metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,9-Di­methyl-1,10-phenanthroline-κ2N,N′)bis­­(thio­cyanato-κS)mercury(II)

aDepartment of Chemistry, College of Science, King Saud University, PO Box 2455 Riyadh 11451, Saudi Arabia, bLaboratoire LCM, Faculté Sciences, Université Mohammed Ier, Oujda 60000, Morocco, cLCAE–URAC18, Faculté des Sciences, Université Mohammed Ier, Oujda 60000, Morocco, and dDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan
*Correspondence e-mail: hadsal2003@yahoo.com

(Received 15 August 2012; accepted 5 September 2012; online 15 September 2012)

The asymmetric unit of the title compound, [Hg(SCN)2(C14H12N2)], contains two complex mol­ecules in which the HgII atoms are both four-coordinated in a distorted tetra­hedral configuration by two N atoms from a chelating 2,9-dimethyl-1,10-phenanthroline ligand and by two S atoms from two thio­cyanate anions. The 1,10-phenanthroline ligand is slightly folded for one complex, the dihedral angle between the pyridine planes being 5.3 (1)°. In contrast it is nearly planar [0.5 (1)°] as it complexes with the other HgII atom. The thio­cyanate ligands are virtually linear and the S atom is bonded to HgII with N⋯S—Hg angles ranging from 99.3 (1) to 103.5 (1)°. Despite the presence of six aromatic rings in the asymmetric unit, there are no significant inter­molecular ππ contacts between phenanthroline ligands as the centroid–centroid distance of the closest contact between six-membered rings is 4.11 (1) A°.

Related literature

For the coordination geometry of other complexes with C14H12N2, see: Alizadeh et al. (2009[Alizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483-m484.]); Wang & Zhong (2009[Wang, B. S. & Zhong, H. (2009). Acta Cryst. E65, m1156.]); Warad et al. (2011[Warad, I., Boshaala, A., Al-Resayes, S. I., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, m1650.]). For therapeutic applications of similar compounds, see: Miller et al. (1999[Miller, M. T., Gantzel, P. K. & Karpishin, T. B. (1999). J. Am. Chem. Soc. 121, 4292-4293.]); Lange et al. (2000[Lange, J., Elias, H. & Paulus, H. (2000). Inorg. Chem. 39, 3342-3349.]); Bodoki et al. (2009[Bodoki, A., Hangan, A., Oprean, L., Alzuet, G., Castineiras, A. & Borras, J. (2009). Polyhedron, 28, 2537-2544.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg(NCS)2(C14H12N2)]

  • Mr = 525.01

  • Triclinic, [P \overline 1]

  • a = 8.1593 (4) Å

  • b = 11.2985 (5) Å

  • c = 18.9456 (9) Å

  • α = 77.205 (4)°

  • β = 84.015 (4)°

  • γ = 89.802 (4)°

  • V = 1693.55 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.34 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.15 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.122, Tmax = 0.246

  • 11206 measured reflections

  • 5985 independent reflections

  • 4876 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.066

  • S = 1.02

  • 5985 reflections

  • 419 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −1.13 e Å−3

Table 1
Selected bond lengths (Å)

Hg1—N1 2.396 (4)
Hg1—N2 2.395 (4)
Hg1—S1 2.4201 (16)
Hg1—S2 2.4488 (16)
Hg2—N5 2.384 (4)
Hg2—N6 2.362 (4)
Hg2—S3 2.4741 (16)
Hg2—S4 2.4013 (18)

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Transition metal complexes using 1,10-phenanthroline (phen) and their modified derivatives as ligands are particularly attractive species for the design and development of novel diagnostic and therapeutic agents, that can recognize and selectively cleave DNA (Miller et al., 1999; Bodoki et al., 2009). The reaction of Hg(SCN)2, with dmphen = 2,9-dimethyl-1,10-phenanthroline ligand yields Hg(SCN)2(dmphen) mixed ligand complexes. The number of ligands bound to the metal cation is influenced greatly by both the chemistry and geometry of ligand and the type of co-ligand SCN (Lange et al., 2000). Here we report the synthesis and crystal structure of a new HgII complex, [Hg(SCN)2(dmphen)].

The molecular structure of Hg(SCN)2(dmphen), along with the numbering scheme, is shown in Fig. 1. The two HgII cations are located on general positions and coordinated to two nitrogen atoms of one dmphen bidentate ligand and two SCN ions. A similar coordination geometry around the central atom has been observed in other metal complexes involving the same dmphen ligand such as [HgBr2(dmphen)] (Alizadeh et al., 2009), [CuCl2(dmphen)] (Wang & Zhong, 2009), [CdI2(dmphen)] (Warad et al., 2011), and [CdBr2(dmphen)] (Warad et al., 2011).

One of the two 2,9-dimethyl-1,10-phenanthroline ligands, the one bonded to Hg1, is folded by 5.3 (1)° while the other bonded to Hg2 is planar. Such conjugate double bond systems are expected to be planar. The probable reason comes from packing considerations. The soft Hg bonds to the soft S atom of SCN- as expected. the variations in the approach angle, 99.3 (1) to 103.5 (1)° should also be attributed to packing considerations.

Related literature top

For the coordination geometry of other complexes with C14H12N2, see: Alizadeh et al. (2009); Wang & Zhong (2009); Warad et al. (2011). For therapeutic applications of similar compounds, see: Miller et al. (1999); Lange et al. (2000); Bodoki et al. (2009).

Experimental top

The title compound was prepared by a procedure similar to that used for [CdI2(dmphen)] (Warad et al., 2011). A mixture of mercury thiosyanode (Hg(SCN)2, 50 mg, 0.16 mmol) in methanol (10 ml) and dmphen (32.8 mg, 0.16 mmol) in dichloromethane (5 ml) is stirred for 2 h at room temperature. The obtained solution was concentrated to about 1 ml under reduced pressure and mixed to 40 ml of n-hexane. This caused the precipitation of a white powder of 75 mg, (90% yield) which was filtered, dried and used for the preparation of colorless prisms of [Hg(SCN)2(dmphen)] by slow diffusion of n-hexane into a solution of the complex in dichloromethane. All chemicals were purchased from Acros/Belgium.

Refinement top

All nonhydrogen atoms were refined anisotropically. H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) except for methyl groups where Uiso(H)= 1.5Ueq(C).

Structure description top

Transition metal complexes using 1,10-phenanthroline (phen) and their modified derivatives as ligands are particularly attractive species for the design and development of novel diagnostic and therapeutic agents, that can recognize and selectively cleave DNA (Miller et al., 1999; Bodoki et al., 2009). The reaction of Hg(SCN)2, with dmphen = 2,9-dimethyl-1,10-phenanthroline ligand yields Hg(SCN)2(dmphen) mixed ligand complexes. The number of ligands bound to the metal cation is influenced greatly by both the chemistry and geometry of ligand and the type of co-ligand SCN (Lange et al., 2000). Here we report the synthesis and crystal structure of a new HgII complex, [Hg(SCN)2(dmphen)].

The molecular structure of Hg(SCN)2(dmphen), along with the numbering scheme, is shown in Fig. 1. The two HgII cations are located on general positions and coordinated to two nitrogen atoms of one dmphen bidentate ligand and two SCN ions. A similar coordination geometry around the central atom has been observed in other metal complexes involving the same dmphen ligand such as [HgBr2(dmphen)] (Alizadeh et al., 2009), [CuCl2(dmphen)] (Wang & Zhong, 2009), [CdI2(dmphen)] (Warad et al., 2011), and [CdBr2(dmphen)] (Warad et al., 2011).

One of the two 2,9-dimethyl-1,10-phenanthroline ligands, the one bonded to Hg1, is folded by 5.3 (1)° while the other bonded to Hg2 is planar. Such conjugate double bond systems are expected to be planar. The probable reason comes from packing considerations. The soft Hg bonds to the soft S atom of SCN- as expected. the variations in the approach angle, 99.3 (1) to 103.5 (1)° should also be attributed to packing considerations.

For the coordination geometry of other complexes with C14H12N2, see: Alizadeh et al. (2009); Wang & Zhong (2009); Warad et al. (2011). For therapeutic applications of similar compounds, see: Miller et al. (1999); Lange et al. (2000); Bodoki et al. (2009).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as spheres of arbitary radius.
(2,9-Dimethyl-1,10-phenanthroline-κ2N,N')bis(thiocyanato- κS)mercury(II) top
Crystal data top
[Hg(NCS)2(C14H12N2)]Z = 4
Mr = 525.01F(000) = 992
Triclinic, P1Dx = 2.059 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1593 (4) ÅCell parameters from 5117 reflections
b = 11.2985 (5) Åθ = 3.1–29.2°
c = 18.9456 (9) ŵ = 9.34 mm1
α = 77.205 (4)°T = 293 K
β = 84.015 (4)°Parallelpiped, colourless
γ = 89.802 (4)°0.4 × 0.2 × 0.15 mm
V = 1693.55 (14) Å3
Data collection top
Agilent Xcalibur Eos
diffractometer
5985 independent reflections
Radiation source: Enhance (Mo) X-ray Source4876 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 16.0534 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 95
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1313
Tmin = 0.122, Tmax = 0.246l = 2222
11206 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0191P)2]
where P = (Fo2 + 2Fc2)/3
5985 reflections(Δ/σ)max < 0.001
419 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 1.13 e Å3
Crystal data top
[Hg(NCS)2(C14H12N2)]γ = 89.802 (4)°
Mr = 525.01V = 1693.55 (14) Å3
Triclinic, P1Z = 4
a = 8.1593 (4) ÅMo Kα radiation
b = 11.2985 (5) ŵ = 9.34 mm1
c = 18.9456 (9) ÅT = 293 K
α = 77.205 (4)°0.4 × 0.2 × 0.15 mm
β = 84.015 (4)°
Data collection top
Agilent Xcalibur Eos
diffractometer
5985 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4876 reflections with I > 2σ(I)
Tmin = 0.122, Tmax = 0.246Rint = 0.041
11206 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.02Δρmax = 0.65 e Å3
5985 reflectionsΔρmin = 1.13 e Å3
419 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.18189 (3)0.13738 (2)0.159189 (11)0.04673 (8)
Hg20.39752 (3)0.29806 (2)0.364029 (11)0.05009 (8)
S30.1361 (2)0.30784 (17)0.30774 (8)0.0606 (5)
S40.6423 (2)0.18246 (17)0.35203 (10)0.0698 (5)
S10.0329 (2)0.00199 (18)0.26099 (8)0.0716 (6)
S20.3866 (2)0.30366 (18)0.13101 (10)0.0722 (6)
N50.4455 (5)0.5081 (4)0.3585 (2)0.0404 (11)
N60.2922 (6)0.3419 (4)0.4762 (2)0.0447 (12)
N20.0222 (5)0.2220 (4)0.0616 (2)0.0322 (10)
N10.2267 (5)0.0263 (4)0.0651 (2)0.0310 (10)
C110.1771 (6)0.0853 (4)0.0005 (2)0.0290 (11)
C280.2868 (7)0.4619 (6)0.4772 (3)0.0436 (14)
C100.0780 (7)0.3145 (5)0.0613 (3)0.0403 (13)
C120.0728 (6)0.1882 (4)0.0015 (2)0.0302 (11)
C70.0207 (6)0.2508 (5)0.0687 (3)0.0370 (13)
C270.3688 (7)0.5490 (5)0.4153 (3)0.0411 (14)
N40.3853 (7)0.3735 (5)0.0213 (3)0.0690 (16)
C170.5215 (7)0.5864 (6)0.3020 (3)0.0513 (16)
C10.3147 (6)0.0736 (5)0.0678 (3)0.0387 (13)
C160.3852 (7)0.3451 (5)0.0410 (4)0.0497 (15)
C40.2219 (6)0.0459 (5)0.0656 (3)0.0376 (13)
C30.3154 (6)0.0589 (5)0.0603 (3)0.0438 (14)
H3A0.34680.08830.10170.053*
C230.2056 (8)0.5034 (6)0.5351 (3)0.0526 (16)
C20.3609 (6)0.1184 (5)0.0055 (3)0.0486 (15)
H2A0.42240.18850.00890.058*
C80.0848 (7)0.3477 (5)0.0666 (3)0.0479 (15)
H8A0.12110.39120.10960.057*
C60.0741 (7)0.2105 (6)0.1336 (3)0.0464 (15)
H6A0.04230.25280.17790.056*
C50.1695 (7)0.1125 (6)0.1319 (3)0.0461 (15)
H5A0.20160.08800.17500.055*
C90.1353 (7)0.3796 (5)0.0029 (3)0.0490 (15)
H9A0.20680.44370.00190.059*
C190.4423 (8)0.7529 (6)0.3558 (4)0.0645 (19)
H19A0.44050.83590.35380.077*
C150.1360 (8)0.0123 (6)0.3288 (3)0.0556 (17)
C140.1309 (7)0.3473 (5)0.1335 (3)0.0568 (17)
H14A0.18960.27970.16580.085*
H14B0.20140.41620.12580.085*
H14C0.03530.36680.15460.085*
C200.3639 (7)0.6725 (6)0.4161 (3)0.0488 (15)
N80.5652 (8)0.0478 (6)0.2516 (3)0.0817 (19)
C180.5223 (8)0.7107 (6)0.2993 (3)0.0613 (18)
H18A0.57650.76460.25940.074*
C310.1355 (8)0.4561 (8)0.2732 (3)0.0620 (19)
C130.3626 (7)0.1385 (5)0.1401 (3)0.0534 (16)
H13A0.40210.08070.16490.080*
H13B0.44810.19470.13310.080*
H13C0.26850.18190.16870.080*
C320.5939 (8)0.1038 (6)0.2922 (3)0.0562 (16)
C260.2191 (8)0.2611 (6)0.5327 (3)0.0579 (18)
N30.2032 (8)0.0173 (6)0.3789 (3)0.084 (2)
N70.1302 (8)0.5602 (6)0.2495 (3)0.084 (2)
C290.6022 (9)0.5361 (6)0.2401 (3)0.075 (2)
H29A0.65890.46330.25910.112*
H29B0.67950.59500.21030.112*
H29C0.51950.51790.21130.112*
C220.2020 (9)0.6313 (7)0.5327 (4)0.070 (2)
H22A0.14510.65890.57090.085*
C210.2791 (9)0.7110 (7)0.4766 (4)0.068 (2)
H21A0.27750.79320.47690.082*
C250.1346 (9)0.2991 (7)0.5926 (3)0.072 (2)
H25A0.08270.24190.63150.086*
C240.1290 (7)0.4172 (5)0.5935 (2)0.069 (2)
H24A0.07400.44190.63320.082*
C300.2305 (7)0.1283 (5)0.5324 (2)0.096 (3)
H30A0.15310.10780.50190.144*
H30B0.20550.08100.58110.144*
H30C0.34000.11120.51400.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.05436 (16)0.04869 (16)0.03648 (13)0.00370 (12)0.00277 (11)0.00905 (11)
Hg20.05948 (17)0.04426 (16)0.04687 (14)0.01347 (12)0.00141 (12)0.01299 (11)
S30.0617 (11)0.0717 (13)0.0550 (9)0.0052 (9)0.0130 (9)0.0248 (9)
S40.0627 (12)0.0703 (13)0.0932 (12)0.0275 (9)0.0289 (10)0.0448 (11)
S10.0765 (13)0.0860 (14)0.0467 (9)0.0330 (11)0.0061 (9)0.0024 (9)
S20.0691 (12)0.0768 (14)0.0767 (12)0.0223 (10)0.0121 (10)0.0277 (10)
N50.046 (3)0.040 (3)0.036 (2)0.006 (2)0.005 (2)0.009 (2)
N60.055 (3)0.051 (3)0.029 (2)0.001 (3)0.006 (2)0.009 (2)
N20.026 (2)0.032 (3)0.040 (2)0.0019 (19)0.0036 (19)0.014 (2)
N10.024 (2)0.025 (2)0.042 (2)0.0009 (19)0.001 (2)0.005 (2)
C110.022 (3)0.028 (3)0.037 (3)0.004 (2)0.006 (2)0.010 (2)
C280.040 (3)0.056 (4)0.040 (3)0.009 (3)0.017 (3)0.017 (3)
C100.034 (3)0.039 (3)0.054 (3)0.002 (3)0.003 (3)0.023 (3)
C120.024 (3)0.031 (3)0.037 (3)0.002 (2)0.000 (2)0.012 (2)
C70.029 (3)0.038 (3)0.041 (3)0.004 (2)0.003 (3)0.005 (3)
C270.045 (4)0.040 (4)0.041 (3)0.008 (3)0.012 (3)0.010 (3)
N40.059 (4)0.055 (4)0.085 (4)0.006 (3)0.010 (4)0.006 (3)
C170.050 (4)0.052 (4)0.050 (3)0.002 (3)0.002 (3)0.007 (3)
C10.020 (3)0.034 (3)0.057 (3)0.003 (2)0.003 (3)0.003 (3)
C160.031 (3)0.039 (4)0.081 (4)0.008 (3)0.005 (3)0.022 (4)
C40.026 (3)0.045 (4)0.045 (3)0.010 (3)0.008 (2)0.022 (3)
C30.032 (3)0.044 (4)0.061 (4)0.007 (3)0.010 (3)0.030 (3)
C230.052 (4)0.072 (5)0.042 (3)0.010 (3)0.010 (3)0.028 (3)
C20.031 (3)0.041 (4)0.078 (4)0.008 (3)0.009 (3)0.030 (3)
C80.042 (4)0.045 (4)0.054 (3)0.002 (3)0.014 (3)0.000 (3)
C60.041 (4)0.067 (5)0.029 (3)0.010 (3)0.003 (3)0.005 (3)
C50.037 (3)0.067 (5)0.038 (3)0.013 (3)0.007 (3)0.024 (3)
C90.041 (4)0.039 (4)0.070 (4)0.009 (3)0.013 (3)0.015 (3)
C190.080 (5)0.040 (4)0.077 (5)0.000 (4)0.028 (4)0.012 (4)
C150.065 (4)0.049 (4)0.047 (3)0.000 (3)0.012 (3)0.006 (3)
C140.057 (4)0.052 (4)0.069 (4)0.020 (3)0.005 (3)0.029 (3)
C200.049 (4)0.047 (4)0.057 (4)0.008 (3)0.020 (3)0.018 (3)
N80.095 (5)0.076 (5)0.081 (4)0.003 (4)0.010 (4)0.041 (4)
C180.074 (5)0.047 (4)0.057 (4)0.008 (4)0.013 (4)0.004 (3)
C310.057 (4)0.098 (6)0.036 (3)0.025 (4)0.016 (3)0.021 (4)
C130.041 (4)0.044 (4)0.073 (4)0.009 (3)0.008 (3)0.007 (3)
C320.060 (4)0.044 (4)0.060 (4)0.012 (3)0.012 (3)0.011 (3)
C260.064 (4)0.068 (5)0.038 (3)0.006 (4)0.006 (3)0.005 (3)
N30.108 (5)0.088 (5)0.057 (3)0.006 (4)0.021 (4)0.013 (3)
N70.113 (6)0.076 (5)0.062 (4)0.042 (4)0.023 (4)0.009 (4)
C290.090 (6)0.070 (5)0.055 (4)0.005 (4)0.021 (4)0.007 (4)
C220.073 (5)0.088 (6)0.069 (4)0.022 (4)0.016 (4)0.051 (4)
C210.079 (5)0.062 (5)0.079 (5)0.016 (4)0.026 (4)0.043 (4)
C250.083 (5)0.094 (6)0.033 (3)0.009 (5)0.004 (3)0.007 (4)
C240.070 (5)0.099 (6)0.042 (4)0.004 (4)0.002 (3)0.029 (4)
C300.154 (9)0.067 (6)0.053 (4)0.017 (6)0.011 (5)0.004 (4)
Geometric parameters (Å, º) top
Hg1—N12.396 (4)C3—H3A0.9300
Hg1—N22.395 (4)C23—C241.395 (7)
Hg1—S12.4201 (16)C23—C221.436 (9)
Hg1—S22.4488 (16)C2—H2A0.9300
Hg2—N52.384 (4)C8—C91.359 (7)
Hg2—N62.362 (4)C8—H8A0.9300
Hg2—S32.4741 (16)C6—C51.348 (8)
Hg2—S42.4013 (18)C6—H6A0.9300
S3—C311.658 (8)C5—H5A0.9300
S4—C321.666 (7)C9—H9A0.9300
S1—C151.644 (7)C19—C181.371 (9)
S2—C161.666 (7)C19—C201.390 (8)
N5—C171.327 (7)C19—H19A0.9300
N5—C271.357 (6)C15—N31.156 (7)
N6—C261.332 (7)C14—H14A0.9600
N6—C281.361 (7)C14—H14B0.9600
N2—C101.324 (7)C14—H14C0.9600
N2—C121.360 (6)C20—C211.426 (8)
N1—C11.330 (7)N8—C321.140 (7)
N1—C111.374 (6)C18—H18A0.9300
C11—C41.413 (6)C31—N71.164 (8)
C11—C121.436 (7)C13—H13A0.9600
C28—C231.392 (8)C13—H13B0.9600
C28—C271.455 (7)C13—H13C0.9600
C10—C91.400 (7)C26—C251.415 (9)
C10—C141.514 (7)C26—C301.504 (8)
C12—C71.418 (6)C29—H29A0.9600
C7—C81.395 (8)C29—H29B0.9600
C7—C61.430 (7)C29—H29C0.9600
C27—C201.400 (7)C22—C211.333 (9)
N4—C161.154 (7)C22—H22A0.9300
C17—C181.394 (8)C21—H21A0.9300
C17—C291.504 (8)C25—C241.339 (8)
C1—C21.401 (7)C25—H25A0.9300
C1—C131.493 (7)C24—H24A0.9300
C4—C31.397 (8)C30—H30A0.9600
C4—C51.421 (7)C30—H30B0.9600
C3—C21.366 (7)C30—H30C0.9600
N2—Hg1—N170.31 (13)C1—C2—H2A120.0
N2—Hg1—S1115.08 (10)C9—C8—C7121.1 (5)
N1—Hg1—S1105.19 (10)C9—C8—H8A119.4
N2—Hg1—S295.17 (10)C7—C8—H8A119.4
N1—Hg1—S2107.09 (10)C5—C6—C7121.3 (5)
S1—Hg1—S2141.59 (6)C5—C6—H6A119.4
N6—Hg2—N571.23 (15)C7—C6—H6A119.4
N6—Hg2—S4122.12 (12)C6—C5—C4121.2 (5)
N5—Hg2—S4114.77 (12)C6—C5—H5A119.4
N6—Hg2—S398.11 (12)C4—C5—H5A119.4
N5—Hg2—S3100.38 (11)C8—C9—C10118.9 (6)
S4—Hg2—S3132.60 (6)C8—C9—H9A120.6
C31—S3—Hg298.6 (2)C10—C9—H9A120.6
C32—S4—Hg2101.1 (2)C18—C19—C20120.5 (6)
C15—S1—Hg1101.9 (2)C18—C19—H19A119.8
C16—S2—Hg1100.0 (2)C20—C19—H19A119.8
C17—N5—C27119.7 (5)N3—C15—S1176.3 (6)
C17—N5—Hg2125.3 (4)C10—C14—H14A109.5
C27—N5—Hg2114.4 (3)C10—C14—H14B109.5
C26—N6—C28119.2 (5)H14A—C14—H14B109.5
C26—N6—Hg2124.8 (4)C10—C14—H14C109.5
C28—N6—Hg2115.3 (4)H14A—C14—H14C109.5
C10—N2—C12120.1 (4)H14B—C14—H14C109.5
C10—N2—Hg1124.5 (3)C19—C20—C27117.0 (6)
C12—N2—Hg1113.5 (3)C19—C20—C21123.0 (6)
C1—N1—C11118.9 (4)C27—C20—C21120.0 (6)
C1—N1—Hg1126.2 (3)C19—C18—C17119.4 (6)
C11—N1—Hg1114.1 (3)C19—C18—H18A120.3
N1—C11—C4122.1 (5)C17—C18—H18A120.3
N1—C11—C12118.1 (4)N7—C31—S3178.0 (7)
C4—C11—C12119.8 (5)C1—C13—H13A109.5
N6—C28—C23122.1 (6)C1—C13—H13B109.5
N6—C28—C27118.4 (5)H13A—C13—H13B109.5
C23—C28—C27119.4 (6)C1—C13—H13C109.5
N2—C10—C9121.8 (5)H13A—C13—H13C109.5
N2—C10—C14117.6 (5)H13B—C13—H13C109.5
C9—C10—C14120.6 (5)N8—C32—S4177.9 (7)
N2—C12—C7121.1 (5)N6—C26—C25120.7 (6)
N2—C12—C11119.8 (4)N6—C26—C30118.9 (5)
C7—C12—C11119.0 (4)C25—C26—C30120.4 (6)
C8—C7—C12117.0 (5)C17—C29—H29A109.5
C8—C7—C6123.7 (5)C17—C29—H29B109.5
C12—C7—C6119.3 (5)H29A—C29—H29B109.5
N5—C27—C20122.2 (5)C17—C29—H29C109.5
N5—C27—C28119.1 (5)H29A—C29—H29C109.5
C20—C27—C28118.7 (5)H29B—C29—H29C109.5
N5—C17—C18121.1 (6)C21—C22—C23120.9 (6)
N5—C17—C29117.4 (6)C21—C22—H22A119.5
C18—C17—C29121.5 (6)C23—C22—H22A119.5
N1—C1—C2121.7 (5)C22—C21—C20121.2 (6)
N1—C1—C13118.0 (5)C22—C21—H21A119.4
C2—C1—C13120.4 (5)C20—C21—H21A119.4
N4—C16—S2179.5 (6)C24—C25—C26120.1 (6)
C3—C4—C11117.1 (5)C24—C25—H25A119.9
C3—C4—C5123.5 (5)C26—C25—H25A119.9
C11—C4—C5119.4 (5)C25—C24—C23120.1 (5)
C2—C3—C4120.2 (5)C25—C24—H24A119.9
C2—C3—H3A119.9C23—C24—H24A119.9
C4—C3—H3A119.9C26—C30—H30A109.5
C28—C23—C24117.7 (6)C26—C30—H30B109.5
C28—C23—C22119.7 (6)H30A—C30—H30B109.5
C24—C23—C22122.5 (6)C26—C30—H30C109.5
C3—C2—C1120.0 (5)H30A—C30—H30C109.5
C3—C2—H2A120.0H30B—C30—H30C109.5
N6—Hg2—S3—C3185.6 (3)Hg2—N5—C27—C288.4 (6)
N5—Hg2—S3—C3113.3 (2)N6—C28—C27—N50.9 (7)
S4—Hg2—S3—C31125.1 (2)C23—C28—C27—N5179.0 (5)
N6—Hg2—S4—C32143.6 (3)N6—C28—C27—C20179.9 (5)
N5—Hg2—S4—C32133.8 (2)C23—C28—C27—C200.2 (8)
S3—Hg2—S4—C320.2 (3)C27—N5—C17—C180.9 (8)
N2—Hg1—S1—C15152.7 (3)Hg2—N5—C17—C18170.2 (4)
N1—Hg1—S1—C15132.3 (3)C27—N5—C17—C29179.0 (5)
S2—Hg1—S1—C1514.0 (3)Hg2—N5—C17—C298.0 (7)
N2—Hg1—S2—C1631.0 (2)C11—N1—C1—C21.5 (7)
N1—Hg1—S2—C1640.0 (2)Hg1—N1—C1—C2167.2 (3)
S1—Hg1—S2—C16174.1 (2)C11—N1—C1—C13178.0 (4)
N6—Hg2—N5—C17179.0 (5)Hg1—N1—C1—C1313.4 (6)
S4—Hg2—N5—C1761.5 (5)Hg1—S2—C16—N4115 (83)
S3—Hg2—N5—C1785.9 (4)N1—C11—C4—C32.0 (7)
N6—Hg2—N5—C279.6 (3)C12—C11—C4—C3176.3 (4)
S4—Hg2—N5—C27127.1 (3)N1—C11—C4—C5178.6 (4)
S3—Hg2—N5—C2785.5 (4)C12—C11—C4—C53.1 (7)
N5—Hg2—N6—C26179.7 (5)C11—C4—C3—C20.5 (7)
S4—Hg2—N6—C2671.7 (5)C5—C4—C3—C2179.8 (5)
S3—Hg2—N6—C2682.0 (5)N6—C28—C23—C240.3 (8)
N5—Hg2—N6—C2810.1 (3)C27—C28—C23—C24179.8 (5)
S4—Hg2—N6—C28118.1 (4)N6—C28—C23—C22179.1 (5)
S3—Hg2—N6—C2888.1 (4)C27—C28—C23—C220.8 (8)
N1—Hg1—N2—C10178.6 (4)C4—C3—C2—C10.5 (8)
S1—Hg1—N2—C1080.6 (4)N1—C1—C2—C30.0 (8)
S2—Hg1—N2—C1075.1 (4)C13—C1—C2—C3179.5 (5)
N1—Hg1—N2—C1217.2 (3)C12—C7—C8—C90.3 (7)
S1—Hg1—N2—C12115.2 (3)C6—C7—C8—C9178.0 (5)
S2—Hg1—N2—C1289.1 (3)C8—C7—C6—C5176.6 (5)
N2—Hg1—N1—C1174.6 (4)C12—C7—C6—C51.7 (8)
S1—Hg1—N1—C162.9 (4)C7—C6—C5—C40.5 (8)
S2—Hg1—N1—C196.0 (4)C3—C4—C5—C6177.5 (5)
N2—Hg1—N1—C1116.3 (3)C11—C4—C5—C61.9 (8)
S1—Hg1—N1—C11128.0 (3)C7—C8—C9—C100.9 (8)
S2—Hg1—N1—C1173.1 (3)N2—C10—C9—C80.9 (8)
C1—N1—C11—C42.5 (6)C14—C10—C9—C8179.8 (5)
Hg1—N1—C11—C4167.4 (3)Hg1—S1—C15—N3175 (11)
C1—N1—C11—C12175.8 (4)C18—C19—C20—C271.0 (9)
Hg1—N1—C11—C1214.2 (5)C18—C19—C20—C21179.9 (6)
C26—N6—C28—C230.7 (8)N5—C27—C20—C190.3 (8)
Hg2—N6—C28—C23170.0 (4)C28—C27—C20—C19179.4 (5)
C26—N6—C28—C27179.4 (5)N5—C27—C20—C21178.9 (5)
Hg2—N6—C28—C279.9 (6)C28—C27—C20—C210.3 (8)
C12—N2—C10—C90.3 (7)C20—C19—C18—C171.3 (10)
Hg1—N2—C10—C9163.5 (4)N5—C17—C18—C190.4 (9)
C12—N2—C10—C14179.6 (4)C29—C17—C18—C19177.7 (6)
Hg1—N2—C10—C1417.2 (6)Hg2—S3—C31—N7141 (17)
C10—N2—C12—C70.3 (7)Hg2—S4—C32—N8172 (17)
Hg1—N2—C12—C7164.7 (3)C28—N6—C26—C250.9 (9)
C10—N2—C12—C11177.9 (4)Hg2—N6—C26—C25168.9 (5)
Hg1—N2—C12—C1117.1 (5)C28—N6—C26—C30177.9 (5)
N1—C11—C12—N22.1 (6)Hg2—N6—C26—C3012.3 (7)
C4—C11—C12—N2176.3 (4)C28—C23—C22—C211.8 (10)
N1—C11—C12—C7179.7 (4)C24—C23—C22—C21178.8 (6)
C4—C11—C12—C71.9 (7)C23—C22—C21—C201.7 (10)
N2—C12—C7—C80.3 (7)C19—C20—C21—C22178.4 (6)
C11—C12—C7—C8178.0 (4)C27—C20—C21—C220.7 (10)
N2—C12—C7—C6178.7 (4)N6—C26—C25—C240.8 (10)
C11—C12—C7—C60.4 (7)C30—C26—C25—C24178.0 (7)
C17—N5—C27—C201.2 (8)C26—C25—C24—C230.4 (10)
Hg2—N5—C27—C20170.8 (4)C28—C23—C24—C250.2 (9)
C17—N5—C27—C28179.6 (5)C22—C23—C24—C25179.3 (6)

Experimental details

Crystal data
Chemical formula[Hg(NCS)2(C14H12N2)]
Mr525.01
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.1593 (4), 11.2985 (5), 18.9456 (9)
α, β, γ (°)77.205 (4), 84.015 (4), 89.802 (4)
V3)1693.55 (14)
Z4
Radiation typeMo Kα
µ (mm1)9.34
Crystal size (mm)0.4 × 0.2 × 0.15
Data collection
DiffractometerAgilent Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.122, 0.246
No. of measured, independent and
observed [I > 2σ(I)] reflections
11206, 5985, 4876
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.066, 1.02
No. of reflections5985
No. of parameters419
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 1.13

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Selected bond lengths (Å) top
Hg1—N12.396 (4)Hg2—N52.384 (4)
Hg1—N22.395 (4)Hg2—N62.362 (4)
Hg1—S12.4201 (16)Hg2—S32.4741 (16)
Hg1—S22.4488 (16)Hg2—S42.4013 (18)
 

Acknowledgements

This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center. The X-ray structural work was performed at the Hamdi Mango Center for Scientific Research at The University of Jordan.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAlizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483–m484.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBodoki, A., Hangan, A., Oprean, L., Alzuet, G., Castineiras, A. & Borras, J. (2009). Polyhedron, 28, 2537–2544.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLange, J., Elias, H. & Paulus, H. (2000). Inorg. Chem. 39, 3342–3349.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMiller, M. T., Gantzel, P. K. & Karpishin, T. B. (1999). J. Am. Chem. Soc. 121, 4292–4293.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, B. S. & Zhong, H. (2009). Acta Cryst. E65, m1156.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWarad, I., Boshaala, A., Al-Resayes, S. I., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, m1650.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds