supplementary materials


bx2428 scheme

Acta Cryst. (2012). E68, m1524-m1525    [ doi:10.1107/S1600536812046880 ]

Tris(5,6-dimethyl-1,10-phenanthroline-[kappa]2N,N')iron(II) bis(tricyanomethanide)

L. Váhovská and I. Potocnák

Abstract top

The title compound, [Fe(C14H12N2)3](C4N3)2, consists of one [Fe(dimephen)3]2+ complex cation (dimephen = 5,6-dimethyl-1,10-phenanthroline) and two uncoordinating tcm anions (tcm = tricyanomethanide). In the complex cation, the FeII atom is coordinated by six N atoms from three chelating dimephen ligands at an average Fe-N distance of 1.963 (4) Å giving a distorted octahedral geometry. The crystal structure is stabilized by weak C-H...N hydrogen bonds and C[triple bond]N...[pi] interactions between planar [maximum deviations of 0.024 (3) and 0.015 (3) Å] tcm anions and pyridine rings of dimephen [N2...centroid = 3.531 (3) and 3.726 (3) Å; C[triple bond]N...centroid = 96.4 (2) and 97.1 (2)°].

Comment top

The iron(II) complexes [Fe(phen)2(NCS)2] and [Fe(bpy)2(NCS)2] (bpy = 2,2-bipyridine) belong to the first known and most extensively studied compounds of iron(II) exhibiting a high spin low spin transition (Müller et al., 1982; König & Watson, 1970). By far the majority of known spin-transition compounds are octahedral FeII compounds of general formula [Fe(L)4(NCX)2] or [Fe(L)2(NCX)2] (L = monodentate or bidentate N-donor ligands, X = S, Se). In our research, which is aimed on preparation of new [Fe(L)2(Y)2] compounds (L = bpy, phen or their derivatives and Y = pseudohalide anions (dicyanamide, or tcm)) with possible spin crossover, we prepared crystals of the title compound with composition [Fe(dimephen)3](tcm)2 (I) (dimephen = 5,6-dimethyl-1,10-phenanthroline).

Structural analysis showed that crystal structure of the title compound is ionic and consists of one complex cation and two tcm counter-anions (Fig. 1).

In the complex cation the FeII ion is bonded to three bidentate dimephen ligands through their nitrogen atoms resulting in a distorted octahedral arrangement with the six Fe1–N distances ranging from 1.957 (2) to 1.968 (2) Å (Table 1). These values as well as the values of N–Fe1–N bite angles (82.88 (9), 82.69 (9), 82.44 (9)°) and opposite (trans) angles (173.92 (9), 176.49 (9), 176.56 (9)°) are comparable to the corresponding distances and angles in other complexes with [Fe(phen)3]2+ cations (Aparici Plaza et al., 2007; Odoko & Okabe, 2004; Koh et al., 1994; Uçar et al., 2005; Li et al., 2008). All N–Fe1–N bond angles in (I) deviate significantly from the ideal values of 90 or 180° because of the constrained geometry of the dimephen ring systems. The values of bond distances and angles within the rings of neutral ligands are similar to those found in the similar [Cu(dimephen)3](PF6)2.CH3CN complex, too (Toledano-Magaña et al., 2012). The dimephen ligands in (I) are almost planar, the largest deviation of atom from the mean plane being 0.051 (3) Å for atom C63.

Both tcm anions are nearly planar, too (the largest deviations of atoms from the mean planes being 0.024 (3) for C1 atom and 0.015 (3) Å for C5 atom). The average C–C and CN bond lengths (1.404 (6) and 1.155 (3) Å, respectively), C–C–C (120.0 (3)°) and C–CN (179.0 (6)°) angles within the both anions are in good agreement with those found in other tricyanomethanide complexes (Potočňák et al., 2002; Luo et al., 2009).

The crystal packing in (I) is formed by weak C–H···N hydrogen bonds (Table 2) and C–N···Cg π-ring interactions. Weak hydrogen bonds occur between individual dimephen ligands and thus the structure of the cation is stabilized. Moreover, tcm anions interconnect two [Fe(dimephen)3]2+cations through hydrogen bonds and these interactions lead to infinite chain-like structure running along z axis (Fig. 2).

Except hydrogen bonds, the crystal structure is stabilized by π-ring interactions between nitrogen atoms from tcm anions and corresponding pyridine rings. The N2···Cg8i (i = x – 1, y, z) and N6···Cg7 distances (3.531 (3) and 3.726 (3) Å, respectively, Cg8 and Cg7 are centroids of pyridine rings with N50 and N40 atoms, respectively), the distances of N2 and N6 atoms to the planes of the corresponding dimephen rings (3.505 and 3.677 Å, respectively) as well as the C2N2···Cg8i and C6N6···Cg7 angles (96.4 (2) and 97.1 (2)°, respectively) are close to those found in similar FeII complexes (Váhovská & Potočňák, 2012). Parallel arrangement of tcm anions with dimephen molecules in (I) is shown in Fig. 3.

Related literature top

The iron(II) complexes [Fe(phen)2(NCS)2] and [Fe(bpy)2(NCS)2] (bpy = 2,2-bipyridine) are the first known and most extensively studied compounds of iron(II) exhibiting a high spin low spin transition, see: König & Watson (1970); Müller et al. (1982). For [Fe(phen)3]2+complexes (phen = 1,10-phenathroline) see: Aparici Plaza et al. (2007); Odoko & Okabe (2004); Koh et al. (1994); Uçar et al. (2005); Li et al. (2008). For bond lengths and angles in dimephen, see: Toledano-Magaña et al. (2012) and in tcm ligands, see: Potočňák et al. (2002); Luo et al. (2009). For the structure, properties and bonding modes of the tcm anion, see: Golub et al. (1986); Kohout et al. (2000). For the crystal and molecular structure of phen, see: Nishigaki et al. (1978). For similar FeII complexes, see: Váhovská & Potočňák (2012).

Experimental top

Single crystals of the title compound were obtained at the interfaces of layered systems, with the lower layer comprising an aqueous solution (5 ml) of iron(II) sulfate (0.1 mmol) and 5 ml of tcm (0.1 mmol) and the upper layer comprising a methanolic solution (3 ml) of dimephen (0.1 mmol). These layered systems were allowed to stand at room temperature. Red crystals suitable for X-ray analysis were obtained and filtered off in several days and dried on air.

Refinement top

Anisotropic displacement parameters were refined for all non-H atoms. The aromatic as well as methyl H atoms were placed in calculated positions and refined riding on their parent C atoms with C–H distances of 0.95 and 0.98 Å, respectively and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C) for aromatic and methyl hydrogen atoms, respectively.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound.
[Figure 2] Fig. 2. Intramolecular and intermolecular C—H···N hydrogen bonds (blue and red dashed lines, respectively) in the title compound. H-atoms not involved in hydrogen bonds are omitted because of clarity.
[Figure 3] Fig. 3. π-π interactions (dashed lines) between tcm and pyridine rings in the title compound (symmetry codes: (i) = x –1, y, z). H-atoms are omitted because of clarity.
Tris(5,6-dimethyl-1,10-phenanthroline-κ2N,N')iron(II) bis(tricyanomethanide) top
Crystal data top
[Fe(C14H12N2)3](C4N3)2Z = 2
Mr = 860.76F(000) = 892
Triclinic, P1Dx = 1.376 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3676 (3) ÅCell parameters from 5036 reflections
b = 12.7079 (9) Åθ = 3.0–29.2°
c = 18.1998 (9) ŵ = 0.42 mm1
α = 75.458 (5)°T = 183 K
β = 89.623 (3)°Needle, dark red
γ = 82.323 (4)°0.66 × 0.25 × 0.03 mm
V = 2077.52 (19) Å3
Data collection top
Agilent Xcalibur (Sapphire2)
diffractometer
8167 independent reflections
Radiation source: fine-focus sealed tube6309 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.3438 pixels mm-1θmax = 26.0°, θmin = 3.0°
ω scansh = 1111
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
k = 1510
Tmin = 0.874, Tmax = 0.986l = 2221
15408 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0473P)2 + 1.1913P]
where P = (Fo2 + 2Fc2)/3
8167 reflections(Δ/σ)max = 0.001
574 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Fe(C14H12N2)3](C4N3)2γ = 82.323 (4)°
Mr = 860.76V = 2077.52 (19) Å3
Triclinic, P1Z = 2
a = 9.3676 (3) ÅMo Kα radiation
b = 12.7079 (9) ŵ = 0.42 mm1
c = 18.1998 (9) ÅT = 183 K
α = 75.458 (5)°0.66 × 0.25 × 0.03 mm
β = 89.623 (3)°
Data collection top
Agilent Xcalibur (Sapphire2)
diffractometer
8167 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
6309 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.986Rint = 0.025
15408 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.125Δρmax = 0.92 e Å3
S = 1.07Δρmin = 0.40 e Å3
8167 reflectionsAbsolute structure: ?
574 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. CrysAlis PRO (Agilent, 2012) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.52758 (4)0.38724 (3)0.27263 (2)0.01786 (11)
N100.6319 (2)0.51196 (18)0.23141 (12)0.0199 (5)
N200.3666 (2)0.50317 (18)0.27106 (12)0.0196 (5)
N300.5692 (2)0.37913 (18)0.37975 (12)0.0208 (5)
N400.4163 (2)0.26722 (18)0.31777 (12)0.0189 (5)
N500.6912 (2)0.27509 (18)0.26764 (12)0.0196 (5)
N600.4893 (2)0.37825 (18)0.16864 (12)0.0191 (5)
C110.5467 (3)0.6115 (2)0.22050 (14)0.0178 (5)
C120.7678 (3)0.5128 (2)0.20913 (15)0.0250 (6)
H120.82950.44510.21680.030*
C130.8222 (3)0.6097 (2)0.17501 (16)0.0279 (7)
H130.91860.60700.15830.034*
C140.7372 (3)0.7085 (2)0.16549 (16)0.0273 (7)
H140.77500.77460.14300.033*
C150.5938 (3)0.7123 (2)0.18903 (14)0.0204 (6)
C160.4937 (3)0.8123 (2)0.18188 (15)0.0235 (6)
C170.5497 (3)0.9199 (3)0.14961 (18)0.0365 (8)
H17A0.46870.97930.13760.055*
H17B0.60200.91650.10330.055*
H17C0.61480.93370.18700.055*
C210.4017 (3)0.6066 (2)0.24352 (14)0.0184 (6)
C220.2318 (3)0.4941 (2)0.29416 (16)0.0255 (6)
H220.20460.42300.31320.031*
C230.1304 (3)0.5858 (3)0.29106 (17)0.0297 (7)
H230.03620.57670.30890.036*
C240.1652 (3)0.6885 (3)0.26263 (16)0.0284 (7)
H240.09520.75080.26030.034*
C250.3061 (3)0.7028 (2)0.23650 (15)0.0209 (6)
C260.3543 (3)0.8075 (2)0.20441 (15)0.0245 (6)
C270.2448 (3)0.9083 (3)0.19628 (19)0.0389 (8)
H27A0.29170.97400.17750.058*
H27B0.20350.90900.24580.058*
H27C0.16800.90730.16020.058*
C310.5127 (3)0.2963 (2)0.42907 (14)0.0201 (6)
C320.6471 (3)0.4402 (2)0.40944 (16)0.0257 (6)
H320.68690.49880.37630.031*
C330.6717 (3)0.4202 (3)0.48748 (17)0.0326 (7)
H330.72720.46520.50670.039*
C340.6164 (3)0.3365 (3)0.53644 (17)0.0320 (7)
H340.63420.32280.58960.038*
C350.5328 (3)0.2702 (2)0.50797 (15)0.0266 (6)
C360.4690 (3)0.1787 (3)0.55442 (16)0.0300 (7)
C370.4985 (3)0.1533 (3)0.63885 (17)0.0434 (9)
H37A0.45700.08710.66410.065*
H37B0.45480.21510.65820.065*
H37C0.60270.14110.64910.065*
C410.4288 (2)0.2355 (2)0.39481 (14)0.0187 (6)
C420.3382 (3)0.2126 (2)0.28329 (16)0.0256 (6)
H420.32640.23450.22960.031*
C430.2731 (3)0.1237 (2)0.32412 (18)0.0301 (7)
H430.21950.08550.29780.036*
C440.2859 (3)0.0914 (2)0.40121 (17)0.0293 (7)
H440.24120.03100.42850.035*
C450.3654 (3)0.1477 (2)0.44031 (16)0.0243 (6)
C460.3868 (3)0.1207 (2)0.52172 (16)0.0286 (7)
C470.3141 (3)0.0276 (3)0.56809 (19)0.0422 (9)
H47A0.34950.00930.62100.063*
H47B0.33610.03680.54750.063*
H47C0.20970.04990.56590.063*
C510.6892 (3)0.2399 (2)0.20271 (15)0.0188 (6)
C520.7946 (3)0.2252 (2)0.31962 (15)0.0239 (6)
H520.79940.24940.36480.029*
C530.8950 (3)0.1397 (2)0.31027 (16)0.0278 (7)
H530.96710.10660.34860.033*
C540.8910 (3)0.1025 (2)0.24603 (17)0.0277 (7)
H540.95860.04260.24030.033*
C550.7863 (3)0.1536 (2)0.18851 (15)0.0216 (6)
C560.7733 (3)0.1236 (2)0.11727 (16)0.0258 (6)
C570.8814 (3)0.0306 (3)0.10493 (19)0.0368 (8)
H57A0.85440.01090.05870.055*
H57B0.88240.03320.14850.055*
H57C0.97740.05370.09960.055*
C610.5799 (3)0.2973 (2)0.14812 (14)0.0192 (6)
C620.3875 (3)0.4362 (2)0.11791 (15)0.0232 (6)
H620.32340.49300.13070.028*
C630.3724 (3)0.4158 (2)0.04676 (16)0.0289 (7)
H630.30010.45970.01170.035*
C640.4609 (3)0.3332 (2)0.02716 (16)0.0272 (6)
H640.44910.31880.02100.033*
C650.5700 (3)0.2695 (2)0.07885 (15)0.0214 (6)
C660.6681 (3)0.1789 (2)0.06461 (16)0.0252 (6)
C670.6472 (3)0.1516 (3)0.00986 (18)0.0382 (8)
H67A0.70720.08230.01000.057*
H67B0.67510.21030.05130.057*
H67C0.54570.14440.01690.057*
C10.0574 (3)0.2816 (3)0.04263 (18)0.0358 (8)
C20.0526 (3)0.3207 (3)0.1087 (2)0.0436 (9)
C30.0500 (3)0.3222 (3)0.0146 (2)0.0438 (9)
C40.1662 (3)0.1985 (3)0.03535 (18)0.0338 (7)
C50.9633 (3)0.7346 (3)0.44900 (18)0.0325 (7)
C60.9720 (3)0.6902 (3)0.5285 (2)0.0413 (8)
C71.0418 (3)0.8197 (3)0.41576 (19)0.0348 (7)
C80.8731 (3)0.6955 (3)0.4037 (2)0.0374 (8)
N20.0493 (3)0.3516 (3)0.1633 (2)0.0640 (10)
N30.1365 (3)0.3538 (3)0.0629 (2)0.0624 (10)
N40.2554 (3)0.1297 (2)0.02865 (17)0.0470 (7)
N60.9798 (3)0.6547 (3)0.5933 (2)0.0670 (10)
N71.1049 (3)0.8905 (2)0.38654 (18)0.0482 (8)
N80.7995 (3)0.6636 (3)0.36574 (19)0.0508 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01556 (18)0.0189 (2)0.0196 (2)0.00280 (14)0.00151 (14)0.00547 (16)
N100.0156 (10)0.0235 (13)0.0207 (12)0.0017 (9)0.0029 (8)0.0062 (10)
N200.0175 (10)0.0233 (13)0.0196 (12)0.0040 (9)0.0034 (9)0.0076 (10)
N300.0171 (10)0.0223 (13)0.0242 (12)0.0025 (9)0.0005 (9)0.0084 (10)
N400.0183 (10)0.0186 (12)0.0201 (12)0.0026 (9)0.0005 (9)0.0053 (10)
N500.0179 (11)0.0215 (13)0.0194 (12)0.0052 (9)0.0005 (9)0.0037 (10)
N600.0160 (10)0.0191 (12)0.0212 (12)0.0028 (9)0.0024 (8)0.0031 (10)
C110.0196 (13)0.0199 (15)0.0146 (13)0.0021 (11)0.0009 (10)0.0061 (11)
C120.0175 (13)0.0281 (17)0.0293 (16)0.0011 (11)0.0047 (11)0.0085 (13)
C130.0206 (14)0.0351 (18)0.0301 (16)0.0108 (13)0.0078 (11)0.0084 (14)
C140.0287 (15)0.0288 (17)0.0254 (15)0.0153 (13)0.0050 (12)0.0029 (13)
C150.0255 (13)0.0234 (15)0.0139 (13)0.0084 (11)0.0018 (10)0.0048 (11)
C160.0327 (15)0.0222 (16)0.0160 (14)0.0067 (12)0.0026 (11)0.0039 (12)
C170.0437 (18)0.0239 (17)0.0416 (19)0.0100 (14)0.0025 (14)0.0050 (15)
C210.0198 (13)0.0200 (15)0.0161 (13)0.0027 (11)0.0002 (10)0.0061 (11)
C220.0199 (13)0.0304 (17)0.0282 (15)0.0060 (12)0.0048 (11)0.0098 (13)
C230.0180 (13)0.0391 (19)0.0336 (17)0.0033 (12)0.0059 (12)0.0125 (15)
C240.0200 (13)0.0308 (18)0.0341 (17)0.0050 (12)0.0018 (12)0.0119 (14)
C250.0223 (13)0.0220 (15)0.0184 (14)0.0012 (11)0.0027 (10)0.0075 (12)
C260.0306 (15)0.0230 (16)0.0192 (14)0.0007 (12)0.0018 (11)0.0056 (12)
C270.0429 (18)0.0287 (19)0.0399 (19)0.0068 (14)0.0013 (14)0.0050 (15)
C310.0177 (12)0.0223 (15)0.0195 (14)0.0006 (11)0.0032 (10)0.0055 (12)
C320.0221 (13)0.0271 (16)0.0314 (16)0.0032 (12)0.0009 (11)0.0140 (13)
C330.0304 (15)0.0380 (19)0.0353 (18)0.0009 (13)0.0075 (13)0.0220 (15)
C340.0325 (16)0.043 (2)0.0219 (15)0.0045 (14)0.0036 (12)0.0161 (15)
C350.0224 (14)0.0332 (18)0.0221 (15)0.0061 (12)0.0005 (11)0.0084 (13)
C360.0256 (14)0.0362 (19)0.0209 (15)0.0083 (13)0.0044 (11)0.0006 (13)
C370.0424 (18)0.057 (2)0.0242 (17)0.0025 (16)0.0032 (14)0.0024 (16)
C410.0139 (12)0.0195 (15)0.0215 (14)0.0005 (10)0.0032 (10)0.0042 (11)
C420.0232 (14)0.0291 (17)0.0254 (15)0.0065 (12)0.0005 (11)0.0071 (13)
C430.0246 (14)0.0270 (17)0.0424 (19)0.0093 (12)0.0004 (12)0.0123 (14)
C440.0245 (14)0.0219 (16)0.0405 (18)0.0087 (12)0.0082 (12)0.0033 (14)
C450.0180 (13)0.0234 (16)0.0286 (15)0.0001 (11)0.0050 (11)0.0029 (13)
C460.0231 (14)0.0311 (17)0.0254 (16)0.0039 (12)0.0060 (11)0.0002 (13)
C470.0385 (17)0.041 (2)0.0369 (19)0.0039 (15)0.0125 (14)0.0073 (16)
C510.0170 (12)0.0196 (14)0.0216 (14)0.0074 (10)0.0051 (10)0.0062 (11)
C520.0221 (13)0.0296 (17)0.0197 (14)0.0034 (12)0.0018 (11)0.0054 (12)
C530.0190 (13)0.0322 (18)0.0287 (16)0.0007 (12)0.0032 (11)0.0029 (14)
C540.0201 (13)0.0227 (16)0.0393 (18)0.0016 (11)0.0034 (12)0.0082 (14)
C550.0177 (12)0.0201 (15)0.0276 (15)0.0054 (11)0.0044 (11)0.0053 (12)
C560.0227 (14)0.0236 (16)0.0350 (17)0.0060 (11)0.0085 (12)0.0132 (13)
C570.0303 (16)0.038 (2)0.049 (2)0.0019 (14)0.0074 (14)0.0248 (17)
C610.0202 (13)0.0167 (14)0.0211 (14)0.0073 (10)0.0056 (10)0.0033 (11)
C620.0221 (13)0.0220 (15)0.0246 (15)0.0028 (11)0.0002 (11)0.0040 (12)
C630.0287 (15)0.0292 (17)0.0256 (16)0.0056 (13)0.0060 (12)0.0001 (13)
C640.0330 (15)0.0312 (17)0.0190 (14)0.0096 (13)0.0005 (11)0.0064 (13)
C650.0235 (13)0.0227 (15)0.0200 (14)0.0095 (11)0.0028 (10)0.0059 (12)
C660.0263 (14)0.0258 (16)0.0279 (16)0.0109 (12)0.0076 (12)0.0113 (13)
C670.0456 (18)0.041 (2)0.0348 (18)0.0060 (15)0.0022 (14)0.0212 (16)
C10.0270 (15)0.0319 (19)0.044 (2)0.0007 (13)0.0069 (14)0.0022 (16)
C20.0298 (17)0.040 (2)0.056 (2)0.0020 (15)0.0137 (16)0.0059 (18)
C30.0318 (17)0.032 (2)0.056 (2)0.0013 (14)0.0117 (16)0.0075 (17)
C40.0314 (16)0.0288 (18)0.0372 (18)0.0050 (14)0.0032 (13)0.0004 (15)
C50.0263 (15)0.0321 (18)0.0421 (19)0.0075 (13)0.0061 (13)0.0132 (15)
C60.0290 (16)0.043 (2)0.054 (2)0.0148 (15)0.0125 (15)0.0121 (18)
C70.0269 (15)0.0275 (18)0.051 (2)0.0034 (13)0.0056 (14)0.0123 (16)
C80.0278 (16)0.0316 (19)0.055 (2)0.0055 (14)0.0107 (15)0.0153 (17)
N20.055 (2)0.069 (3)0.074 (3)0.0022 (17)0.0231 (18)0.032 (2)
N30.0396 (17)0.061 (2)0.068 (2)0.0018 (15)0.0005 (16)0.0144 (19)
N40.0468 (17)0.0364 (18)0.0525 (19)0.0050 (14)0.0044 (14)0.0071 (15)
N60.059 (2)0.088 (3)0.055 (2)0.033 (2)0.0127 (17)0.009 (2)
N70.0428 (16)0.0360 (18)0.066 (2)0.0129 (14)0.0066 (14)0.0097 (16)
N80.0401 (16)0.052 (2)0.070 (2)0.0119 (14)0.0044 (15)0.0304 (18)
Geometric parameters (Å, º) top
Fe1—N201.957 (2)C36—C371.508 (4)
Fe1—N101.959 (2)C37—H37A0.9800
Fe1—N601.963 (2)C37—H37B0.9800
Fe1—N301.965 (2)C37—H37C0.9800
Fe1—N501.967 (2)C41—C451.411 (4)
Fe1—N401.968 (2)C42—C431.399 (4)
N10—C121.334 (3)C42—H420.9500
N10—C111.372 (3)C43—C441.361 (4)
N20—C221.339 (3)C43—H430.9500
N20—C211.368 (3)C44—C451.406 (4)
N30—C321.339 (3)C44—H440.9500
N30—C311.365 (3)C45—C461.443 (4)
N40—C421.331 (3)C46—C471.510 (4)
N40—C411.359 (3)C47—H47A0.9800
N50—C521.335 (3)C47—H47B0.9800
N50—C511.365 (3)C47—H47C0.9800
N60—C621.337 (3)C51—C551.404 (4)
N60—C611.369 (3)C51—C611.420 (4)
C11—C151.394 (4)C52—C531.383 (4)
C11—C211.423 (3)C52—H520.9500
C12—C131.393 (4)C53—C541.369 (4)
C12—H120.9500C53—H530.9500
C13—C141.366 (4)C54—C551.408 (4)
C13—H130.9500C54—H540.9500
C14—C151.406 (4)C55—C561.450 (4)
C14—H140.9500C56—C661.369 (4)
C15—C161.454 (4)C56—C571.511 (4)
C16—C261.371 (4)C57—H57A0.9800
C16—C171.507 (4)C57—H57B0.9800
C17—H17A0.9800C57—H57C0.9800
C17—H17B0.9800C61—C651.399 (4)
C17—H17C0.9800C62—C631.394 (4)
C21—C251.394 (4)C62—H620.9500
C22—C231.392 (4)C63—C641.367 (4)
C22—H220.9500C63—H630.9500
C23—C241.360 (4)C64—C651.413 (4)
C23—H230.9500C64—H640.9500
C24—C251.419 (4)C65—C661.449 (4)
C24—H240.9500C66—C671.501 (4)
C25—C261.443 (4)C67—H67A0.9800
C26—C271.506 (4)C67—H67B0.9800
C27—H27A0.9800C67—H67C0.9800
C27—H27B0.9800C1—C41.397 (4)
C27—H27C0.9800C1—C31.402 (5)
C31—C351.398 (4)C1—C21.411 (5)
C31—C411.419 (4)C2—N21.155 (5)
C32—C331.394 (4)C3—N31.156 (4)
C32—H320.9500C4—N41.155 (4)
C33—C341.363 (4)C5—C71.398 (4)
C33—H330.9500C5—C81.403 (5)
C34—C351.411 (4)C5—C61.413 (5)
C34—H340.9500C6—N61.151 (4)
C35—C361.453 (4)C7—N71.157 (4)
C36—C461.367 (4)C8—N81.157 (4)
N20—Fe1—N1082.89 (9)C34—C35—C36124.8 (3)
N20—Fe1—N6094.50 (9)C46—C36—C35120.5 (3)
N10—Fe1—N6089.17 (9)C46—C36—C37123.2 (3)
N20—Fe1—N3089.92 (9)C35—C36—C37116.3 (3)
N10—Fe1—N3095.52 (9)C36—C37—H37A109.5
N60—Fe1—N30173.92 (9)C36—C37—H37B109.5
N20—Fe1—N50176.49 (9)H37A—C37—H37B109.5
N10—Fe1—N5094.93 (9)C36—C37—H37C109.5
N60—Fe1—N5082.70 (9)H37A—C37—H37C109.5
N30—Fe1—N5093.03 (9)H37B—C37—H37C109.5
N20—Fe1—N4094.31 (9)N40—C41—C45124.1 (2)
N10—Fe1—N40176.56 (9)N40—C41—C31115.8 (2)
N60—Fe1—N4093.05 (9)C45—C41—C31120.1 (2)
N30—Fe1—N4082.45 (9)N40—C42—C43121.7 (3)
N50—Fe1—N4087.97 (9)N40—C42—H42119.1
C12—N10—C11117.2 (2)C43—C42—H42119.1
C12—N10—Fe1129.55 (19)C44—C43—C42120.6 (3)
C11—N10—Fe1113.15 (15)C44—C43—H43119.7
C22—N20—C21117.6 (2)C42—C43—H43119.7
C22—N20—Fe1129.00 (19)C43—C44—C45119.8 (3)
C21—N20—Fe1113.43 (16)C43—C44—H44120.1
C32—N30—C31117.4 (2)C45—C44—H44120.1
C32—N30—Fe1129.23 (19)C44—C45—C41115.9 (2)
C31—N30—Fe1113.32 (17)C44—C45—C46124.7 (3)
C42—N40—C41117.8 (2)C41—C45—C46119.3 (3)
C42—N40—Fe1129.02 (18)C36—C46—C45120.4 (3)
C41—N40—Fe1113.08 (17)C36—C46—C47122.3 (3)
C52—N50—C51117.3 (2)C45—C46—C47117.4 (3)
C52—N50—Fe1129.58 (19)C46—C47—H47A109.5
C51—N50—Fe1112.98 (17)C46—C47—H47B109.5
C62—N60—C61117.4 (2)H47A—C47—H47B109.5
C62—N60—Fe1129.68 (19)C46—C47—H47C109.5
C61—N60—Fe1112.91 (17)H47A—C47—H47C109.5
N10—C11—C15124.3 (2)H47B—C47—H47C109.5
N10—C11—C21115.3 (2)N50—C51—C55124.1 (2)
C15—C11—C21120.5 (2)N50—C51—C61115.4 (2)
N10—C12—C13122.2 (3)C55—C51—C61120.5 (2)
N10—C12—H12118.9N50—C52—C53122.5 (3)
C13—C12—H12118.9N50—C52—H52118.7
C14—C13—C12120.2 (2)C53—C52—H52118.7
C14—C13—H13119.9C54—C53—C52120.3 (3)
C12—C13—H13119.9C54—C53—H53119.8
C13—C14—C15119.9 (2)C52—C53—H53119.8
C13—C14—H14120.1C53—C54—C55119.7 (3)
C15—C14—H14120.1C53—C54—H54120.2
C11—C15—C14116.3 (3)C55—C54—H54120.2
C11—C15—C16119.0 (2)C51—C55—C54116.1 (3)
C14—C15—C16124.8 (2)C51—C55—C56119.0 (2)
C26—C16—C15120.5 (2)C54—C55—C56124.9 (3)
C26—C16—C17122.1 (3)C66—C56—C55120.5 (3)
C15—C16—C17117.4 (2)C66—C56—C57122.9 (3)
C16—C17—H17A109.5C55—C56—C57116.7 (3)
C16—C17—H17B109.5C56—C57—H57A109.5
H17A—C17—H17B109.5C56—C57—H57B109.5
C16—C17—H17C109.5H57A—C57—H57B109.5
H17A—C17—H17C109.5C56—C57—H57C109.5
H17B—C17—H17C109.5H57A—C57—H57C109.5
N20—C21—C25124.5 (2)H57B—C57—H57C109.5
N20—C21—C11115.2 (2)N60—C61—C65124.4 (2)
C25—C21—C11120.3 (2)N60—C61—C51115.6 (2)
N20—C22—C23121.8 (3)C65—C61—C51120.1 (2)
N20—C22—H22119.1N60—C62—C63122.0 (3)
C23—C22—H22119.1N60—C62—H62119.0
C24—C23—C22120.5 (2)C63—C62—H62119.0
C24—C23—H23119.8C64—C63—C62120.4 (3)
C22—C23—H23119.8C64—C63—H63119.8
C23—C24—C25120.0 (3)C62—C63—H63119.8
C23—C24—H24120.0C63—C64—C65119.7 (3)
C25—C24—H24120.0C63—C64—H64120.1
C21—C25—C24115.7 (2)C65—C64—H64120.1
C21—C25—C26119.6 (2)C61—C65—C64116.1 (3)
C24—C25—C26124.7 (3)C61—C65—C66119.5 (2)
C16—C26—C25120.2 (3)C64—C65—C66124.4 (3)
C16—C26—C27122.8 (3)C56—C66—C65120.3 (3)
C25—C26—C27117.1 (2)C56—C66—C67123.4 (3)
C26—C27—H27A109.5C65—C66—C67116.3 (3)
C26—C27—H27B109.5C66—C67—H67A109.5
H27A—C27—H27B109.5C66—C67—H67B109.5
C26—C27—H27C109.5H67A—C67—H67B109.5
H27A—C27—H27C109.5C66—C67—H67C109.5
H27B—C27—H27C109.5H67A—C67—H67C109.5
N30—C31—C35124.3 (3)H67B—C67—H67C109.5
N30—C31—C41115.2 (2)C4—C1—C3119.6 (3)
C35—C31—C41120.5 (2)C4—C1—C2119.9 (3)
N30—C32—C33121.9 (3)C3—C1—C2120.4 (3)
N30—C32—H32119.0N2—C2—C1179.3 (4)
C33—C32—H32119.0N3—C3—C1178.1 (4)
C34—C33—C32120.4 (3)N4—C4—C1179.2 (4)
C34—C33—H33119.8C7—C5—C8120.0 (3)
C32—C33—H33119.8C7—C5—C6119.8 (3)
C33—C34—C35119.8 (3)C8—C5—C6120.2 (3)
C33—C34—H34120.1N6—C6—C5179.5 (4)
C35—C34—H34120.1N7—C7—C5178.3 (4)
C31—C35—C34116.1 (3)N8—C8—C5179.3 (4)
C31—C35—C36119.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C52—H52···N300.952.593.070 (3)112
C22—H22···N400.952.593.089 (4)113
C32—H32···N80.952.433.266 (4)146
C42—H42···N600.952.573.056 (3)112
C22—H22···N6i0.952.543.271 (4)134
C12—H12···N2ii0.952.553.352 (4)142
C62—H62···N3iii0.952.513.266 (4)137
C44—H44···N7iv0.952.593.312 (4)133
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x1, y1, z.
Selected bond lengths (Å) top
Fe1—N201.957 (2)Fe1—N301.965 (2)
Fe1—N101.959 (2)Fe1—N501.967 (2)
Fe1—N601.963 (2)Fe1—N401.968 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C52—H52···N300.952.593.070 (3)111.6
C22—H22···N400.952.593.089 (4)112.7
C32—H32···N80.952.433.266 (4)146.2
C42—H42···N600.952.573.056 (3)112.1
C22—H22···N6i0.952.543.271 (4)134.3
C12—H12···N2ii0.952.553.352 (4)142.3
C62—H62···N3iii0.952.513.266 (4)136.7
C44—H44···N7iv0.952.593.312 (4)133.0
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x1, y1, z.
Acknowledgements top

This work was supported by the Slovak Research and Development Agency under contract No. APVV-0014–11 and by the internal P. J. Šafárik University grant system (VVGS-PF-2012–24 and VVGS 1/12–13).

references
References top

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Aparici Plaza, L., Baranowska, K. & Becker, B. (2007). Acta Cryst. E63, m1537–m1539.

Brandenburg, K. (2001). DIAMOND. Crystal Impact, Bonn, Germany.

Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.

Golub, A. M., Köhler, H. & Skopenko, V. V. (1986). Chemistry of Pseudohalides, pp. 313–318. Amsterdam: Elsevier.

Koh, L. L., Xu, Y., Hsieh, A. K., Song, B., Wu, F. & Ji, L. (1994). Acta Cryst. C50, 884–886.

Kohout, J., Jäger, L., Hvastijová, M. & Kožíšek, J. (2000). J. Coord. Chem. 51, 172–182.

König, E. & Watson, K. J. (1970). Chem. Phys. Lett. 6, 457–459.

Li, Z.-X., Yu, M.-M., Zhang, Y.-N. & Wei, L.-H. (2008). Acta Cryst. E64, m1514.

Luo, J., Zhang, X.-R., Qiu, L.-J., Liu, B.-S. & Zhang, Z.-Y. (2009). Acta Cryst. E65, m455–m456.

Müller, E. W., Spiering, H. & Gütlich, P. (1982). Chem. Phys. Lett. 93, 567–571.

Nishigaki, S., Yoshioka, H. & Nakatsu, K. (1978). Acta Cryst. B34, 875–879.

Odoko, M. & Okabe, N. (2004). Acta Cryst. E60, m1822–m1824.

Potočňák, I., Pohlová, M., Wagner, C. & Jäger, L. (2002). Acta Cryst. E58, m595–m596.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Toledano-Magaña, Y., García-Ramos, J.-C., García-Manrique, C., Flores-Alamo, M. & Ruiz-Azuara, L. (2012). Acta Cryst. E68, m987–m988.

Uçar, I., Paşaoĝlu, H., Büyükgüngör, O. & Bulut, A. (2005). Acta Cryst. E61, m1405–m1407.

Váhovská, L. & Potočňák, I. (2012). J. Chem. Crystallogr. Submitted.