supplementary materials


wm2682 scheme

Acta Cryst. (2012). E68, m1411-m1412    [ doi:10.1107/S1600536812041967 ]

Bis(benzene-1,2-diamine-[kappa]2N,N')(sulfato-[kappa]O)copper(II) monohydrate

Y. Djebli, S. Boufas, L. Bencharif, T. Roisnel and M. Bencharif

Abstract top

The title complex, [Cu(SO4)(C6H8N2)2]·H2O, was obtained under hydrothermal conditions. The CuII ion is five-coordinated in a distorted square-pyramidal manner by four N atoms from two benzene-1,2-diamine ligands at the base and one O atom from a monodentate sulfate anion at the apex of the coordination polyhedron. N-H...O hydrogen bonding between the amino functions and the sulfate groups leads to the formation of layers parallel to (001). C-H...O hydrogen bonding interactions between the layers consolidate the three-dimensional set-up. There are voids in the structure filled with lattice water molecules that are disordered over three sites in a 0.430 (6):0.270 (6):0.300 (6) ratio.

Comment top

Copper(II) complexes have been widely investigated in both bioinorganic chemistry and coordination chemistry (Datta et al., 2008; Diallo et al., 2008; Khalaji et al., 2009) due to the important role of copper in living organisms and its peculiar coordination chemistry, i.e. the Jahn-Teller distortion. We report here the structure of the title mononuclear copper(II) complex, [Cu(SO4)(C6H8N2)2].H2O.

As shown in Fig. 1, the complex molecule exhibits copper(II) in a distorted [4 + 1] square-pyramidal coordination environment. The basal plane is defined by the amino nitrogen donors of the benzene-1,2-diamine ligand, while the apical position is occupied by one oxygen atom of the SO42- anion. As expected, the organic moieties are approximately planar. In the organic moiety bonded to the copper atom with N1 and N2, the r.m.s. deviation for the non-H atoms is 0.0103 Å, with the maximum deviation of N1 from the mean plane being -0.018 (2) Å. The 1,2 benzene-1,2-diamine molecule linked to Cu(II) with N3 and N4 has a r.m.s deviation for non-H atoms of 0.0173 Å with a maximum deviation from the mean plane being -0.027 (2) Å (for N4). In the crystal structure, π···π stacking interactions occur between adjacent rings, with centroid-centroid separations of 3.583 (2) Å for Cg1···Cg2i (Cg1 and Cg2 are the centroids of the C1—C6 and C7—C12 rings, respectively; symmetry code: (i) (-x, -y, -z)).

In the title compound, the individual molecules are linked by N—H···O hydrogen bonds into a two-dimensional network parallel to (001). In the layers alternating R22(8), R21(4), R12(6) and dual R33(9) (Bernstein et al., 1995) hydrogen-bonded motifs are formed. These layers are linked by means of C15—H15···O22 hydrogen bonds. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for this pattern is R24(16).

In the structure voids with an approximate volume of 62 Å3 are present. These voids are filled with a water molecule disordered over three positions with an occupancy ratio of 0.4320 (6):0.270 (6):0.300 (6). Although the H positions of the disordered water molecule could not be located, O···O and O···N interactions suggest likewise an involvement in hydrogen bonding, e.g. N3···O1WC = 2.98 (4) Å, O1···O1WA = 2.73 (3) Å.

Related literature top

For bio-inorganic chemistry and the coordination chemistry of copper(II), see: Datta et al. (2008); Diallo et al. (2008); Khalaji et al. (2009). For graph-set notation, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

Benzene-1,2-diamine (0.2 mmol) and CuSO4.5H2O (0.1 mmol) were dissolved in H2O (5 ml). The mixture was stirred for 16 h at room temperature to give a violet solution. After allowing the resulting solution to stand in air, violet plate-shaped crystals of the compound were formed on slow evaporation of the solvent.

Refinement top

C—H and N—H hydrogen atoms were placed in calculated positions and refined as riding atoms with C—H distances of 0.95 Å with Uiso(H) = 1.2Ueq(C) and N—H distances of 0.92 Å, with Uiso(H) = 1.2Ueq(N).

The water molecule was localized in a difference map and was interpreted as disordered over three positions with the site-occupancy ratio of 0.220 (6):0.270 (6):0.300 (6). The H atoms on the disordered water molecules were not included in the refinement.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound drawn with displacement parameters at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of R22(8), R21(4),hy2596 R12(6) and R33(9) rings. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in the motif have been omitted for clarity.
Bis(benzene-1,2-diamine-κ2N,N')(sulfato-κO)copper(II) monohydrate top
Crystal data top
[Cu(SO4)(C6H8N2)2]·H2OF(000) = 1624
Mr = 393.90Dx = 1.693 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 102968 reflections
a = 18.6794 (4) Åθ = 2.9–27.5°
b = 7.5317 (2) ŵ = 1.58 mm1
c = 21.9757 (5) ÅT = 120 K
V = 3091.71 (13) Å3Plate, violet
Z = 80.38 × 0.15 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
3555 independent reflections
Radiation source: Enraf Nonius FR5902957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD rotation images, thin slices scansh = 2424
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 99
Tmin = 0.543, Tmax = 0.924l = 2828
42067 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0455P)2 + 5.6842P]
where P = (Fo2 + 2Fc2)/3
3555 reflections(Δ/σ)max = 0.005
212 parametersΔρmax = 1.29 e Å3
1 restraintΔρmin = 0.64 e Å3
Crystal data top
[Cu(SO4)(C6H8N2)2]·H2OV = 3091.71 (13) Å3
Mr = 393.90Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 18.6794 (4) ŵ = 1.58 mm1
b = 7.5317 (2) ÅT = 120 K
c = 21.9757 (5) Å0.38 × 0.15 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
3555 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2957 reflections with I > 2σ(I)
Tmin = 0.543, Tmax = 0.924Rint = 0.057
42067 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.097Δρmax = 1.29 e Å3
S = 1.08Δρmin = 0.64 e Å3
3555 reflectionsAbsolute structure: ?
212 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.088690 (15)0.58928 (4)0.199850 (13)0.01191 (11)
S20.12634 (3)0.15921 (8)0.18987 (3)0.01166 (14)
O40.06308 (9)0.1072 (3)0.15332 (8)0.0193 (4)
O10.14861 (9)0.3423 (2)0.17409 (8)0.0174 (4)
O20.10796 (10)0.1495 (3)0.25522 (8)0.0192 (4)
O30.18635 (9)0.0364 (2)0.17653 (9)0.0186 (4)
N30.09519 (11)0.7199 (3)0.11963 (10)0.0155 (4)
H3A0.10120.83680.12650.019*
H3B0.13320.68040.09850.019*
N40.00490 (11)0.4952 (3)0.16695 (9)0.0145 (4)
H4A0.00180.37690.16180.017*
H4B0.04030.51710.19370.017*
N10.06897 (11)0.5075 (3)0.28588 (9)0.0135 (4)
H1A0.02550.54560.29770.016*
H1B0.06920.38810.28740.016*
N20.17909 (11)0.6930 (3)0.23489 (9)0.0141 (4)
H2A0.21740.63850.21850.017*
H2B0.18170.80930.22570.017*
C70.12327 (12)0.5774 (3)0.32658 (11)0.0134 (5)
C80.17991 (13)0.6705 (3)0.30072 (11)0.0134 (5)
C30.01846 (14)0.7716 (4)0.02813 (12)0.0194 (5)
H30.05290.84670.01160.023*
C110.17574 (14)0.6137 (4)0.42584 (12)0.0189 (5)
H110.17470.59480.46760.023*
C90.23454 (13)0.7353 (4)0.33737 (12)0.0188 (5)
H90.27250.79720.32010.023*
C10.02133 (13)0.5799 (3)0.10905 (11)0.0149 (5)
C20.03023 (13)0.6913 (3)0.08463 (11)0.0152 (5)
C100.23241 (13)0.7075 (4)0.39984 (12)0.0193 (5)
H100.26890.75150.42440.023*
C60.08541 (14)0.5499 (4)0.07848 (12)0.0197 (6)
H60.12040.47780.09570.024*
C40.04457 (15)0.7389 (4)0.00323 (12)0.0228 (6)
H40.05210.79030.04120.027*
C120.12084 (14)0.5486 (4)0.38939 (11)0.0170 (5)
H120.08290.48650.40660.02*
C50.09680 (14)0.6283 (4)0.02224 (13)0.0222 (6)
H50.13930.60740.00140.027*
O1WA0.2247 (3)0.4801 (9)0.0775 (2)0.0328 (9)*0.430 (6)
O1WB0.2410 (5)0.6775 (15)0.0687 (4)0.0328 (9)*0.270 (6)
O1WC0.2338 (4)0.5778 (17)0.0693 (4)0.0328 (9)*0.300 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00820 (16)0.01169 (17)0.01585 (16)0.00014 (12)0.00131 (10)0.00052 (11)
S20.0078 (3)0.0102 (3)0.0170 (3)0.0003 (2)0.0020 (2)0.0010 (2)
O40.0113 (8)0.0240 (10)0.0228 (9)0.0026 (8)0.0024 (7)0.0009 (8)
O10.0139 (8)0.0089 (9)0.0295 (10)0.0013 (7)0.0074 (7)0.0019 (7)
O20.0205 (9)0.0205 (10)0.0168 (9)0.0019 (8)0.0026 (7)0.0015 (7)
O30.0125 (8)0.0124 (9)0.0310 (10)0.0038 (7)0.0045 (7)0.0017 (8)
N30.0118 (10)0.0151 (11)0.0197 (10)0.0023 (8)0.0023 (8)0.0007 (9)
N40.0114 (9)0.0130 (10)0.0190 (10)0.0008 (8)0.0025 (8)0.0012 (8)
N10.0086 (9)0.0133 (11)0.0186 (10)0.0013 (9)0.0013 (8)0.0021 (8)
N20.0104 (9)0.0119 (10)0.0201 (10)0.0004 (8)0.0019 (8)0.0027 (8)
C70.0089 (11)0.0118 (12)0.0195 (12)0.0014 (10)0.0001 (9)0.0015 (9)
C80.0115 (11)0.0106 (12)0.0182 (12)0.0032 (10)0.0015 (9)0.0009 (9)
C30.0212 (13)0.0186 (13)0.0183 (12)0.0041 (11)0.0046 (10)0.0007 (10)
C110.0182 (12)0.0205 (14)0.0180 (12)0.0031 (11)0.0023 (10)0.0017 (10)
C90.0119 (11)0.0155 (13)0.0292 (13)0.0022 (11)0.0005 (10)0.0025 (11)
C10.0149 (11)0.0119 (12)0.0178 (11)0.0036 (10)0.0013 (9)0.0032 (10)
C20.0135 (11)0.0152 (13)0.0168 (11)0.0030 (10)0.0030 (9)0.0038 (10)
C100.0139 (12)0.0181 (13)0.0260 (13)0.0015 (10)0.0064 (10)0.0025 (11)
C60.0150 (12)0.0190 (14)0.0250 (13)0.0008 (10)0.0010 (10)0.0034 (11)
C40.0273 (14)0.0247 (14)0.0163 (12)0.0099 (12)0.0010 (10)0.0035 (11)
C120.0143 (12)0.0189 (13)0.0177 (12)0.0005 (10)0.0020 (9)0.0003 (10)
C50.0175 (12)0.0269 (15)0.0221 (13)0.0065 (11)0.0060 (10)0.0064 (11)
Geometric parameters (Å, º) top
Cu1—N22.014 (2)C7—C121.398 (3)
Cu1—N42.020 (2)C8—C91.389 (4)
Cu1—N12.022 (2)C3—C41.386 (4)
Cu1—N32.023 (2)C3—C21.398 (4)
Cu1—O12.2433 (18)C3—H30.93
S2—O21.4783 (18)C11—C121.391 (4)
S2—O41.4817 (18)C11—C101.395 (4)
S2—O11.4818 (19)C11—H110.93
S2—O31.4827 (18)C9—C101.389 (4)
N3—C21.453 (3)C9—H90.93
N3—H3A0.9C1—C21.386 (4)
N3—H3B0.9C1—C61.391 (4)
N4—C11.456 (3)C10—H100.93
N4—H4A0.9C6—C51.386 (4)
N4—H4B0.9C6—H60.93
N1—C71.451 (3)C4—C51.399 (4)
N1—H1A0.9C4—H40.93
N1—H1B0.9C12—H120.93
N2—C81.457 (3)C5—H50.93
N2—H2A0.9O1WA—O1WC0.777 (10)
N2—H2B0.9O1WA—O1WB1.530 (11)
C7—C81.391 (3)O1WB—O1WC0.763 (11)
N2—Cu1—N4177.02 (9)Cu1—N2—H2B109.6
N2—Cu1—N185.04 (8)H2A—N2—H2B108.2
N4—Cu1—N194.02 (8)C8—C7—C12120.4 (2)
N2—Cu1—N395.41 (8)C8—C7—N1117.6 (2)
N4—Cu1—N384.88 (8)C12—C7—N1122.0 (2)
N1—Cu1—N3166.90 (9)C9—C8—C7120.0 (2)
N2—Cu1—O189.99 (8)C9—C8—N2122.9 (2)
N4—Cu1—O192.89 (8)C7—C8—N2117.2 (2)
N1—Cu1—O194.26 (8)C4—C3—C2119.9 (3)
N3—Cu1—O198.82 (8)C4—C3—H3120.1
O2—S2—O4109.16 (10)C2—C3—H3120.1
O2—S2—O1109.79 (11)C12—C11—C10120.1 (2)
O4—S2—O1110.08 (11)C12—C11—H11119.9
O2—S2—O3109.68 (11)C10—C11—H11119.9
O4—S2—O3109.30 (11)C8—C9—C10119.9 (2)
O1—S2—O3108.81 (10)C8—C9—H9120
S2—O1—Cu1124.94 (10)C10—C9—H9120
C2—N3—Cu1109.83 (15)C2—C1—C6120.6 (2)
C2—N3—H3A109.7C2—C1—N4117.2 (2)
Cu1—N3—H3A109.7C6—C1—N4122.2 (2)
C2—N3—H3B109.7C1—C2—C3119.8 (2)
Cu1—N3—H3B109.7C1—C2—N3117.7 (2)
H3A—N3—H3B108.2C3—C2—N3122.5 (2)
C1—N4—Cu1109.96 (15)C9—C10—C11120.2 (2)
C1—N4—H4A109.7C9—C10—H10119.9
Cu1—N4—H4A109.7C11—C10—H10119.9
C1—N4—H4B109.7C5—C6—C1119.6 (3)
Cu1—N4—H4B109.7C5—C6—H6120.2
H4A—N4—H4B108.2C1—C6—H6120.2
C7—N1—Cu1109.78 (15)C3—C4—C5119.9 (3)
C7—N1—H1A109.7C3—C4—H4120
Cu1—N1—H1A109.7C5—C4—H4120
C7—N1—H1B109.7C11—C12—C7119.3 (2)
Cu1—N1—H1B109.7C11—C12—H12120.3
H1A—N1—H1B108.2C7—C12—H12120.3
C8—N2—Cu1110.08 (15)C6—C5—C4120.2 (2)
C8—N2—H2A109.6C6—C5—H5119.9
Cu1—N2—H2A109.6C4—C5—H5119.9
C8—N2—H2B109.6
O2—S2—O1—Cu148.22 (16)N1—C7—C8—N21.2 (3)
O4—S2—O1—Cu171.97 (15)Cu1—N2—C8—C9177.5 (2)
O3—S2—O1—Cu1168.27 (12)Cu1—N2—C8—C73.4 (3)
N2—Cu1—O1—S2128.22 (14)C7—C8—C9—C100.2 (4)
N4—Cu1—O1—S251.05 (14)N2—C8—C9—C10179.3 (2)
N1—Cu1—O1—S243.19 (14)Cu1—N4—C1—C25.9 (3)
N3—Cu1—O1—S2136.31 (13)Cu1—N4—C1—C6175.0 (2)
N2—Cu1—N3—C2172.48 (16)C6—C1—C2—C31.4 (4)
N4—Cu1—N3—C24.55 (16)N4—C1—C2—C3177.8 (2)
N1—Cu1—N3—C281.2 (4)C6—C1—C2—N3178.6 (2)
O1—Cu1—N3—C296.69 (16)N4—C1—C2—N32.2 (3)
N1—Cu1—N4—C1161.29 (16)C4—C3—C2—C10.2 (4)
N3—Cu1—N4—C15.62 (16)C4—C3—C2—N3179.8 (2)
O1—Cu1—N4—C1104.23 (16)Cu1—N3—C2—C12.6 (3)
N2—Cu1—N1—C75.41 (16)Cu1—N3—C2—C3177.4 (2)
N4—Cu1—N1—C7171.75 (16)C8—C9—C10—C110.4 (4)
N3—Cu1—N1—C787.1 (4)C12—C11—C10—C90.4 (4)
O1—Cu1—N1—C795.04 (16)C2—C1—C6—C51.9 (4)
N1—Cu1—N2—C84.83 (16)N4—C1—C6—C5177.2 (2)
N3—Cu1—N2—C8162.02 (16)C2—C3—C4—C51.2 (4)
O1—Cu1—N2—C899.11 (16)C10—C11—C12—C70.3 (4)
Cu1—N1—C7—C85.1 (3)C8—C7—C12—C110.1 (4)
Cu1—N1—C7—C12176.9 (2)N1—C7—C12—C11177.8 (2)
C12—C7—C8—C90.1 (4)C1—C6—C5—C40.9 (4)
N1—C7—C8—C9177.9 (2)C3—C4—C5—C60.7 (4)
C12—C7—C8—N2179.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.902.032.904 (3)164
N1—H1B···O20.902.062.873 (4)149
N2—H2A···O3ii0.902.163.059 (4)174
N2—H2B···O3iii0.902.022.890 (4)161
N3—H3A···O3iii0.902.453.188 (4)139
N3—H3A···O4iii0.902.243.068 (4)153
N4—H4A···O40.902.373.202 (4)153
N4—H4B···O2i0.901.962.825 (4)160
C4—H4···O4iv0.932.593.512 (4)172
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x, y+1, z; (iv) x, y+1, z.
Selected bond lengths (Å) top
Cu1—N22.014 (2)Cu1—N32.023 (2)
Cu1—N42.020 (2)Cu1—O12.2433 (18)
Cu1—N12.022 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.90002.03002.904 (3)164.00
N1—H1B···O20.90002.06002.873 (4)149.00
N2—H2A···O3ii0.90002.16003.059 (4)174.00
N2—H2B···O3iii0.90002.02002.890 (4)161.00
N3—H3A···O3iii0.90002.45003.188 (4)139.00
N3—H3A···O4iii0.90002.24003.068 (4)153.00
N4—H4A···O40.90002.37003.202 (4)153.00
N4—H4B···O2i0.90001.96002.825 (4)160.00
C4—H4···O4iv0.93002.59003.512 (4)172.00
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x, y+1, z; (iv) x, y+1, z.
Acknowledgements top

This work was supported by the Laboratoire de Chimie des Materiaux, Faculté des Sciences, Université Mentouri. We would like to thank J.-Y. Saillard of Rennes 1 University for providing the diffraction facilities.

references
References top

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Blessing, R. H. (1995). Acta Cryst. A51, 33–38.

Datta, A., Huang, J.-H. & Lee, H. M. (2008). Acta Cryst. E64, m1497.

Diallo, M., Tamboura, F. B., Gaye, M., Barry, A. H. & Bah, Y. (2008). Acta Cryst. E64, m1124–m1125.

Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Khalaji, A. D., Hadadzadeh, H., Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, m70.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.