organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,5-Di­methyl­phen­yl)-2-nitro­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 22 August 2012; accepted 27 August 2012; online 1 September 2012)

The asymmetric unit of the title compound, C14H14N2O4S, consists of two crystallographically independent mol­ecules. The mol­ecules are twisted at the S—N bonds with C—S—N—C torsion angles of 44.2 (3) and −49.3 (3)°. The dihedral angles between the benzene rings in the two mol­ecules are 71.53 (7) and 72.11 (7)°. The amide H atoms exhibit bifurcated intra- and inter­molecular hydrogen bonds; the intra­molecular N—H⋯O(N) hydrogen bonds generate S(7) motifs. In the crystal, the independent mol­ecules are separately connected through the inter­molecular N—H⋯O(S) hydrogen bonds, generating a C(4) motif and a helical chain along the b axis for one mol­ecule and an R22(8) motif and an inversion dimer for the other. The crystal studied was a pseudo-merohedral twin with twin law (-100/0-10/001), the refined ratio of the twin domains being 0.7876 (12):0.2124 (12).

Related literature

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda & Weiss (1994[Gowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695-702.]); Shahwar et al. (2012[Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160.]), of N-aryl­sulfonamides, see: Chaithanya et al. (2012[Chaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o2627.]) and of N-chloro­aryl­sulfonamides, see: Shetty & Gowda (2004[Shetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63-72.]). For hydrogen-bonding patterns and motifs, see: Adsmond et al. (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]),

[Scheme 1]

Experimental

Crystal data
  • C14H14N2O4S

  • Mr = 306.33

  • Monoclinic, P 21 /c

  • a = 16.561 (1) Å

  • b = 8.1611 (6) Å

  • c = 21.476 (2) Å

  • β = 90.056 (7)°

  • V = 2902.6 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.48 × 0.40 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.894, Tmax = 0.954

  • 12941 measured reflections

  • 5929 independent reflections

  • 4004 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.123

  • S = 1.00

  • 5929 reflections

  • 390 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.82 (2) 2.40 (2) 3.089 (3) 142 (3)
N1—H1N⋯O3 0.82 (2) 2.52 (3) 2.893 (4) 109 (2)
N3—H3N⋯O7 0.83 (2) 2.42 (3) 2.963 (3) 124 (3)
N3—H3N⋯O6ii 0.83 (2) 2.54 (2) 3.195 (3) 136 (3)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda & Weiss, 1994; Shahwar et al., 2012), N-arylsulfonamides (Chaithanya et al., 2012) and N-chloroarylsulfonamides (Shetty & Gowda, 2004), in the present work, the crystal structure of N-(3,5-dimethylphenyl)-2-nitrobenzenesulfonamide has been determined.

The asymmetric unit of the title compound consists of two crystallographically independent molecules (Fig. 1). The conformation of the N—C bond in the —SO2—NH—C segment has gauche torsions with respect to the SO bonds, similar to that observed in N-(3-methylphenyl)-2-nitrobenzenesulfonamide (I) (Chaithanya et al., 2012). Further, the conformation of the N—H bond in the —SO2—NH— segment is syn to the ortho-nitro group in the sulfonyl benzene ring. The molecules are twisted at the S—N bonds with C1—S1—N1—C7 and C15—S2—N3—C21 torsion angles of 44.2 (3) and -49.3 (3)°, respectively, compared to the value of 46.97 (16)° in (I). The dihedral angles between the sulfonyl and the anilino rings in the two molecules are 71.53 (7) and 72.11 (7)°, compared to the value of 73.64 (7)° in (I). In each molecule the amide H atom shows an intramolecular hydrogen bond (N1—H1N···O1 and N3—H3N···O7; Table 1) with the O atom of the ortho-nitro group in the sulfonyl benzene ring, generating an S(7) motif (Adsmond et al., 2001). In the crystal, the amide H atoms show intermolecular hydrogen bonds with the sulfonyl oxygen atoms of the other molecule; the N1—H1N···O1i hydrogen bond (symmetry code in Table 1) generates a C(4) motif and a helical chain along the b axis, while the N3—H3N···O6ii hydrogen bond (symmetry code in Table 1) an R22(8) motif and an inversion dimer. A part of the crystal structure is shown in Fig. 2.

Related literature top

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda & Weiss (1994); Shahwar et al. (2012), of N-arylsulfonamides, see: Chaithanya et al. (2012) and of N-chloroarylsulfonamides, see: Shetty & Gowda (2004). For hydrogen-bonding patterns and motifs, see: Adsmond et al. (2001),

Experimental top

The title compound was prepared by treating 2-nitrobenzenesulfonylchloride with 3,5-dimethylaniline in the stoichiometric ratio and boiling the reaction mixture for 15 minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid, N-(3,5-dimethylphenyl)-2-nitrobenzenesulfonamide was filtered under suction and washed thoroughly with cold water and dilute HCl to remove the excess sulfonylchloride and aniline, respectively. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by its infrared spectra. Prism like brown single crystals of the title compound suitable for X-ray diffraction studies were grown in an ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement top

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å and the methyl C—H = 0.96 Å. The positions of amino H atoms were refined with the N—H distance restrained to 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2Ueq(C-aromatic, N) and 1.5Ueq (C-methyl). Rigid-bond restraints (DELU) were applied for atom paris of C18/C19, N2/C2, O3/N2 and N4/C16. The crystal was refined with the twin law (-1 0 0/0 -1 0/0 0 1).

Structure description top

As a part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda & Weiss, 1994; Shahwar et al., 2012), N-arylsulfonamides (Chaithanya et al., 2012) and N-chloroarylsulfonamides (Shetty & Gowda, 2004), in the present work, the crystal structure of N-(3,5-dimethylphenyl)-2-nitrobenzenesulfonamide has been determined.

The asymmetric unit of the title compound consists of two crystallographically independent molecules (Fig. 1). The conformation of the N—C bond in the —SO2—NH—C segment has gauche torsions with respect to the SO bonds, similar to that observed in N-(3-methylphenyl)-2-nitrobenzenesulfonamide (I) (Chaithanya et al., 2012). Further, the conformation of the N—H bond in the —SO2—NH— segment is syn to the ortho-nitro group in the sulfonyl benzene ring. The molecules are twisted at the S—N bonds with C1—S1—N1—C7 and C15—S2—N3—C21 torsion angles of 44.2 (3) and -49.3 (3)°, respectively, compared to the value of 46.97 (16)° in (I). The dihedral angles between the sulfonyl and the anilino rings in the two molecules are 71.53 (7) and 72.11 (7)°, compared to the value of 73.64 (7)° in (I). In each molecule the amide H atom shows an intramolecular hydrogen bond (N1—H1N···O1 and N3—H3N···O7; Table 1) with the O atom of the ortho-nitro group in the sulfonyl benzene ring, generating an S(7) motif (Adsmond et al., 2001). In the crystal, the amide H atoms show intermolecular hydrogen bonds with the sulfonyl oxygen atoms of the other molecule; the N1—H1N···O1i hydrogen bond (symmetry code in Table 1) generates a C(4) motif and a helical chain along the b axis, while the N3—H3N···O6ii hydrogen bond (symmetry code in Table 1) an R22(8) motif and an inversion dimer. A part of the crystal structure is shown in Fig. 2.

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda & Weiss (1994); Shahwar et al. (2012), of N-arylsulfonamides, see: Chaithanya et al. (2012) and of N-chloroarylsulfonamides, see: Shetty & Gowda (2004). For hydrogen-bonding patterns and motifs, see: Adsmond et al. (2001),

