2006). Acta Cryst. E62, o293-o294.]); Ren, Zhang et al. (2006[Ren, R., Zhang, S.-S., Li, Q., Li, X.-M. & Song, X.-Y. (2006). Acta Cryst. E62, o160-o161.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The title compound is a core structure in various natural and pharmaceutically active compounds, displaying a broad spectrum of activity, see: Gomes et al. (2010[Gomes, A., Freitas, M., Fernandes, E. & Lima, J. L. F. C. (2010). Mini Rev. Med. Chem. 10, 1-7.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13FO3

  • Mr = 284.27

  • Monoclinic, C 2/c

  • a = 26.574 (1) Å

  • b = 6.3883 (3) Å

  • c = 19.3304 (6) Å

  • β = 123.037 (2)°

  • V = 2751.01 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.26 × 0.23 × 0.09 mm

Data collection
  • Nonius Kappa CCD diffractometer

  • 6005 measured reflections

  • 3150 independent reflections

  • 2201 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.05

  • 3150 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯F1i 0.95 2.52 3.2402 (16) 132
C11—H11⋯O3ii 0.95 2.46 3.3369 (16) 154
C13—H13⋯O3ii 0.95 2.45 3.3191 (16) 153
C16—H16⋯O1iii 0.95 2.51 3.3590 (17) 149
C6—H6⋯Cg1iv 0.95 2.99 3.818 (1) 146
Symmetry codes: (i) [x, -y+2, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+1, z-{\script{1\over 2}}].

Data collection: COLLECT program (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The title compound (E)-2-acetylphenyl-3-(4-fluorophenyl) acrylate was obtained as an intermediate en route to the synthesis of 4'-fluoro-2-styrylchromone and easily converts to the 2-hydroxyphenyl pentadienone with DMSO in the presence of a strong base (Santos et al., 2009). It was synthesized according to the procedure by Pinto et al. (2000) with modification. The title compound is a core structure in various natural and pharmaceutically active compounds, displaying a broad spectrum of activity (Gomes et al., 2010).

In the molecule of the title compound (Fig. 1), the two aromatic rings (ring 1: C3—C4—C5—C6—C7—C8; ring 2: C12—C13—C14—C15—C16—C17—C18) are almost perpendicular to each other with a dihedral angle of 70.34 (5)°. The torsion angle C9—C10—C11—C12 is -178.8 (1)o, indicating a trans configuration of the double bond. All bond lengths and angles are within normal ranges (Allen et al.,1987). In the crytsal packing, ring 1 adopts a parallel offset arrangement with itself of the neighbouring molecule with centroidal distance of 4.125 (1) Å. The crystal is further stablized by a number of weak hydrogen bonds with the type C—H···X (X = O or F) and C—H···π (Table 1).

Related literature top

For the preparation, see: Pinto et al. (2000). For related structures, see: Santos et al. (2009); Ren, Li et al. (2006); Ren, Zhang et al. (2006). For bond-length data, see: Allen et al. (1987). The title compound is a core structure in various natural and pharmaceutically active compounds, displaying a broad spectrum of activity, see: Gomes et al. (2010).

Experimental top

Phosphorous oxychloride (15.6 mmol) was added to a solution of 2-hydroxyacetophenone (12.0 mmol) and 4'-fluoro cinnamic acid (15.6 mmol) in dry pyridine. The solution was stirred at 60–70 °C for 3 h, then poured into ice and water and the reaction mixture acidified with hydrochloric acid (pH 3–4). The obtained solid was removed by filtration and dissolved in ethyl acetate (100 ml) and purified by silica gel column chromatography using a 7:3 mixture of ethyl acetate:n-hexane as the eluent. The solvent was evaporated to dryness and the residue recrystallized from ethanol, resulting in the title compound with a 72% yield and a m.p of 80–82°C.

IR (KBr) νmax (cm-1): 1729 (C=O), 1670 (C=O), 1624 (C=C), 1590, 1446, 1221 (C—F), 1202, 1159, 1050. 1H NMR (CDCl3, 400 MHz): δ 7.84 (d, J = 15.96 Hz, 1H, Hβ), 7.81 (dd, J = 7.56,1.60 Hz, 1H), 7.58 (dd, J = 8.60, 5.44, 2H), 7.54 (ddd, J = 8.04, 7.88, 1.60 Hz, 1H), 7.33 (ddd, J = 8.04, 7.56, 0.72 Hz, 1H), 7.17 (d, J = 8.04 Hz, 1H), 7.09 (t, J = 8.60 Hz, 2H), 6.58 (d, J = 15.96 Hz, 1H, Hα), 2.54 (s, 3H, CH3). 13C NMR (CDCl3, 100 MHz): δ 197.78 (C=O), 165.14 (C=O), 164.25 (d, JCF = 250.70 Hz), 149.07, 145.99, 133.36, 131.30, 130.43, 130.24 ((d, JCF = 19.46 Hz), 130.15, 126.10, 123.78, 116.58, 116.20 (d, JCF = 21.85 Hz), 29.71 (CH3). 19F NMR (CDCl3, 376.5 MHz): δ -108.54. EIMS (probe) 70 eV (m/z, rel. int.) 284 (M+) (21.42), 149 (100), 121 (25), 101 (20).

Refinement top

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms could be found in the difference electron density maps but were finally placed in idealized positions refining in riding models with Uiso set at 1.2 or 1.5 times Ueq of their parent atoms.

Structure description top

The title compound (E)-2-acetylphenyl-3-(4-fluorophenyl) acrylate was obtained as an intermediate en route to the synthesis of 4'-fluoro-2-styrylchromone and easily converts to the 2-hydroxyphenyl pentadienone with DMSO in the presence of a strong base (Santos et al., 2009). It was synthesized according to the procedure by Pinto et al. (2000) with modification. The title compound is a core structure in various natural and pharmaceutically active compounds, displaying a broad spectrum of activity (Gomes et al., 2010).

In the molecule of the title compound (Fig. 1), the two aromatic rings (ring 1: C3—C4—C5—C6—C7—C8; ring 2: C12—C13—C14—C15—C16—C17—C18) are almost perpendicular to each other with a dihedral angle of 70.34 (5)°. The torsion angle C9—C10—C11—C12 is -178.8 (1)o, indicating a trans configuration of the double bond. All bond lengths and angles are within normal ranges (Allen et al.,1987). In the crytsal packing, ring 1 adopts a parallel offset arrangement with itself of the neighbouring molecule with centroidal distance of 4.125 (1) Å. The crystal is further stablized by a number of weak hydrogen bonds with the type C—H···X (X = O or F) and C—H···π (Table 1).

For the preparation, see: Pinto et al. (2000). For related structures, see: Santos et al. (2009); Ren, Li et al. (2006); Ren, Zhang et al. (2006). For bond-length data, see: Allen et al. (1987). The title compound is a core structure in various natural and pharmaceutically active compounds, displaying a broad spectrum of activity, see: Gomes et al. (2010).

Computing details top

Data collection: COLLECT program (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. ORTEP diagram showing the molecular structure of the titled compound with atomic labelling scheme. Non-H atoms are drawn with 50% probability displacement ellipsoids and H atoms are shown as open circles.
2-Acetylphenyl (2E)-3-(4-fluorophenyl)acrylate top
Crystal data top
C17H13FO3F(000) = 1184
Mr = 284.27Dx = 1.373 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6005 reflections
a = 26.574 (1) Åθ = 3.1–27.5°
b = 6.3883 (3) ŵ = 0.10 mm1
c = 19.3304 (6) ÅT = 173 K
β = 123.037 (2)°Plate, colourless
V = 2751.01 (19) Å30.26 × 0.23 × 0.09 mm
Z = 8
Data collection top
Nonius Kappa CCD
diffractometer
2201 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
1.2° φ scans and ω scansh = 3334
6005 measured reflectionsk = 88
3150 independent reflectionsl = 2524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0612P)2 + 0.6743P]
where P = (Fo2 + 2Fc2)/3
3150 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C17H13FO3V = 2751.01 (19) Å3
Mr = 284.27Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.574 (1) ŵ = 0.10 mm1
b = 6.3883 (3) ÅT = 173 K
c = 19.3304 (6) Å0.26 × 0.23 × 0.09 mm
β = 123.037 (2)°
Data collection top
Nonius Kappa CCD
diffractometer
2201 reflections with I > 2σ(I)
6005 measured reflectionsRint = 0.021
3150 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
3150 reflectionsΔρmin = 0.20 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.04188 (4)1.49324 (13)0.22111 (6)0.0580 (3)
O10.26072 (5)0.02536 (18)0.16114 (6)0.0556 (3)
O20.16132 (4)0.49823 (13)0.02908 (6)0.0379 (2)
O30.06857 (4)0.41188 (17)0.00442 (7)0.0522 (3)
C10.25590 (7)0.3344 (3)0.18081 (9)0.0512 (4)
H1A0.22250.36950.18670.077*
H1B0.26330.45150.15480.077*
H1C0.29210.30740.23540.077*
C20.24038 (6)0.1439 (2)0.12848 (8)0.0377 (3)
C30.19990 (5)0.1519 (2)0.03588 (7)0.0315 (3)
C40.19941 (6)0.0253 (2)0.00725 (8)0.0369 (3)
H40.22410.14150.02280.044*
C50.16398 (6)0.0351 (2)0.09234 (9)0.0430 (4)
H50.16430.15690.12030.052*
C60.12814 (7)0.1330 (2)0.13652 (8)0.0447 (4)
H60.10390.12740.19510.054*
C70.12732 (6)0.3091 (2)0.09597 (8)0.0418 (3)
H70.10260.42470.12650.050*
C80.16273 (6)0.3169 (2)0.01042 (8)0.0327 (3)
C90.11003 (6)0.5312 (2)0.02865 (8)0.0337 (3)
C100.11450 (6)0.72268 (19)0.07306 (8)0.0339 (3)
H100.14960.80690.09720.041*
C110.06885 (6)0.7778 (2)0.07935 (8)0.0346 (3)
H110.03550.68530.05480.042*
C120.06392 (6)0.96377 (19)0.11951 (7)0.0321 (3)
C130.01102 (6)0.9974 (2)0.11673 (8)0.0379 (3)
H130.02040.89710.09060.045*
C140.00350 (6)1.1745 (2)0.15135 (8)0.0418 (3)
H140.03261.19710.14930.050*
C150.04946 (6)1.3164 (2)0.18860 (8)0.0388 (3)
C160.10298 (6)1.2888 (2)0.19487 (8)0.0385 (3)
H160.13441.38850.22260.046*
C170.10980 (6)1.1118 (2)0.15972 (8)0.0360 (3)
H170.14641.09030.16290.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0663 (6)0.0476 (5)0.0611 (6)0.0033 (4)0.0354 (5)0.0236 (4)
O10.0560 (7)0.0582 (7)0.0411 (6)0.0116 (5)0.0191 (5)0.0104 (5)
O20.0366 (5)0.0330 (5)0.0456 (5)0.0029 (4)0.0234 (4)0.0093 (4)
O30.0453 (6)0.0485 (6)0.0693 (7)0.0152 (5)0.0354 (6)0.0258 (5)
C10.0492 (9)0.0627 (10)0.0346 (8)0.0076 (7)0.0183 (7)0.0089 (7)
C20.0314 (7)0.0486 (8)0.0358 (7)0.0011 (6)0.0201 (6)0.0001 (6)
C30.0303 (6)0.0351 (7)0.0331 (7)0.0026 (5)0.0200 (5)0.0011 (5)
C40.0397 (7)0.0348 (7)0.0413 (8)0.0037 (6)0.0254 (6)0.0013 (6)
C50.0512 (9)0.0416 (8)0.0440 (8)0.0030 (7)0.0311 (7)0.0103 (7)
C60.0468 (8)0.0541 (9)0.0317 (7)0.0014 (7)0.0205 (6)0.0045 (7)
C70.0437 (8)0.0426 (8)0.0361 (7)0.0060 (6)0.0199 (6)0.0037 (6)
C80.0346 (7)0.0305 (7)0.0366 (7)0.0031 (5)0.0217 (6)0.0039 (5)
C90.0348 (7)0.0327 (7)0.0334 (7)0.0005 (6)0.0183 (6)0.0001 (5)
C100.0355 (7)0.0296 (7)0.0341 (7)0.0025 (5)0.0174 (6)0.0019 (5)
C110.0352 (7)0.0305 (7)0.0344 (7)0.0032 (5)0.0165 (6)0.0030 (5)
C120.0352 (7)0.0295 (7)0.0283 (6)0.0002 (5)0.0151 (5)0.0001 (5)
C130.0340 (7)0.0377 (7)0.0372 (7)0.0044 (6)0.0164 (6)0.0086 (6)
C140.0366 (7)0.0463 (8)0.0408 (8)0.0010 (6)0.0199 (6)0.0080 (6)
C150.0492 (8)0.0322 (7)0.0313 (7)0.0017 (6)0.0196 (6)0.0063 (6)
C160.0424 (8)0.0332 (7)0.0343 (7)0.0080 (6)0.0172 (6)0.0048 (6)
C170.0377 (7)0.0338 (7)0.0364 (7)0.0026 (6)0.0201 (6)0.0015 (6)
Geometric parameters (Å, º) top
F1—C151.3600 (15)C7—C81.3878 (18)
O1—C21.2195 (17)C7—H70.9500
O2—C91.3748 (16)C9—C101.4614 (17)
O2—C81.3993 (15)C10—C111.3310 (19)
O3—C91.1982 (16)C10—H100.9500
C1—C21.490 (2)C11—C121.4636 (17)
C1—H1A0.9800C11—H110.9500
C1—H1B0.9800C12—C131.3937 (18)
C1—H1C0.9800C12—C171.3972 (18)
C2—C31.5048 (19)C13—C141.3835 (18)
C3—C81.3869 (18)C13—H130.9500
C3—C41.4014 (18)C14—C151.369 (2)
C4—C51.381 (2)C14—H140.9500
C4—H40.9500C15—C161.371 (2)
C5—C61.379 (2)C16—C171.3814 (19)
C5—H50.9500C16—H160.9500
C6—C71.378 (2)C17—H170.9500
C6—H60.9500
C9—O2—C8116.42 (9)O3—C9—O2121.72 (12)
C2—C1—H1A109.5O3—C9—C10127.06 (12)
C2—C1—H1B109.5O2—C9—C10111.22 (11)
H1A—C1—H1B109.5C11—C10—C9119.26 (12)
C2—C1—H1C109.5C11—C10—H10120.4
H1A—C1—H1C109.5C9—C10—H10120.4
H1B—C1—H1C109.5C10—C11—C12127.80 (12)
O1—C2—C1119.47 (12)C10—C11—H11116.1
O1—C2—C3118.28 (12)C12—C11—H11116.1
C1—C2—C3122.25 (12)C13—C12—C17118.24 (12)
C8—C3—C4117.21 (11)C13—C12—C11119.00 (11)
C8—C3—C2126.11 (11)C17—C12—C11122.76 (12)
C4—C3—C2116.67 (11)C14—C13—C12121.07 (12)
C5—C4—C3121.63 (13)C14—C13—H13119.5
C5—C4—H4119.2C12—C13—H13119.5
C3—C4—H4119.2C15—C14—C13118.25 (13)
C6—C5—C4119.62 (13)C15—C14—H14120.9
C6—C5—H5120.2C13—C14—H14120.9
C4—C5—H5120.2F1—C15—C14118.60 (13)
C7—C6—C5120.20 (12)F1—C15—C16118.28 (12)
C7—C6—H6119.9C14—C15—C16123.12 (12)
C5—C6—H6119.9C15—C16—C17118.02 (12)
C6—C7—C8119.76 (13)C15—C16—H16121.0
C6—C7—H7120.1C17—C16—H16121.0
C8—C7—H7120.1C16—C17—C12121.26 (12)
C3—C8—C7121.56 (12)C16—C17—H17119.4
C3—C8—O2119.91 (11)C12—C17—H17119.4
C7—C8—O2118.51 (11)
O1—C2—C3—C8164.97 (13)C8—O2—C9—O30.64 (18)
C1—C2—C3—C814.7 (2)C8—O2—C9—C10178.87 (10)
O1—C2—C3—C414.28 (18)O3—C9—C10—C110.0 (2)
C1—C2—C3—C4166.04 (12)O2—C9—C10—C11179.43 (12)
C8—C3—C4—C50.71 (19)C9—C10—C11—C12178.78 (11)
C2—C3—C4—C5179.97 (12)C10—C11—C12—C13177.62 (13)
C3—C4—C5—C60.1 (2)C10—C11—C12—C171.4 (2)
C4—C5—C6—C70.5 (2)C17—C12—C13—C141.26 (19)
C5—C6—C7—C80.0 (2)C11—C12—C13—C14177.78 (12)
C4—C3—C8—C71.21 (18)C12—C13—C14—C150.0 (2)
C2—C3—C8—C7179.54 (12)C13—C14—C15—F1178.52 (11)
C4—C3—C8—O2179.87 (11)C13—C14—C15—C161.6 (2)
C2—C3—C8—O20.88 (19)F1—C15—C16—C17178.23 (11)
C6—C7—C8—C30.9 (2)C14—C15—C16—C171.9 (2)
C6—C7—C8—O2179.56 (12)C15—C16—C17—C120.56 (19)
C9—O2—C8—C3109.06 (13)C13—C12—C17—C160.95 (19)
C9—O2—C8—C772.24 (15)C11—C12—C17—C16178.05 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1B···O20.982.482.8245 (18)100
C7—H7···F1i0.952.523.2402 (16)132
C11—H11···O30.952.502.8415 (16)101
C11—H11···O3ii0.952.463.3369 (16)154
C13—H13···O3ii0.952.453.3191 (16)153
C16—H16···O1iii0.952.513.3590 (17)149
C6—H6···Cg1iv0.952.993.818 (1)146
Symmetry codes: (i) x, y+2, z1/2; (ii) x, y+1, z; (iii) x+1/2, y+3/2, z+1/2; (iv) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC17H13FO3
Mr284.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)26.574 (1), 6.3883 (3), 19.3304 (6)
β (°) 123.037 (2)
V3)2751.01 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.26 × 0.23 × 0.09
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6005, 3150, 2201
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.05
No. of reflections3150
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: COLLECT program (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1B···O20.982.482.8245 (18)100.2
C7—H7···F1i0.952.523.2402 (16)132.2
C11—H11···O30.952.502.8415 (16)101.4
C11—H11···O3ii0.952.463.3369 (16)153.9
C13—H13···O3ii0.952.453.3191 (16)152.6
C16—H16···O1iii0.952.513.3590 (17)149.1
C6—H6···Cg1iv0.952.993.818 (1)146.0
Symmetry codes: (i) x, y+2, z1/2; (ii) x, y+1, z; (iii) x+1/2, y+3/2, z+1/2; (iv) x, y+1, z1/2.
 

Acknowledgements

We thank the University of KwaZulu-Natal, the National Research Foundation (NRF) and the South African Research Chairs initiative of the Department of Science and Technology for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGomes, A., Freitas, M., Fernandes, E. & Lima, J. L. F. C. (2010). Mini Rev. Med. Chem. 10, 1–7.  CrossRef CAS PubMed Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPinto, D. C. G. A., Silva, A. M. S. & Cavaleiro, J. A. S. (2000). New J. Chem. 24, 85–92.  CAS Google Scholar
First citationRen, R., Li, X.-M., Li, Q. & Zhang, S.-S. (2006). Acta Cryst. E62, o293–o294.  CSD CrossRef IUCr Journals Google Scholar
First citationRen, R., Zhang, S.-S., Li, Q., Li, X.-M. & Song, X.-Y. (2006). Acta Cryst. E62, o160–o161.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSantos, C. M. M., Silva, A. M. S. & Cavaleiro, J. A. S. (2009). Eur. J. Org. Chem. pp. 2642–2660.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds