organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,3-Di­methyl­phen­yl)-4-fluoro-N-[(4-fluoro­phen­yl)sulfon­yl]benzene­sulfonamide

aMaterials Chemistry Laboratry, Department of Chemistry, GC University, Lahore 54000, Pakistan, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, cQuestioned Documents Unit, Punjab Forensic Science Agency, Home Department, Lahore, Pakistan, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: koolmuneeb@yahoo.com

(Received 23 August 2012; accepted 15 September 2012; online 22 September 2012)

In the title compound, C20H17F2NO4S2, the dihedral angles between the o-xylene ring and the fluoro­benzene rings are 31.7 (1) and 32.8 (1)°, and the dihedral angle between the fluoro­benzene rings is 50.9 (1)°. The C—N—S—C torsion angles are 76.7 (2) and 101.8 (2)°. In the crystal, mol­ecules are connected by C—H⋯O inter­actions into sheets in the ab plane.

Related literature

For related crystal structures, see: Hanson & Hitchcock (2004[Hanson, J. R. & Hitchcock, P. B. (2004). J. Chem. Res. p. 614.]); Low et al. (2006[Low, J. N., Skakle, J. M. S., Wardell, J. L. & Glidewell, C. (2006). Acta Cryst. C62, o423-o425.]); Mughal et al. (2012[Mughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Arshad, M. N. (2012). Acta Cryst. E68, o2433.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17F2NO4S2

  • Mr = 437.47

  • Orthorhombic, P b c a

  • a = 9.9493 (5) Å

  • b = 14.7107 (8) Å

  • c = 26.6871 (17) Å

  • V = 3906.0 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 296 K

  • 0.28 × 0.25 × 0.23 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.916, Tmax = 0.930

  • 31734 measured reflections

  • 4352 independent reflections

  • 2943 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.133

  • S = 1.02

  • 4352 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O2i 0.96 2.57 3.517 (5) 170
C19—H19⋯O1ii 0.93 2.39 3.260 (4) 157
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Rather than the intended 4-fluoro-N-(2,3-dimethylphenyl)benzenesulfonamide, the title `double' sulfonamide (I), (Fig. 1) was unexpectedly obtained in our ongoing studies (Mughal et al., 2012). The related structures of 4-chloroaniline-N,N-ditoluene-p-sulfonamide, (II) (Hanson & Hitchcock, 2004) and 4-iodo-N,N-bis-(2-nitrophenylsulfonyl)aniline, (III) (Low et al., 2006) have been described previously.

The molecule of (I) cannot possess any local symmetry due to the two methyl groups of the xylene ring. Without them, the rest of the moleucle possesses approximate local twofold symmetry about the C1—N1 axis.

The sulfonamide C—N—S—C torsion angles in (I) [76.7 (2) and 101.8 (2)°] compare well to the corresponding value of 80.2° reported in (II), where the molecule posesses a crystallographic twofold symmetry. The respective values in (III) are 98.9 (2) and 94.3 (2)°. The bond-angle sum for the N atom in (I) of 359.7° implies sp2 hybridization for the N atom.

In the crystal of (I), there are weak C—H···O hydrogen bonds between the molecules (Table 1). The C8 bond results in translational chains along [100] and the C19 bond results in helices along [010]. Together these generate (001) sheets.

Related literature top

For related crystal structures, see: Hanson & Hitchcock (2004); Low et al. (2006); Mughal et al. (2012).

Experimental top

0.10 g of 2,3-dimethyl aniline was dissolved in 15 ml dichloromethane, and 0.16 g of 4-fluoro benzene sulfonyl chloride was added. The mixture was stirred at room temperature overnight and its pH was maintained at 8–9 with triethylamine. On completion of the reaction (after TLC), 1M HCl solution was added, the organic fraction was separated, and the solvent was evaporated at room temperature to generate dark brown crystals in 94% yield. Yellow blocks were recrystallized from ethanol solution.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate to fit the electron density.

Structure description top

Rather than the intended 4-fluoro-N-(2,3-dimethylphenyl)benzenesulfonamide, the title `double' sulfonamide (I), (Fig. 1) was unexpectedly obtained in our ongoing studies (Mughal et al., 2012). The related structures of 4-chloroaniline-N,N-ditoluene-p-sulfonamide, (II) (Hanson & Hitchcock, 2004) and 4-iodo-N,N-bis-(2-nitrophenylsulfonyl)aniline, (III) (Low et al., 2006) have been described previously.

The molecule of (I) cannot possess any local symmetry due to the two methyl groups of the xylene ring. Without them, the rest of the moleucle possesses approximate local twofold symmetry about the C1—N1 axis.

The sulfonamide C—N—S—C torsion angles in (I) [76.7 (2) and 101.8 (2)°] compare well to the corresponding value of 80.2° reported in (II), where the molecule posesses a crystallographic twofold symmetry. The respective values in (III) are 98.9 (2) and 94.3 (2)°. The bond-angle sum for the N atom in (I) of 359.7° implies sp2 hybridization for the N atom.

In the crystal of (I), there are weak C—H···O hydrogen bonds between the molecules (Table 1). The C8 bond results in translational chains along [100] and the C19 bond results in helices along [010]. Together these generate (001) sheets.

For related crystal structures, see: Hanson & Hitchcock (2004); Low et al. (2006); Mughal et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.
N-(2,3-Dimethylphenyl)-4-fluoro-N-[(4-fluorophenyl)sulfonyl] benzenesulfonamide top
Crystal data top
C20H17F2NO4S2Dx = 1.488 Mg m3
Mr = 437.47Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 202 reflections
a = 9.9493 (5) Åθ = 3.2–20.5°
b = 14.7107 (8) ŵ = 0.32 mm1
c = 26.6871 (17) ÅT = 296 K
V = 3906.0 (4) Å3Block, yellow
Z = 80.28 × 0.25 × 0.23 mm
F(000) = 1808
Data collection top
Bruker APEXII CCD
diffractometer
4352 independent reflections
Radiation source: fine-focus sealed tube2943 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 27.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1212
Tmin = 0.916, Tmax = 0.930k = 1814
31734 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0524P)2 + 2.7378P]
where P = (Fo2 + 2Fc2)/3
4352 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C20H17F2NO4S2V = 3906.0 (4) Å3
Mr = 437.47Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.9493 (5) ŵ = 0.32 mm1
b = 14.7107 (8) ÅT = 296 K
c = 26.6871 (17) Å0.28 × 0.25 × 0.23 mm
Data collection top
Bruker APEXII CCD
diffractometer
4352 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
2943 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.930Rint = 0.046
31734 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.02Δρmax = 0.47 e Å3
4352 reflectionsΔρmin = 0.29 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6678 (3)0.45285 (18)0.13773 (11)0.0504 (7)
C20.7555 (3)0.48512 (18)0.10252 (10)0.0540 (7)
C30.8910 (3)0.4952 (2)0.11660 (13)0.0616 (8)
C40.9311 (4)0.4696 (2)0.16383 (14)0.0717 (9)
H41.02080.47630.17290.086*
C50.8414 (4)0.4343 (2)0.19804 (14)0.0765 (10)
H50.87150.41670.22960.092*
C60.7092 (3)0.4250 (2)0.18605 (11)0.0595 (8)
H60.64800.40110.20890.071*
C70.7112 (3)0.5083 (2)0.05128 (11)0.0666 (9)
H7A0.75610.46960.02760.100*