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level. The intramolecular N—H···O hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A molecular packing diagram of the title compound with the N—H···O hydrogen bonds shown as dashed lines.
N-(3,5-Dimethylphenyl)-2-nitrobenzenesulfonamide top
Crystal data top
C14H14N2O4SF(000) = 1280
Mr = 306.33Dx = 1.402 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2953 reflections
a = 16.561 (1) Åθ = 2.5–27.9°
b = 8.1611 (6) ŵ = 0.24 mm1
c = 21.476 (2) ÅT = 293 K
β = 90.056 (7)°Prism, brown
V = 2902.6 (4) Å30.48 × 0.40 × 0.20 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
5929 independent reflections
Radiation source: fine-focus sealed tube4004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 2020
Tmin = 0.894, Tmax = 0.954k = 105
12941 measured reflectionsl = 1926
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0703P)2]
where P = (Fo2 + 2Fc2)/3
5929 reflections(Δ/σ)max = 0.006
390 parametersΔρmax = 0.32 e Å3
6 restraintsΔρmin = 0.29 e Å3
Crystal data top
C14H14N2O4SV = 2902.6 (4) Å3
Mr = 306.33Z = 8
Monoclinic, P21/cMo Kα radiation
a = 16.561 (1) ŵ = 0.24 mm1
b = 8.1611 (6) ÅT = 293 K
c = 21.476 (2) Å0.48 × 0.40 × 0.20 mm
β = 90.056 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
5929 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
4004 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.954Rint = 0.030
12941 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0476 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.32 e Å3
5929 reflectionsΔρmin = 0.29 e Å3
390 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10145 (4)0.28567 (9)0.27572 (3)0.0436 (2)
O10.09244 (13)0.4509 (3)0.25622 (10)0.0612 (6)
O20.13065 (14)0.1683 (3)0.23195 (10)0.0648 (6)
O30.11511 (16)0.0493 (3)0.33802 (14)0.0830 (8)
O40.23948 (19)0.1115 (4)0.34483 (18)0.1090 (11)
N10.01449 (14)0.2232 (3)0.30039 (11)0.0451 (6)
H1N0.0052 (18)0.127 (2)0.2925 (14)0.054*
N20.18483 (18)0.0130 (3)0.34824 (13)0.0597 (7)
C10.16894 (15)0.2911 (3)0.34040 (13)0.0390 (6)
C20.20431 (17)0.1548 (4)0.36690 (13)0.0459 (7)
C30.26122 (18)0.1709 (5)0.41434 (16)0.0614 (9)
H30.28540.07850.43150.074*
C40.2813 (2)0.3250 (6)0.43555 (16)0.0657 (10)
H40.31820.33640.46800.079*
C50.24775 (18)0.4600 (5)0.40949 (17)0.0634 (10)
H50.26250.56350.42360.076*
C60.19187 (17)0.4449 (4)0.36223 (14)0.0513 (8)
H60.16920.53840.34470.062*
C70.02146 (14)0.2819 (3)0.35635 (13)0.0374 (6)
C80.02904 (17)0.4483 (4)0.36658 (14)0.0454 (7)
H80.00920.52250.33750.054*
C90.06662 (18)0.5047 (4)0.42075 (16)0.0542 (8)
C100.0970 (2)0.3898 (4)0.46210 (15)0.0592 (9)
H100.12280.42620.49800.071*
C110.09039 (19)0.2245 (4)0.45202 (15)0.0538 (8)
C120.05146 (17)0.1705 (4)0.39875 (14)0.0467 (7)
H120.04550.05880.39150.056*
C130.0759 (2)0.6871 (4)0.4317 (2)0.0811 (12)
H13A0.03270.74450.41140.122*
H13B0.07410.70910.47560.122*
H13C0.12670.72330.41510.122*
C140.1251 (3)0.1020 (5)0.49760 (18)0.0875 (13)
H14A0.08200.05170.52060.131*
H14B0.15450.01940.47530.131*
H14C0.16080.15720.52580.131*
S20.40323 (4)0.72449 (9)0.02986 (3)0.04244 (19)
O50.39955 (14)0.8897 (2)0.01021 (10)0.0578 (6)
O60.38793 (14)0.5967 (3)0.01392 (9)0.0610 (6)
O70.40738 (16)0.3814 (3)0.09201 (14)0.0767 (7)
O80.28562 (16)0.2925 (3)0.08814 (15)0.0886 (9)
N30.49231 (14)0.6879 (3)0.05761 (11)0.0437 (6)
H3N0.5007 (18)0.588 (2)0.0555 (14)0.052*
N40.33469 (18)0.4009 (3)0.09653 (12)0.0542 (6)
C150.33333 (15)0.7097 (3)0.09236 (13)0.0386 (6)
C160.30457 (16)0.5622 (4)0.11719 (13)0.0439 (7)
C170.24623 (18)0.5593 (5)0.16329 (15)0.0552 (8)
H170.22660.46020.17840.066*
C180.21766 (18)0.7054 (5)0.18641 (17)0.0616 (9)
H180.17980.70490.21830.074*
C190.24443 (18)0.8513 (5)0.16295 (16)0.0593 (8)
H190.22430.94920.17870.071*
C200.30193 (17)0.8538 (4)0.11534 (14)0.0489 (8)
H200.31910.95350.09910.059*
C210.52374 (15)0.7656 (3)0.11202 (12)0.0343 (6)
C220.55543 (16)0.6691 (4)0.15836 (14)0.0431 (7)
H220.55180.55570.15510.052*
C230.59271 (17)0.7376 (4)0.20976 (14)0.0457 (7)
C240.59616 (17)0.9071 (4)0.21341 (14)0.0486 (7)
H240.62070.95490.24790.058*
C250.56453 (16)1.0072 (4)0.16781 (15)0.0452 (7)
C260.52802 (16)0.9346 (4)0.11635 (13)0.0418 (7)
H260.50650.99960.08490.050*
C270.6301 (2)0.6305 (4)0.25904 (16)0.0674 (10)
H27A0.60150.52840.26110.101*
H27B0.62710.68470.29860.101*
H27C0.68560.61010.24880.101*
C280.5723 (2)1.1911 (4)0.17188 (19)0.0668 (10)
H28A0.53201.23330.19960.100*
H28B0.56501.23800.13130.100*
H28C0.62501.21890.18730.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0409 (4)0.0553 (5)0.0346 (4)0.0001 (3)0.0008 (3)0.0018 (3)
O10.0596 (13)0.0618 (14)0.0622 (14)0.0008 (11)0.0025 (11)0.0275 (12)
O20.0650 (14)0.0870 (17)0.0424 (12)0.0065 (12)0.0043 (11)0.0184 (12)
O30.0751 (14)0.0599 (15)0.114 (2)0.0024 (13)0.0071 (16)0.0043 (15)
O40.096 (2)0.0755 (19)0.156 (3)0.0428 (17)0.013 (2)0.0038 (19)
N10.0412 (13)0.0502 (15)0.0438 (14)0.0084 (12)0.0014 (11)0.0094 (13)
N20.0642 (14)0.0532 (13)0.0617 (17)0.0132 (13)0.0073 (14)0.0081 (13)
C10.0330 (14)0.0462 (17)0.0378 (14)0.0001 (13)0.0039 (12)0.0016 (14)
C20.0381 (15)0.0598 (15)0.0399 (15)0.0035 (13)0.0060 (13)0.0067 (14)
C30.0425 (18)0.092 (3)0.0492 (19)0.0106 (18)0.0040 (15)0.019 (2)
C40.0446 (18)0.109 (3)0.0433 (18)0.014 (2)0.0004 (15)0.004 (2)
C50.0468 (19)0.085 (3)0.058 (2)0.0163 (18)0.0061 (17)0.020 (2)
C60.0425 (16)0.058 (2)0.0534 (18)0.0078 (15)0.0032 (14)0.0068 (16)
C70.0261 (13)0.0455 (17)0.0407 (15)0.0015 (12)0.0052 (11)0.0030 (13)
C80.0401 (16)0.0463 (19)0.0497 (17)0.0005 (13)0.0039 (14)0.0021 (14)
C90.0513 (18)0.0493 (19)0.062 (2)0.0106 (15)0.0108 (16)0.0082 (17)
C100.058 (2)0.072 (2)0.0484 (18)0.0116 (18)0.0051 (17)0.0093 (17)
C110.0498 (18)0.067 (2)0.0446 (17)0.0013 (17)0.0011 (15)0.0028 (16)
C120.0428 (16)0.0439 (18)0.0535 (18)0.0011 (13)0.0032 (14)0.0026 (15)
C130.088 (3)0.062 (3)0.093 (3)0.020 (2)0.008 (2)0.017 (2)
C140.097 (3)0.099 (3)0.067 (2)0.014 (2)0.020 (2)0.020 (2)
S20.0462 (4)0.0507 (4)0.0305 (3)0.0034 (4)0.0045 (3)0.0018 (3)
O50.0634 (14)0.0569 (13)0.0531 (12)0.0055 (11)0.0033 (11)0.0177 (10)
O60.0708 (15)0.0708 (15)0.0413 (11)0.0095 (12)0.0052 (11)0.0146 (11)
O70.0674 (16)0.0550 (15)0.108 (2)0.0121 (12)0.0070 (15)0.0038 (14)
O80.0862 (19)0.0584 (16)0.121 (2)0.0242 (14)0.0008 (18)0.0154 (16)
N30.0415 (13)0.0444 (15)0.0452 (14)0.0019 (12)0.0028 (11)0.0079 (12)
N40.0623 (17)0.0468 (14)0.0534 (16)0.0029 (13)0.0035 (14)0.0078 (12)
C150.0324 (14)0.0463 (17)0.0369 (15)0.0008 (13)0.0066 (12)0.0018 (13)
C160.0399 (15)0.0520 (16)0.0397 (16)0.0037 (13)0.0073 (13)0.0024 (13)
C170.0470 (18)0.068 (2)0.0505 (19)0.0107 (16)0.0006 (15)0.0065 (17)
C180.0378 (16)0.094 (2)0.0528 (19)0.0051 (17)0.0027 (15)0.0098 (18)
C190.0414 (17)0.0705 (19)0.066 (2)0.0048 (14)0.0040 (16)0.0244 (17)
C200.0416 (16)0.0505 (19)0.0546 (18)0.0029 (14)0.0067 (15)0.0046 (15)
C210.0290 (13)0.0364 (16)0.0376 (14)0.0023 (11)0.0051 (11)0.0011 (12)
C220.0425 (16)0.0376 (16)0.0494 (17)0.0002 (12)0.0025 (13)0.0015 (14)
C230.0410 (15)0.0537 (19)0.0424 (16)0.0004 (14)0.0013 (14)0.0041 (14)
C240.0442 (16)0.0553 (19)0.0464 (17)0.0043 (14)0.0043 (14)0.0058 (15)
C250.0410 (16)0.0407 (17)0.0540 (18)0.0055 (13)0.0034 (14)0.0028 (14)
C260.0359 (14)0.0437 (18)0.0458 (16)0.0021 (12)0.0015 (13)0.0070 (14)
C270.071 (2)0.073 (2)0.058 (2)0.0065 (19)0.0150 (18)0.0135 (18)
C280.072 (2)0.046 (2)0.083 (3)0.0094 (16)0.002 (2)0.0081 (18)
Geometric parameters (Å, º) top
S1—O11.420 (2)S2—O51.414 (2)
S1—O21.427 (2)S2—O61.427 (2)
S1—N11.617 (2)S2—N31.618 (2)
S1—C11.783 (3)S2—C151.777 (3)
O3—N21.212 (3)O7—N41.218 (3)
O4—N21.213 (3)O8—N41.215 (3)
N1—C71.425 (3)N3—C211.427 (3)
N1—H1N0.819 (17)N3—H3N0.832 (17)
N2—C21.463 (4)N4—C161.476 (4)
C1—C21.379 (4)C15—C201.378 (4)
C1—C61.392 (4)C15—C161.401 (4)
C2—C31.393 (4)C16—C171.384 (4)
C3—C41.378 (5)C17—C181.375 (5)
C3—H30.9300C17—H170.9300
C4—C51.355 (5)C18—C191.367 (5)
C4—H40.9300C18—H180.9300
C5—C61.378 (4)C19—C201.398 (5)
C5—H50.9300C19—H190.9300
C6—H60.9300C20—H200.9300
C7—C121.380 (4)C21—C221.373 (4)
C7—C81.381 (4)C21—C261.384 (4)
C8—C91.398 (4)C22—C231.382 (4)
C8—H80.9300C22—H220.9300
C9—C101.386 (5)C23—C241.386 (4)
C9—C131.515 (4)C23—C271.506 (4)
C10—C111.370 (5)C24—C251.378 (4)
C10—H100.9300C24—H240.9300
C11—C121.386 (4)C25—C261.392 (4)
C11—C141.513 (5)C25—C281.509 (4)
C12—H120.9300C26—H260.9300
C13—H13A0.9600C27—H27A0.9600
C13—H13B0.9600C27—H27B0.9600
C13—H13C0.9600C27—H27C0.9600
C14—H14A0.9600C28—H28A0.9600
C14—H14B0.9600C28—H28B0.9600
C14—H14C0.9600C28—H28C0.9600
O1—S1—O2118.60 (14)O5—S2—O6119.54 (13)
O1—S1—N1107.63 (13)O5—S2—N3108.96 (13)
O2—S1—N1107.85 (14)O6—S2—N3105.60 (13)
O1—S1—C1105.78 (13)O5—S2—C15105.19 (13)
O2—S1—C1108.50 (13)O6—S2—C15109.43 (13)
N1—S1—C1108.08 (12)N3—S2—C15107.66 (12)
C7—N1—S1122.89 (19)C21—N3—S2123.45 (19)
C7—N1—H1N115 (2)C21—N3—H3N115 (2)
S1—N1—H1N114 (2)S2—N3—H3N108 (2)
O3—N2—O4122.5 (3)O8—N4—O7123.6 (3)
O3—N2—C2119.2 (3)O8—N4—C16117.9 (3)
O4—N2—C2118.2 (3)O7—N4—C16118.3 (3)
C2—C1—C6118.2 (3)C20—C15—C16118.0 (3)
C2—C1—S1124.6 (2)C20—C15—S2117.3 (2)
C6—C1—S1117.1 (2)C16—C15—S2124.6 (2)
C1—C2—C3120.8 (3)C17—C16—C15121.6 (3)
C1—C2—N2123.2 (3)C17—C16—N4115.9 (3)
C3—C2—N2115.9 (3)C15—C16—N4122.5 (3)
C4—C3—C2119.4 (3)C18—C17—C16119.0 (3)
C4—C3—H3120.3C18—C17—H17120.5
C2—C3—H3120.3C16—C17—H17120.5
C5—C4—C3120.4 (3)C19—C18—C17120.7 (3)
C5—C4—H4119.8C19—C18—H18119.7
C3—C4—H4119.8C17—C18—H18119.7
C4—C5—C6120.4 (3)C18—C19—C20120.3 (3)
C4—C5—H5119.8C18—C19—H19119.9
C6—C5—H5119.8C20—C19—H19119.9
C5—C6—C1120.8 (3)C15—C20—C19120.5 (3)
C5—C6—H6119.6C15—C20—H20119.8
C1—C6—H6119.6C19—C20—H20119.8
C12—C7—C8120.7 (3)C22—C21—C26120.2 (3)
C12—C7—N1119.1 (3)C22—C21—N3118.5 (2)
C8—C7—N1120.2 (3)C26—C21—N3121.1 (2)
C7—C8—C9119.8 (3)C21—C22—C23121.1 (3)
C7—C8—H8120.1C21—C22—H22119.4
C9—C8—H8120.1C23—C22—H22119.4
C10—C9—C8118.2 (3)C22—C23—C24117.8 (3)
C10—C9—C13121.9 (3)C22—C23—C27120.6 (3)
C8—C9—C13119.9 (3)C24—C23—C27121.5 (3)
C11—C10—C9122.4 (3)C25—C24—C23122.4 (3)
C11—C10—H10118.8C25—C24—H24118.8
C9—C10—H10118.8C23—C24—H24118.8
C10—C11—C12118.7 (3)C24—C25—C26118.5 (3)
C10—C11—C14121.2 (3)C24—C25—C28121.0 (3)
C12—C11—C14120.1 (3)C26—C25—C28120.4 (3)
C7—C12—C11120.2 (3)C21—C26—C25120.0 (3)
C7—C12—H12119.9C21—C26—H26120.0
C11—C12—H12119.9C25—C26—H26120.0
C9—C13—H13A109.5C23—C27—H27A109.5
C9—C13—H13B109.5C23—C27—H27B109.5
H13A—C13—H13B109.5H27A—C27—H27B109.5
C9—C13—H13C109.5C23—C27—H27C109.5
H13A—C13—H13C109.5H27A—C27—H27C109.5
H13B—C13—H13C109.5H27B—C27—H27C109.5
C11—C14—H14A109.5C25—C28—H28A109.5
C11—C14—H14B109.5C25—C28—H28B109.5
H14A—C14—H14B109.5H28A—C28—H28B109.5
C11—C14—H14C109.5C25—C28—H28C109.5
H14A—C14—H14C109.5H28A—C28—H28C109.5
H14B—C14—H14C109.5H28B—C28—H28C109.5
O1—S1—N1—C769.6 (2)O5—S2—N3—C2164.2 (3)
O2—S1—N1—C7161.4 (2)O6—S2—N3—C21166.2 (2)
C1—S1—N1—C744.2 (3)C15—S2—N3—C2149.3 (3)
O1—S1—C1—C2168.8 (2)O5—S2—C15—C2010.3 (2)
O2—S1—C1—C240.6 (3)O6—S2—C15—C20139.9 (2)
N1—S1—C1—C276.1 (3)N3—S2—C15—C20105.8 (2)
O1—S1—C1—C66.1 (3)O5—S2—C15—C16165.8 (2)
O2—S1—C1—C6134.3 (2)O6—S2—C15—C1636.2 (3)
N1—S1—C1—C6109.0 (2)N3—S2—C15—C1678.1 (2)
C6—C1—C2—C30.2 (4)C20—C15—C16—C170.2 (4)
S1—C1—C2—C3175.0 (2)S2—C15—C16—C17175.8 (2)
C6—C1—C2—N2179.6 (3)C20—C15—C16—N4179.3 (2)
S1—C1—C2—N25.6 (4)S2—C15—C16—N44.7 (4)
O3—N2—C2—C141.2 (4)O8—N4—C16—C1743.4 (4)
O4—N2—C2—C1140.3 (3)O7—N4—C16—C17132.8 (3)
O3—N2—C2—C3138.3 (3)O8—N4—C16—C15137.1 (3)
O4—N2—C2—C340.3 (4)O7—N4—C16—C1546.7 (4)
C1—C2—C3—C41.0 (4)C15—C16—C17—C181.9 (4)
N2—C2—C3—C4178.4 (3)N4—C16—C17—C18177.6 (3)
C2—C3—C4—C51.7 (5)C16—C17—C18—C192.1 (5)
C3—C4—C5—C61.3 (5)C17—C18—C19—C200.6 (5)
C4—C5—C6—C10.0 (5)C16—C15—C20—C191.4 (4)
C2—C1—C6—C50.7 (4)S2—C15—C20—C19177.7 (2)
S1—C1—C6—C5175.9 (2)C18—C19—C20—C151.2 (5)
S1—N1—C7—C12131.0 (2)S2—N3—C21—C22128.6 (2)
S1—N1—C7—C851.7 (3)S2—N3—C21—C2656.2 (3)
C12—C7—C8—C90.7 (4)C26—C21—C22—C230.6 (4)
N1—C7—C8—C9178.0 (2)N3—C21—C22—C23174.6 (2)
C7—C8—C9—C101.5 (4)C21—C22—C23—C240.8 (4)
C7—C8—C9—C13179.3 (3)C21—C22—C23—C27177.6 (3)
C8—C9—C10—C110.9 (5)C22—C23—C24—C250.5 (4)
C13—C9—C10—C11178.7 (3)C27—C23—C24—C25177.9 (3)
C9—C10—C11—C120.4 (5)C23—C24—C25—C260.1 (4)
C9—C10—C11—C14179.2 (3)C23—C24—C25—C28177.4 (3)
C8—C7—C12—C110.6 (4)C22—C21—C26—C250.0 (4)
N1—C7—C12—C11176.7 (2)N3—C21—C26—C25175.1 (2)
C10—C11—C12—C71.2 (4)C24—C25—C26—C210.3 (4)
C14—C11—C12—C7178.4 (3)C28—C25—C26—C21177.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.82 (2)2.40 (2)3.089 (3)142 (3)
N1—H1N···O30.82 (2)2.52 (3)2.893 (4)109 (2)
N3—H3N···O70.83 (2)2.42 (3)2.963 (3)124 (3)
N3—H3N···O6ii0.83 (2)2.54 (2)3.195 (3)136 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H14N2O4S
Mr306.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.561 (1), 8.1611 (6), 21.476 (2)
β (°) 90.056 (7)
V3)2902.6 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.48 × 0.40 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.894, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
12941, 5929, 4004
Rint0.030
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.123, 1.00
No. of reflections5929
No. of parameters390
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.819 (17)2.40 (2)3.089 (3)142 (3)
N1—H1N···O30.819 (17)2.52 (3)2.893 (4)109 (2)
N3—H3N···O70.832 (17)2.42 (3)2.963 (3)124 (3)
N3—H3N···O6ii0.832 (17)2.54 (2)3.195 (3)136 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1, z.
 

Acknowledgements

UC thanks Mangalore University for award of a research fellowship. BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o2627.  CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695–702.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63–72.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds