supplementary materials


bt6849 scheme

Acta Cryst. (2012). E68, m1414-m1415    [ doi:10.1107/S1600536812043917 ]

Bis(2,2':6',2''-terpyridine)ruthenium(II) bis(perchlorate) hemihydrate

M. Kozlowska, P. Rodziewicz, D. M. Brus, J. Breczko and K. Brzezinski

Abstract top

The asymmetric unit of the title compound, [Ru(C15H11N3)2](ClO4)2·0.5H2O, contains one ruthenium-terpiridine complex cation, two perchlorate anions and one half-molecule of water. Face-to-face and face-to-edge [pi]-stacking interactions between terpyridine units [centroid-centroid distances = 3.793 (2) and 3.801 (2)  Å] stabilize the crystal lattice The partially occupied water molecule interacts with two perchlorate ions via O-H...O hydrogen bonds. In the crystal lattice, the complex cations, perchlorate ion-water pairs and the second perchlorate anions are arranged into columns along b direction.

Comment top

A 2,2':6',2''-terpyridine (tpy) compound, as chelating N-donor, forms complexes with most of transition metals (Burstall et al., 1952). The polyimine complexes of divalent transition metal cations are well known due to their photophysical and electrochemical properties (Anders et al., 2004; Plonska et al., 2002; Winkler et al., 2003; Winkler et al., 2006). Ruthenium complexes with terpyridyl or bipyridyl ligands might catalyze photochemical water oxidation (Constable, 2007). The metal-to-ligand charge transfer processes in the visible region enable photo- and electroluminescence phenomena and make these applicable in a supramolecular chemistry (Constable, 2007).

The asymmetric unit contains one divalent cation of the ruthenium-terpiridine complex, two perchlorate anions and a water molecule with a half-occupancy (Fig. 1). The crystal lattice is stabilized by terpyridine moieties and respective face-to-face and face-to-edge π-stacking interactions. The partially occupied water molecule and one perchlorate anion are located in a proximity of the inversion center and a symmetry related water-anion pair is generated. Two hydrogen bonds O5—H5A···O1A and H5—H5B···O2A (equivalent anion -x + 2,-y + 1,-z) are formed between water molecule and oxygen atoms of perchlorate units. Geometrical parameters of hydrogen bond interactions are summarized in Table 1. In the crystal lattice each water molecule serves as a bridge between two symmetry dependent perchlorate units (Fig. 2). It is of note, that only one perchlorate unit and its symmetry-mates form hydrogen bonds with water molecules, whereas the second anion interacts with C-bonded hydrogen atoms (Fig 2).

Related literature top

For the preparation of terpyridine complexes with transition metals, see: Burstall et al. (1952). For the structures of salts of complexes of ruthenium with terpyridine, see: Craig et al. (1998); Lashgari et al. (1999); Pyo et al. (1999); Tovee et al. (2009); Walstrom et al. (2009). For background to the properties and applications of terpiridine complexes, see: Anders et al. (2004); Constable (2007); Plonska et al. (2002); Winkler et al. (2003, 2006).

Experimental top

The transition metal complex salt, [RuII(tpy)2](ClO4)2 was prepared according to the procedure described by Burstall et al. (1952). Crystals suitable for X-ray diffraction study were obtained at room temperature by a slow evaporation of [RuII(tpy)2](ClO4)2 solution in acetonitrile.

Refinement top

During the initial refinement steps, the occupancy factor for the water molecule was refined and it was in a range of 0.49–0.52. For the final refinement cycles, this occupancy was fixed at 0.5 with isotropic atomic displacement parameters for hydrogen atoms. All H atoms were located in electron density difference maps. C-bonded hydrogen atoms were constrained to idealized positions with C—H distances fixed at 0.95 Å and 1.2Ueq(C). O—H distances were fixed at 0.85 Å with Uiso(H) = 1.5Ueq(C) and the positions of water hydrogen atoms were refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed along b direction. Dashed lines represent hydrogen bonds between half-molecule of water and perchlorate anions.
Bis(2,2':6',2''-terpyridine)ruthenium(II) bis(perchlorate) hemihydrate top
Crystal data top
[Ru(C15H11N3)2](ClO4)2·0.5H2OF(000) = 1564
Mr = 775.51Dx = 1.706 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7538 reflections
a = 8.7676 (2) Åθ = 2.5–26.3°
b = 8.8221 (9) ŵ = 0.76 mm1
c = 39.118 (4) ÅT = 100 K
β = 93.582 (5)°Plate, red
V = 3019.8 (4) Å30.15 × 0.12 × 0.03 mm
Z = 4
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
6158 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5858 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4052 pixels mm-1θmax = 26.4°, θmin = 2.5°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 011
Tmin = 0.801, Tmax = 1.000l = 048
16537 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.27 w = 1/[σ2(Fo2) + (0.0111P)2 + 7.0042P]
where P = (Fo2 + 2Fc2)/3
6158 reflections(Δ/σ)max = 0.001
439 parametersΔρmax = 0.65 e Å3
3 restraintsΔρmin = 1.17 e Å3
Crystal data top
[Ru(C15H11N3)2](ClO4)2·0.5H2OV = 3019.8 (4) Å3
Mr = 775.51Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7676 (2) ŵ = 0.76 mm1
b = 8.8221 (9) ÅT = 100 K
c = 39.118 (4) Å0.15 × 0.12 × 0.03 mm
β = 93.582 (5)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
6158 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
5858 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 1.000Rint = 0.027
16537 measured reflectionsθmax = 26.4°
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083Δρmax = 0.65 e Å3
S = 1.27Δρmin = 1.17 e Å3
6158 reflectionsAbsolute structure: ?
439 parametersFlack parameter: ?
3 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.35193 (3)0.33315 (3)0.127794 (6)0.01027 (7)
N1A0.2631 (3)0.1164 (3)0.12359 (7)0.0121 (5)
N3A0.4324 (3)0.5408 (3)0.11162 (7)0.0122 (5)
C15A0.4968 (3)0.6520 (4)0.13099 (8)0.0142 (6)
H15A0.50390.63990.15520.017*
C1A0.2479 (3)0.0135 (4)0.14867 (8)0.0155 (7)
H1A0.28370.03860.17140.019*
C10A0.3495 (3)0.4333 (4)0.05723 (8)0.0139 (6)
C10B0.5227 (3)0.3134 (4)0.19339 (8)0.0145 (6)
C11A0.4207 (3)0.5607 (4)0.07649 (8)0.0145 (6)
C5A0.2170 (3)0.0758 (4)0.09058 (8)0.0142 (6)
C12A0.4743 (4)0.6915 (4)0.06155 (9)0.0179 (7)
H12A0.46350.70420.03740.022*
C2A0.1819 (4)0.1275 (4)0.14247 (9)0.0181 (7)
H2A0.17240.19750.16070.022*
C15B0.6578 (3)0.1840 (4)0.11219 (8)0.0156 (7)
H15B0.62280.18790.08870.019*
C4A0.1491 (4)0.0635 (4)0.08320 (9)0.0174 (7)
H4A0.11620.08880.06030.021*
C12B0.7609 (4)0.1731 (4)0.17951 (9)0.0199 (7)
H12B0.79490.17000.20300.024*
C8A0.2508 (4)0.2943 (4)0.00816 (8)0.0213 (7)
H8A0.22960.28660.01590.026*
C9A0.3187 (4)0.4247 (4)0.02177 (8)0.0184 (7)
H9A0.34370.50640.00730.022*
C14A0.5534 (4)0.7834 (4)0.11718 (9)0.0189 (7)
H14A0.59850.85940.13170.023*
C3A0.1300 (4)0.1650 (4)0.10941 (9)0.0211 (7)
H3A0.08160.25990.10480.025*
C13A0.5437 (4)0.8035 (4)0.08197 (9)0.0205 (7)
H13A0.58380.89210.07200.025*
C4B0.0091 (4)0.5255 (4)0.18713 (9)0.0193 (7)
H4B0.00760.55210.21060.023*
C7B0.3040 (4)0.4475 (4)0.23114 (8)0.0196 (7)
H7B0.22810.49370.24400.024*
N2B0.3874 (3)0.3573 (3)0.17813 (6)0.0124 (5)
C6B0.2779 (3)0.4223 (4)0.19610 (8)0.0143 (6)
C14B0.7970 (4)0.1152 (4)0.12103 (9)0.0184 (7)
H14B0.85650.07310.10390.022*
C1B0.0186 (4)0.4455 (4)0.11975 (9)0.0163 (7)
H1B0.02030.41680.09640.020*
C13B0.8476 (4)0.1089 (4)0.15514 (9)0.0216 (7)
H13B0.94170.06060.16180.026*
C5B0.1388 (4)0.4593 (4)0.17462 (8)0.0149 (7)
C2B0.1131 (4)0.5101 (4)0.13105 (9)0.0208 (7)
H2B0.19970.52530.11560.025*
C3B0.1173 (4)0.5522 (4)0.16509 (9)0.0223 (8)
H3B0.20590.59880.17320.027*
C8B0.4433 (4)0.4036 (4)0.24683 (9)0.0215 (7)
H8B0.46250.41990.27070.026*
C9B0.5547 (4)0.3367 (4)0.22841 (8)0.0192 (7)
H9B0.65010.30740.23930.023*
N1B0.1441 (3)0.4219 (3)0.14059 (7)0.0127 (5)
N2A0.3132 (3)0.3157 (3)0.07744 (6)0.0126 (5)
C6A0.2464 (3)0.1891 (4)0.06429 (8)0.0142 (6)
N3B0.5705 (3)0.2454 (3)0.13564 (6)0.0123 (5)
C7A0.2136 (4)0.1753 (4)0.02910 (8)0.0198 (7)
H7A0.16680.08620.01970.024*
C11B0.6234 (3)0.2424 (4)0.16936 (8)0.0146 (7)
Cl1A0.78661 (9)0.20109 (9)0.02625 (2)0.01935 (18)
O2A0.8387 (3)0.2126 (3)0.00779 (6)0.0306 (6)
O4A0.6256 (3)0.2268 (4)0.02484 (7)0.0426 (8)
O3A0.8209 (4)0.0534 (3)0.03981 (7)0.0383 (7)
O1A0.8611 (4)0.3124 (3)0.04797 (7)0.0407 (7)
Cl1B0.52415 (9)0.83287 (10)0.22156 (2)0.02087 (18)
O2B0.5394 (3)0.7741 (3)0.25576 (7)0.0369 (7)
O1B0.3911 (3)0.7690 (3)0.20366 (6)0.0279 (6)
O3B0.5070 (3)0.9946 (3)0.22300 (7)0.0297 (6)
O4B0.6574 (3)0.7965 (4)0.20354 (7)0.0433 (8)
O50.9985 (6)0.6020 (6)0.05038 (12)0.0266 (11)0.50
H5A1.044 (8)0.639 (8)0.0339 (13)0.040*0.50
H5B0.950 (8)0.523 (6)0.0438 (18)0.040*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.00989 (12)0.00929 (12)0.01172 (13)0.00013 (10)0.00132 (9)0.00072 (10)
N1A0.0079 (12)0.0103 (13)0.0179 (13)0.0022 (10)0.0002 (10)0.0004 (11)
N3A0.0100 (12)0.0096 (13)0.0173 (13)0.0017 (10)0.0025 (10)0.0008 (11)
C15A0.0119 (14)0.0129 (16)0.0179 (16)0.0005 (12)0.0008 (12)0.0028 (13)
C1A0.0130 (15)0.0161 (17)0.0171 (16)0.0008 (13)0.0000 (12)0.0015 (13)
C10A0.0114 (15)0.0123 (16)0.0181 (16)0.0039 (12)0.0010 (12)0.0001 (13)
C10B0.0158 (15)0.0109 (16)0.0168 (16)0.0039 (12)0.0002 (12)0.0007 (13)
C11A0.0123 (15)0.0145 (16)0.0171 (16)0.0030 (13)0.0031 (12)0.0005 (13)
C5A0.0101 (15)0.0129 (16)0.0194 (16)0.0024 (12)0.0003 (12)0.0015 (13)
C12A0.0190 (16)0.0153 (17)0.0198 (17)0.0005 (13)0.0031 (13)0.0031 (14)
C2A0.0150 (16)0.0119 (16)0.0273 (18)0.0037 (13)0.0013 (13)0.0053 (14)
C15B0.0171 (16)0.0126 (16)0.0175 (16)0.0028 (13)0.0047 (12)0.0005 (13)
C4A0.0153 (16)0.0145 (17)0.0221 (17)0.0000 (13)0.0012 (13)0.0031 (14)
C12B0.0168 (16)0.0195 (17)0.0228 (17)0.0005 (14)0.0030 (13)0.0026 (15)
C8A0.0236 (18)0.028 (2)0.0122 (16)0.0017 (15)0.0000 (13)0.0018 (14)
C9A0.0204 (17)0.0187 (18)0.0162 (16)0.0000 (14)0.0026 (13)0.0009 (14)
C14A0.0165 (16)0.0143 (16)0.0260 (18)0.0020 (13)0.0018 (13)0.0038 (14)
C3A0.0157 (16)0.0118 (16)0.036 (2)0.0042 (14)0.0000 (14)0.0010 (15)
C13A0.0193 (17)0.0129 (17)0.0297 (19)0.0023 (13)0.0047 (14)0.0044 (14)
C4B0.0207 (17)0.0141 (17)0.0240 (18)0.0010 (14)0.0093 (14)0.0003 (14)
C7B0.0258 (18)0.0160 (17)0.0178 (17)0.0032 (14)0.0088 (13)0.0030 (14)
N2B0.0133 (13)0.0081 (13)0.0161 (13)0.0015 (10)0.0028 (10)0.0007 (10)
C6B0.0149 (15)0.0089 (15)0.0195 (16)0.0024 (12)0.0044 (12)0.0017 (13)
C14B0.0152 (16)0.0146 (16)0.0262 (18)0.0000 (13)0.0073 (13)0.0003 (14)
C1B0.0159 (16)0.0100 (16)0.0228 (17)0.0028 (13)0.0005 (13)0.0017 (13)
C13B0.0147 (16)0.0184 (18)0.032 (2)0.0010 (14)0.0013 (14)0.0041 (15)
C5B0.0184 (16)0.0076 (15)0.0194 (16)0.0023 (12)0.0065 (13)0.0006 (13)
C2B0.0134 (16)0.0159 (17)0.033 (2)0.0005 (13)0.0019 (14)0.0046 (15)
C3B0.0167 (17)0.0157 (17)0.036 (2)0.0030 (14)0.0111 (14)0.0021 (15)
C8B0.0292 (19)0.0219 (19)0.0134 (16)0.0064 (15)0.0008 (13)0.0018 (14)
C9B0.0212 (17)0.0187 (17)0.0171 (16)0.0012 (14)0.0049 (13)0.0000 (14)
N1B0.0122 (13)0.0083 (13)0.0179 (14)0.0028 (10)0.0030 (10)0.0004 (11)
N2A0.0111 (12)0.0111 (13)0.0155 (13)0.0013 (10)0.0012 (10)0.0000 (11)
C6A0.0116 (14)0.0127 (16)0.0185 (16)0.0030 (12)0.0017 (12)0.0027 (13)
N3B0.0111 (12)0.0101 (13)0.0155 (13)0.0026 (10)0.0000 (10)0.0010 (11)
C7A0.0198 (16)0.0204 (18)0.0190 (17)0.0021 (15)0.0010 (13)0.0044 (14)
C11B0.0144 (15)0.0120 (16)0.0175 (16)0.0049 (13)0.0008 (12)0.0004 (13)
Cl1A0.0207 (4)0.0201 (4)0.0172 (4)0.0005 (3)0.0013 (3)0.0022 (3)
O2A0.0369 (15)0.0372 (16)0.0184 (13)0.0012 (13)0.0073 (11)0.0027 (12)
O4A0.0226 (14)0.072 (2)0.0337 (16)0.0097 (15)0.0027 (12)0.0139 (16)
O3A0.062 (2)0.0264 (15)0.0263 (15)0.0128 (14)0.0007 (13)0.0011 (12)
O1A0.0560 (19)0.0395 (18)0.0263 (15)0.0183 (15)0.0012 (13)0.0127 (13)
Cl1B0.0236 (4)0.0194 (4)0.0191 (4)0.0054 (3)0.0023 (3)0.0056 (3)
O2B0.0604 (19)0.0273 (15)0.0211 (14)0.0101 (14)0.0127 (13)0.0005 (12)
O1B0.0301 (14)0.0306 (15)0.0218 (13)0.0036 (12)0.0073 (11)0.0022 (11)
O3B0.0389 (16)0.0187 (13)0.0330 (15)0.0019 (12)0.0143 (12)0.0010 (12)
O4B0.0276 (15)0.059 (2)0.0432 (17)0.0136 (14)0.0025 (13)0.0240 (16)
O50.034 (3)0.025 (3)0.021 (3)0.010 (2)0.002 (2)0.005 (2)
Geometric parameters (Å, º) top
Ru1—N2A1.984 (3)C14A—C13A1.386 (5)
Ru1—N2B1.986 (3)C14A—H14A0.9500
Ru1—N1A2.067 (3)C3A—H3A0.9500
Ru1—N3B2.072 (3)C13A—H13A0.9500
Ru1—N1B2.073 (3)C4B—C3B1.381 (5)
Ru1—N3A2.076 (3)C4B—C5B1.394 (4)
N1A—C1A1.350 (4)C4B—H4B0.9500
N1A—C5A1.376 (4)C7B—C8B1.388 (5)
N3A—C15A1.342 (4)C7B—C6B1.393 (4)
N3A—C11A1.383 (4)C7B—H7B0.9500
C15A—C14A1.384 (5)N2B—C6B1.352 (4)
C15A—H15A0.9500C6B—C5B1.474 (4)
C1A—C2A1.387 (5)C14B—C13B1.381 (5)
C1A—H1A0.9500C14B—H14B0.9500
C10A—N2A1.354 (4)C1B—N1B1.345 (4)
C10A—C9A1.399 (4)C1B—C2B1.384 (5)
C10A—C11A1.470 (4)C1B—H1B0.9500
C10B—N2B1.351 (4)C13B—H13B0.9500
C10B—C9B1.396 (4)C5B—N1B1.375 (4)
C10B—C11B1.469 (4)C2B—C3B1.385 (5)
C11A—C12A1.389 (4)C2B—H2B0.9500
C5A—C4A1.388 (4)C3B—H3B0.9500
C5A—C6A1.468 (4)C8B—C9B1.382 (5)
C12A—C13A1.387 (5)C8B—H8B0.9500
C12A—H12A0.9500C9B—H9B0.9500
C2A—C3A1.384 (5)N2A—C6A1.349 (4)
C2A—H2A0.9500C6A—C7A1.394 (4)
C15B—N3B1.344 (4)N3B—C11B1.371 (4)
C15B—C14B1.388 (4)C7A—H7A0.9500
C15B—H15B0.9500Cl1A—O4A1.427 (3)
C4A—C3A1.380 (5)Cl1A—O1A1.430 (3)
C4A—H4A0.9500Cl1A—O3A1.432 (3)
C12B—C13B1.378 (5)Cl1A—O2A1.438 (3)
C12B—C11B1.387 (4)Cl1B—O2B1.433 (3)
C12B—H12B0.9500Cl1B—O3B1.437 (3)
C8A—C7A1.384 (5)Cl1B—O1B1.437 (3)
C8A—C9A1.386 (5)Cl1B—O4B1.438 (3)
C8A—H8A0.9500O5—H5A0.85 (2)
C9A—H9A0.9500O5—H5B0.85 (2)
N2A—Ru1—N2B178.09 (11)C12A—C13A—H13A120.7
N2A—Ru1—N1A78.99 (10)C3B—C4B—C5B119.5 (3)
N2B—Ru1—N1A102.30 (10)C3B—C4B—H4B120.2
N2A—Ru1—N3B102.56 (10)C5B—C4B—H4B120.2
N2B—Ru1—N3B78.88 (10)C8B—C7B—C6B118.4 (3)
N1A—Ru1—N3B90.37 (10)C8B—C7B—H7B120.8
N2A—Ru1—N1B99.82 (10)C6B—C7B—H7B120.8
N2B—Ru1—N1B78.78 (10)C6B—N2B—C10B121.6 (3)
N1A—Ru1—N1B92.06 (10)C6B—N2B—Ru1119.3 (2)
N3B—Ru1—N1B157.54 (10)C10B—N2B—Ru1119.1 (2)
N2A—Ru1—N3A78.81 (10)N2B—C6B—C7B120.1 (3)
N2B—Ru1—N3A99.93 (10)N2B—C6B—C5B112.7 (3)
N1A—Ru1—N3A157.73 (10)C7B—C6B—C5B127.2 (3)
N3B—Ru1—N3A92.65 (10)C13B—C14B—C15B118.9 (3)
N1B—Ru1—N3A93.49 (10)C13B—C14B—H14B120.5
C1A—N1A—C5A118.1 (3)C15B—C14B—H14B120.5
C1A—N1A—Ru1128.2 (2)N1B—C1B—C2B122.5 (3)
C5A—N1A—Ru1113.7 (2)N1B—C1B—H1B118.7
C15A—N3A—C11A118.1 (3)C2B—C1B—H1B118.7
C15A—N3A—Ru1127.7 (2)C12B—C13B—C14B119.6 (3)
C11A—N3A—Ru1114.1 (2)C12B—C13B—H13B120.2
N3A—C15A—C14A122.7 (3)C14B—C13B—H13B120.2
N3A—C15A—H15A118.7N1B—C5B—C4B121.2 (3)
C14A—C15A—H15A118.7N1B—C5B—C6B114.9 (3)
N1A—C1A—C2A122.4 (3)C4B—C5B—C6B123.8 (3)
N1A—C1A—H1A118.8C1B—C2B—C3B119.4 (3)
C2A—C1A—H1A118.8C1B—C2B—H2B120.3
N2A—C10A—C9A120.0 (3)C3B—C2B—H2B120.3
N2A—C10A—C11A113.2 (3)C4B—C3B—C2B119.1 (3)
C9A—C10A—C11A126.8 (3)C4B—C3B—H3B120.5
N2B—C10B—C9B120.5 (3)C2B—C3B—H3B120.5
N2B—C10B—C11B112.7 (3)C9B—C8B—C7B121.3 (3)
C9B—C10B—C11B126.8 (3)C9B—C8B—H8B119.3
N3A—C11A—C12A121.1 (3)C7B—C8B—H8B119.3
N3A—C11A—C10A114.5 (3)C8B—C9B—C10B118.0 (3)
C12A—C11A—C10A124.3 (3)C8B—C9B—H9B121.0
N1A—C5A—C4A121.5 (3)C10B—C9B—H9B121.0
N1A—C5A—C6A115.2 (3)C1B—N1B—C5B118.3 (3)
C4A—C5A—C6A123.3 (3)C1B—N1B—Ru1127.6 (2)
C13A—C12A—C11A119.8 (3)C5B—N1B—Ru1114.1 (2)
C13A—C12A—H12A120.1C6A—N2A—C10A121.6 (3)
C11A—C12A—H12A120.1C6A—N2A—Ru1119.1 (2)
C3A—C2A—C1A119.2 (3)C10A—N2A—Ru1119.2 (2)
C3A—C2A—H2A120.4N2A—C6A—C7A120.5 (3)
C1A—C2A—H2A120.4N2A—C6A—C5A112.8 (3)
N3B—C15B—C14B122.4 (3)C7A—C6A—C5A126.7 (3)
N3B—C15B—H15B118.8C15B—N3B—C11B118.5 (3)
C14B—C15B—H15B118.8C15B—N3B—Ru1127.6 (2)
C3A—C4A—C5A119.4 (3)C11B—N3B—Ru1113.8 (2)
C3A—C4A—H4A120.3C8A—C7A—C6A118.5 (3)
C5A—C4A—H4A120.3C8A—C7A—H7A120.8
C13B—C12B—C11B119.4 (3)C6A—C7A—H7A120.8
C13B—C12B—H12B120.3N3B—C11B—C12B121.3 (3)
C11B—C12B—H12B120.3N3B—C11B—C10B115.3 (3)
C7A—C8A—C9A120.9 (3)C12B—C11B—C10B123.4 (3)
C7A—C8A—H8A119.5O4A—Cl1A—O1A109.1 (2)
C9A—C8A—H8A119.5O4A—Cl1A—O3A110.07 (19)
C8A—C9A—C10A118.5 (3)O1A—Cl1A—O3A109.10 (18)
C8A—C9A—H9A120.7O4A—Cl1A—O2A108.88 (16)
C10A—C9A—H9A120.7O1A—Cl1A—O2A109.99 (17)
C15A—C14A—C13A119.6 (3)O3A—Cl1A—O2A109.65 (17)
C15A—C14A—H14A120.2O2B—Cl1B—O3B109.08 (16)
C13A—C14A—H14A120.2O2B—Cl1B—O1B109.78 (17)
C4A—C3A—C2A119.4 (3)O3B—Cl1B—O1B108.93 (16)
C4A—C3A—H3A120.3O2B—Cl1B—O4B110.22 (18)
C2A—C3A—H3A120.3O3B—Cl1B—O4B109.33 (18)
C14A—C13A—C12A118.6 (3)O1B—Cl1B—O4B109.47 (16)
C14A—C13A—H13A120.7H5A—O5—H5B110 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centoids of the N3A–C15A and N3B–C15B rings, respectively.
D—H···AD—HH···AD···AD—H···A
O5—H5A···O2Ai0.85 (2)1.98 (3)2.790 (6)159 (7)
O5—H5B···O1A0.85 (2)2.03 (3)2.824 (6)157 (7)
C2B—H2B···Cg1ii0.953.09 (1)3.945 (4)45 (1)
C14A—H14A···Cg2iii0.953.01 (1)3.878 (4)43 (1)
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centoids of the N3A–C15A and N3B–C15B rings, respectively.
D—H···AD—HH···AD···AD—H···A
O5—H5A···O2Ai0.85 (2)1.98 (3)2.790 (6)159 (7)
O5—H5B···O1A0.85 (2)2.03 (3)2.824 (6)157 (7)
C2B—H2B···Cg1ii0.953.086 (1)3.945 (4)45.3 (2)
C14A—H14A···Cg2iii0.953.013 (1)3.878 (4)42.7 (2)
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z; (iii) x, y+1, z.
Acknowledgements top

This work was supported by the HOMING PLUS project of the Foundation for Polish Science (MK and PR) and the National Science Center, Poland (grant No. NN204396640). The X-ray diffractometer was funded by EFRD as part of the Operational Programme Development of Eastern Poland 2007–2013, project POPW.01.03.00–20-034/09–00.

references
References top

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Anders, P. R. & Schubert, U. S. (2004). Adv. Mater. 16, 1043–1068.

Burstall, F. H. & Nyholm, R. S. (1952). J. Chem. Soc. pp. 3570–3579.

Constable, E. C. (2007). Chem. Soc. Rev. 36, 246–253.

Craig, D. C., Scudder, M. L., McHale, W.-A. & Goodwin, H. A. (1998). Aust. J. Chem. 51, 1131–1140.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Lashgari, K., Kritikos, M., Norrestam, R. & Norrby, T. (1999). Acta Cryst. C55, 64–67.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Plonska, M. E., Dubis, A. & Winkler, K. (2002). J. Electroanal. Chem. 526, 77–84.

Pyo, S., Perez-Cordero, E., Bott, S. G. & Echegoyen, L. (1999). Inorg. Chem. 38, 3337–3343.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tovee, C. A., Kilner, C. A., Thomas, J. A. & Halcrow, M. A. (2009). CrystEngComm, 11, 2069–2077.

Walstrom, A. G., Pink, M., Yang, X. & Caulton, K. G. (2009). Dalton Trans. pp. 6001–6006.

Winkler, K., Plonska, M. E., Basa, A., Lach, M. & Balch, A. L. (2003). Electroanalysis, 15, 55–65.

Winkler, K., Plonska, M. E., Recko, K. & Dobrzynski, L. (2006). Electrochim. Acta, 51, 4544–4553.