H7B0.73280.57060.04430.100*
H7C0.61580.49960.04860.100*
C80.9920 (4)0.5330 (3)0.08077 (16)0.0961 (13)
H8A1.07960.53120.09580.144*
H8B0.96910.59470.07290.144*
H8C0.99220.49730.05060.144*
C90.4640 (3)0.62628 (17)0.11107 (10)0.0451 (6)
C100.5733 (3)0.68129 (19)0.12047 (12)0.0571 (7)
H100.62750.67070.14830.069*
C110.6018 (4)0.7518 (2)0.08853 (14)0.0733 (9)
H110.67440.79020.09430.088*
C120.5205 (4)0.7638 (2)0.04815 (14)0.0768 (10)
C130.4101 (4)0.7119 (2)0.03854 (12)0.0749 (10)
H130.35540.72410.01110.090*
C140.3816 (3)0.6414 (2)0.07036 (10)0.0583 (7)
H140.30770.60410.06460.070*
C150.3779 (3)0.29685 (18)0.14708 (9)0.0449 (6)
C160.2445 (3)0.31051 (19)0.15903 (10)0.0517 (7)
H160.19190.35010.14020.062*
C170.1902 (3)0.2645 (2)0.19928 (11)0.0557 (7)
H170.10070.27280.20830.067*
C180.2703 (3)0.2067 (2)0.22544 (10)0.0542 (7)
C190.4012 (3)0.1897 (2)0.21330 (11)0.0569 (7)
H190.45180.14800.23140.068*
C200.4558 (3)0.23611 (19)0.17354 (10)0.0518 (7)
H200.54500.22650.16450.062*
S10.43137 (7)0.53555 (5)0.15106 (3)0.0483 (2)
S20.45376 (7)0.35921 (5)0.09885 (2)0.0494 (2)
F10.5499 (3)0.83173 (15)0.01607 (9)0.1272 (10)
F20.21844 (19)0.16374 (13)0.26576 (7)0.0773 (6)
O10.4877 (2)0.55627 (14)0.19840 (7)0.0654 (6)
O20.29538 (19)0.50962 (14)0.14719 (9)0.0677 (6)
O30.3540 (2)0.39068 (16)0.06534 (7)0.0704 (6)
O40.5668 (2)0.30948 (14)0.08134 (7)0.0622 (5)
N10.5226 (2)0.44974 (14)0.12742 (8)0.0444 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0518 (16)0.0389 (14)0.0604 (17)0.0005 (12)0.0075 (13)0.0049 (12)
C20.0611 (17)0.0435 (16)0.0574 (17)0.0019 (13)0.0051 (14)0.0018 (13)
C30.0486 (16)0.0509 (17)0.085 (2)0.0025 (14)0.0022 (16)0.0086 (16)
C40.064 (2)0.063 (2)0.088 (2)0.0010 (17)0.0044 (19)0.0038 (18)
C50.081 (2)0.080 (2)0.068 (2)0.006 (2)0.0230 (19)0.0015 (18)
C60.0580 (18)0.0585 (18)0.0619 (18)0.0002 (15)0.0060 (14)0.0022 (14)
C70.083 (2)0.0597 (19)0.0573 (18)0.0066 (17)0.0038 (16)0.0049 (15)
C80.071 (2)0.105 (3)0.112 (3)0.021 (2)0.015 (2)0.003 (3)
C90.0491 (15)0.0359 (13)0.0502 (14)0.0006 (12)0.0011 (12)0.0053 (11)
C100.0583 (18)0.0478 (16)0.0653 (18)0.0045 (14)0.0030 (15)0.0058 (14)
C110.082 (2)0.0494 (18)0.089 (3)0.0206 (17)0.008 (2)0.0050 (17)
C120.115 (3)0.0473 (18)0.068 (2)0.007 (2)0.017 (2)0.0057 (16)
C130.109 (3)0.068 (2)0.0487 (17)0.008 (2)0.0091 (18)0.0019 (16)
C140.0642 (18)0.0571 (18)0.0534 (17)0.0027 (15)0.0054 (14)0.0081 (14)
C150.0503 (15)0.0404 (14)0.0440 (14)0.0087 (12)0.0049 (12)0.0045 (11)
C160.0473 (15)0.0484 (16)0.0594 (17)0.0078 (13)0.0102 (13)0.0035 (13)
C170.0451 (15)0.0568 (17)0.0651 (18)0.0104 (14)0.0022 (14)0.0016 (14)
C180.0577 (18)0.0554 (17)0.0496 (15)0.0180 (14)0.0034 (13)0.0017 (13)
C190.0578 (18)0.0541 (17)0.0588 (17)0.0048 (14)0.0106 (14)0.0102 (14)
C200.0458 (15)0.0510 (16)0.0585 (17)0.0007 (13)0.0005 (13)0.0005 (13)
S10.0486 (4)0.0448 (4)0.0516 (4)0.0001 (3)0.0086 (3)0.0025 (3)
S20.0592 (4)0.0494 (4)0.0397 (3)0.0057 (3)0.0004 (3)0.0028 (3)
F10.209 (3)0.0732 (14)0.0998 (17)0.0283 (17)0.0147 (18)0.0319 (13)
F20.0742 (12)0.0903 (14)0.0672 (11)0.0198 (10)0.0045 (10)0.0228 (10)
O10.0839 (15)0.0678 (13)0.0445 (11)0.0104 (12)0.0046 (10)0.0086 (9)
O20.0462 (11)0.0566 (13)0.1003 (17)0.0017 (10)0.0155 (11)0.0027 (11)
O30.0764 (15)0.0838 (15)0.0510 (11)0.0119 (12)0.0174 (11)0.0096 (11)
O40.0746 (14)0.0565 (12)0.0556 (12)0.0007 (11)0.0155 (10)0.0153 (10)
N10.0429 (11)0.0399 (12)0.0503 (12)0.0012 (9)0.0031 (10)0.0043 (10)
Geometric parameters (Å, º) top
C1—C21.367 (4)C11—H110.9300
C1—C61.414 (4)C12—F11.348 (4)
C1—N11.471 (4)C12—C131.362 (5)
C2—C31.407 (4)C13—C141.371 (4)
C2—C71.476 (4)C13—H130.9300
C3—C41.375 (5)C14—H140.9300
C3—C81.495 (5)C15—C201.377 (4)
C4—C51.378 (5)C15—C161.380 (4)
C4—H40.9300C15—S21.751 (3)
C5—C61.361 (4)C16—C171.380 (4)
C5—H50.9300C16—H160.9300
C6—H60.9300C17—C181.358 (4)
C7—H7A0.9600C17—H170.9300
C7—H7B0.9600C18—F21.350 (3)
C7—H7C0.9600C18—C191.365 (4)
C8—H8A0.9600C19—C201.374 (4)
C8—H8B0.9600C19—H190.9300
C8—H8C0.9600C20—H200.9300
C9—C101.378 (4)S1—O21.410 (2)
C9—C141.379 (4)S1—O11.415 (2)
C9—S11.739 (3)S1—N11.678 (2)
C10—C111.373 (4)S2—O31.414 (2)
C10—H100.9300S2—O41.421 (2)
C11—C121.359 (5)S2—N11.681 (2)
C2—C1—C6122.8 (3)C11—C12—C13123.8 (3)
C2—C1—N1120.6 (3)C12—C13—C14118.3 (3)
C6—C1—N1116.6 (2)C12—C13—H13120.8
C1—C2—C3117.6 (3)C14—C13—H13120.8
C1—C2—C7121.8 (3)C13—C14—C9119.1 (3)
C3—C2—C7120.6 (3)C13—C14—H14120.4
C4—C3—C2119.6 (3)C9—C14—H14120.4
C4—C3—C8119.5 (3)C20—C15—C16121.1 (3)
C2—C3—C8120.8 (3)C20—C15—S2118.3 (2)
C3—C4—C5121.5 (3)C16—C15—S2120.5 (2)
C3—C4—H4119.3C17—C16—C15119.0 (3)
C5—C4—H4119.3C17—C16—H16120.5
C6—C5—C4120.6 (3)C15—C16—H16120.5
C6—C5—H5119.7C18—C17—C16118.5 (3)
C4—C5—H5119.7C18—C17—H17120.7
C5—C6—C1117.8 (3)C16—C17—H17120.7
C5—C6—H6121.1F2—C18—C17118.6 (3)
C1—C6—H6121.1F2—C18—C19117.9 (3)
C2—C7—H7A109.5C17—C18—C19123.5 (3)
C2—C7—H7B109.5C18—C19—C20118.0 (3)
H7A—C7—H7B109.5C18—C19—H19121.0
C2—C7—H7C109.5C20—C19—H19121.0
H7A—C7—H7C109.5C19—C20—C15119.7 (3)
H7B—C7—H7C109.5C19—C20—H20120.1
C3—C8—H8A109.5C15—C20—H20120.1
C3—C8—H8B109.5O2—S1—O1120.26 (14)
H8A—C8—H8B109.5O2—S1—N1106.76 (12)
C3—C8—H8C109.5O1—S1—N1106.45 (12)
H8A—C8—H8C109.5O2—S1—C9110.01 (13)
H8B—C8—H8C109.5O1—S1—C9107.96 (13)
C10—C9—C14121.2 (3)N1—S1—C9104.21 (11)
C10—C9—S1119.1 (2)O3—S2—O4121.08 (13)
C14—C9—S1119.7 (2)O3—S2—N1108.28 (13)
C11—C10—C9119.6 (3)O4—S2—N1103.57 (11)
C11—C10—H10120.2O3—S2—C15109.50 (13)
C9—C10—H10120.2O4—S2—C15108.24 (13)
C12—C11—C10117.9 (3)N1—S2—C15104.92 (11)
C12—C11—H11121.0C1—N1—S1115.94 (17)
C10—C11—H11121.0C1—N1—S2120.65 (17)
F1—C12—C11118.1 (4)S1—N1—S2123.10 (13)
F1—C12—C13118.1 (4)
C6—C1—C2—C33.5 (4)C18—C19—C20—C150.7 (4)
N1—C1—C2—C3173.5 (2)C16—C15—C20—C191.6 (4)
C6—C1—C2—C7176.0 (3)S2—C15—C20—C19176.6 (2)
N1—C1—C2—C76.9 (4)C10—C9—S1—O2158.3 (2)
C1—C2—C3—C42.3 (4)C14—C9—S1—O222.4 (3)
C7—C2—C3—C4177.3 (3)C10—C9—S1—O125.3 (3)
C1—C2—C3—C8177.9 (3)C14—C9—S1—O1155.4 (2)
C7—C2—C3—C82.5 (5)C10—C9—S1—N187.6 (2)
C2—C3—C4—C50.2 (5)C14—C9—S1—N191.7 (2)
C8—C3—C4—C5179.9 (3)C20—C15—S2—O3158.7 (2)
C3—C4—C5—C60.9 (5)C16—C15—S2—O323.2 (3)
C4—C5—C6—C10.2 (5)C20—C15—S2—O424.8 (2)
C2—C1—C6—C52.5 (5)C16—C15—S2—O4157.1 (2)
N1—C1—C6—C5174.6 (3)C20—C15—S2—N185.3 (2)
C14—C9—C10—C110.7 (4)C16—C15—S2—N192.8 (2)
S1—C9—C10—C11178.6 (2)C2—C1—N1—S198.9 (3)
C9—C10—C11—C120.8 (5)C6—C1—N1—S178.3 (3)
C10—C11—C12—F1178.5 (3)C2—C1—N1—S287.2 (3)
C10—C11—C12—C132.4 (6)C6—C1—N1—S295.6 (3)
F1—C12—C13—C14178.4 (3)O2—S1—N1—C1166.84 (19)
C11—C12—C13—C142.5 (6)O1—S1—N1—C137.2 (2)
C12—C13—C14—C90.9 (5)C9—S1—N1—C176.7 (2)
C10—C9—C14—C130.6 (4)O2—S1—N1—S26.85 (19)
S1—C9—C14—C13178.6 (2)O1—S1—N1—S2136.46 (16)
C20—C15—C16—C172.2 (4)C9—S1—N1—S2109.56 (16)
S2—C15—C16—C17175.9 (2)O3—S2—N1—C1141.3 (2)
C15—C16—C17—C180.5 (4)O4—S2—N1—C111.6 (2)
C16—C17—C18—F2178.0 (2)C15—S2—N1—C1101.8 (2)
C16—C17—C18—C191.8 (4)O3—S2—N1—S145.28 (19)
F2—C18—C19—C20177.4 (2)O4—S2—N1—S1175.00 (15)
C17—C18—C19—C202.4 (4)C15—S2—N1—S171.57 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.962.573.517 (5)170
C19—H19···O1ii0.932.393.260 (4)157
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H17F2NO4S2
Mr437.47
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)9.9493 (5), 14.7107 (8), 26.6871 (17)
V3)3906.0 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.28 × 0.25 × 0.23
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.916, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
31734, 4352, 2943
Rint0.046
(sin θ/λ)max1)0.644
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.133, 1.02
No. of reflections4352
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.962.573.517 (5)170
C19—H19···O1ii0.932.393.260 (4)157
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for providing a grant under a project strengthening the Materials Chemistry Laboratory at GC University, Lahore.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHanson, J. R. & Hitchcock, P. B. (2004). J. Chem. Res. p. 614.  CrossRef Google Scholar
First citationLow, J. N., Skakle, J. M. S., Wardell, J. L. & Glidewell, C. (2006). Acta Cryst. C62, o423–o425.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Arshad, M. N. (2012). Acta Cryst. E68, o2433.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds