supplementary materials


bt6859 scheme

Acta Cryst. (2013). E69, m29-m30    [ doi:10.1107/S1600536812047964 ]

catena-Poly[[[O,O'-bis(2-methylphenyl) dithiophosphato-[kappa]2S,S]lead(II)]-[mu]-O,O'-bis(2-methylphenyl) dithiophosphato-[kappa]3S,S':S]

R. J. Butcher, R. Ratnani, S. Öztürk Yildirim and O. Falola

Abstract top

In the title compound, [Pb(C14H14O2PS2)2]n, the metal atom is surrounded by two O,O'-bis(2-methylphenyl) dithiophosphate ligands bonding through the S-donor atoms. Three of the Pb-S bond lengths are are close to each other at 2.7710 (18), 2.8104 (16) and 2.8205 (16) Å, while the fourth Pb-S bond is elongated at 3.0910 (18) Å and reflects the fact that this atom is involved in intermolecular bridging to an adjacent PbII atom [Pb-S = 3.145 (2) Å]. The bond angles demonstrate that the PbII atom contains a stereochemically active lone pair with a distorted octahedral geometry about the PbII atom. This distortion is shown by the S-Pb-S bite angles of 73.63 (4) and 69.50 (4)°, while the remaining S-Pb-S angles range from 81.03 (5) to 143.66 (5)°. One of the benzene rings shows positional disorder over two orientations with occupancy factors of 0.747 (11) and 0.253 (11).

Comment top

O,O'-Dialkyl derivatives of phosphorus(V) dithioacids are characterized by wide possibilities for practical applications in various areas, namely, as flotation reagents (in the concentration of sulfide ores of nonferrous metals), fungicides, insecticides, herbicides, antioxidants, additives to lubricating oils, and technological precursors of film sulfides of transition and nontransition metals. The structural variety of metal complexes with dialkyldithiophosphates has been explained in terms of coordination chemistry by the ability of these compounds to perform different structural functions and act as bidentate terminal, bidentate bridging or combined ligands. As a result, compounds with different types of structural organization can be formed: mono-, bi-, tetra-, or polynuclear complexes. A unique alternation of the conformationally different (`chair`-`saddle`) eight-membered rings [Cd2S4P2] has been revealed in the chains of polynuclear cadmium(II) complexes [Cd{S(S)P(OR)2}2]n (Lawton & Kokotailo, 1969; Lawton & Kokotailo, 1972; Ito, 1972; Harrison et al., 1988). General and convenient methods to prepare dithiophosphato salt derivatives have been reported (Van Zyl & Fackler, 2000; Van Zyl, 2010). In view of the importance of these compounds and in continuation of our earlier work (Bajia et al., 2009; Maheshwari et al., 2009) we have undertaken the crystal structure determination of the title compound, and the results are presented here. Pb2+ complexes of these types of ligands are of particular interest because of the possibility of exhibiting stereochemically active lone pairs (Davidovich et al., 2010; Ito & Maeda, 2004; Larsson et al., 2004; Lawton & Kokotailo, 1972).

The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1. The structure consists of a linear zigzag chain of molecules in the b direction composed of one Pb atom and two chelating bis(2-methylphenyl) phosphato ligands and linked by Pb—S—Pb bonds. The two bis(2-methylphenyl) phosphato ligands are coordinated through both S atoms to the metal. Three of the Pb—S bond lengths are insignificantly different at 2.7710 (18), 2.8104 (16) and 2.8205 (16) Å, while the fourth Pb—S bond is elongated at 3.0910 (18) Å and reflects the fact that this atom is involved in intermolecular bridging (symmetry code, 2 - x,1/2 + y,1 - z) to an adjacent Pb (intermolecular Pb—S distance, 3.145 (2) Å).

The bond angles reflect the fact that Pb contains a stereochemically active lone pair so the geometry about the Pb is best described using VSEPR theory as AX5E (Gillespie & Nyholm, 1957) and is thus distorted octahedral. The S—Pb—S bite angles are small at 73.63 (4) and 69.50 (4)° while the remaining S—Pb—S angles range from 81.03 (5) to 143.66 (5)°. Thus the relative bond distances and angles for the title compound agree with the presence of an electron lone pair in a distorted octahedral PbS5E (with one S as a bridging ligand) environment. Evidence for the presence of a stereochemically active electron lone pair of the lead atom has also been reported for other Pb2+ complexes with similar ligands (Davidovich et al., 2010; Ito & Maeda, 2004; Larsson et al., 2004; Lawton & Kokotailo, 1972).

In the molecule one of the 1-methoxy-2-methyl-benzene rings (O4—C22—C28) shows positional disorder over two orientations with occupancy ratio of 0.747 (11):0.253 (11).

No evidence for C—H···O or C—H···S interactions were found in the crystal.

Related literature top

For applications of related O,O'-dialkyl derivatives of phosphorus(V) dithioacids, see: Lawton & Kokotailo (1969, 1972); Ito (1972); Harrison et al. (1988). For general and convenient methods for the preparation of dithiophosphato salt derivatives and their metal derivatives, see: Bajia et al. (2009); Maheshwari et al. (2009); Lawton & Kokotailo (1969, 1972); Ito (1972); Harrison et al. (1988); Van Zyl & Fackler, (2000); Van Zyl (2010). For VSEPR theory, see: Gillespie & Nyholm (1957). For stereochemically active lone pairs in Pb2+ complexes, see: Davidovich et al. (2010); Ito & Maeda (2004); Larsson et al. (2004); Lawton & Kokotailo (1972).

Experimental top

Title compound was published methods (Bajia et al., 2009; Maheshwari et al., 2009; Lawton & Kokotailo, 1969; Lawton & Kokotailo, 1972; Ito, 1972; Harrison et al., 1988). Crystals were grown by slow evaporation of a mixture of absolute ethyl alcohol (90%) and chloroform (10%) solution.

Refinement top

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96(CH3) Å and with Uiso(H) = 1.2Ueq(C). The highest residual electron density was found 0.69 Å from Pb the deepest hole 0.82 Å from Pb.

In the molecule one 1-methoxy-2-methyl-benzene ring (O4—C22—C28) shows positional disorder in a 0.747 (1):0.253 (1) ratio. The highest maximum (0.69 e/Å3) in the final difference map is at 1.12 Å from Pb and the deepest hole (0.82 e/Å3) is at -1.15 Å from Pb. Nine outliers, (-12 - 5 12), (-13 - 4 11), (-14 - 3 10), (-12 - 6 10), (-7 - 11 7), (-13 - 5 10), (0 - 8 12), (0 1 15) and (-5 - 12 6), were omitted in the final refinement.

The SIMU and DELU constraint instructions in SHELXL97 were used for atoms O4/O4a, C22/C22a, C23/C23a, C24/C24a, C25/C25a, C26/C26a, C27/C27a,C28/C28a and ISOR (0.01) was used for atoms C24a and C26a in order to model the disorder properly during the refinement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Only major disordered component for the 1-methoxy-2-methyl-benzene ring is shown. Atoms labelled with suffix A were generated by the symmetry operator 2 - x, 0.5 + y, 1 - z.
[Figure 2] Fig. 2. Crystal packing diagram for the title compound.
catena-Poly[[[O,O'-bis(2-methylphenyl) dithiophosphato- κ2S,S]lead(II)]-µ-O,O'-bis(2-methylphenyl) dithiophosphato-κ3S,S':S] top
Crystal data top
[Pb(C14H14O2PS2)2]F(000) = 808
Mr = 825.87Dx = 1.765 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 4674 reflections
a = 12.0263 (6) Åθ = 3.7–75.4°
b = 10.7420 (4) ŵ = 14.31 mm1
c = 13.0499 (8) ÅT = 123 K
β = 112.849 (6)°Needle, colorless
V = 1553.58 (15) Å30.46 × 0.05 × 0.03 mm
Z = 2
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
4494 independent reflections
Radiation source: Enhance (Cu) X-ray Source4269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 10.5081 pixels mm-1θmax = 75.6°, θmin = 3.7°
ω scansh = 1514
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2011), using a multi-faceted crystal model (Clark & Reid, 1995)]
k = 138
Tmin = 0.094, Tmax = 0.675l = 1416
10226 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0329P)2 + 1.1401P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.007
4494 reflectionsΔρmax = 1.12 e Å3
406 parametersΔρmin = 1.15 e Å3
55 restraintsAbsolute structure: Flack (1983), 1093 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.03 (8)
Crystal data top
[Pb(C14H14O2PS2)2]V = 1553.58 (15) Å3
Mr = 825.87Z = 2
Monoclinic, P21Cu Kα radiation
a = 12.0263 (6) ŵ = 14.31 mm1
b = 10.7420 (4) ÅT = 123 K
c = 13.0499 (8) Å0.46 × 0.05 × 0.03 mm
β = 112.849 (6)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
4494 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2011), using a multi-faceted crystal model (Clark & Reid, 1995)]
4269 reflections with I > 2σ(I)
Tmin = 0.094, Tmax = 0.675Rint = 0.045
10226 measured reflectionsθmax = 75.6°
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.075Δρmax = 1.12 e Å3
S = 1.03Δρmin = 1.15 e Å3
4494 reflectionsAbsolute structure: Flack (1983), 1093 Friedel pairs
406 parametersFlack parameter: 0.03 (8)
55 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.58111 (14)0.59159 (15)0.27999 (13)0.0313 (3)
P20.94672 (15)0.36924 (17)0.63559 (15)0.0397 (4)
S10.65999 (14)0.43767 (15)0.25837 (14)0.0372 (3)
S20.68892 (13)0.72496 (15)0.37035 (14)0.0360 (3)
S30.97595 (15)0.29732 (17)0.50949 (16)0.0426 (4)
S40.84998 (14)0.52418 (15)0.60457 (14)0.0428 (4)
Pb0.874757 (17)0.55165 (2)0.403361 (19)0.03788 (6)
O10.4862 (3)0.5601 (6)0.3355 (3)0.0329 (9)
O20.5005 (4)0.6443 (4)0.1582 (4)0.0354 (9)
O30.8792 (4)0.2724 (5)0.6864 (4)0.0452 (12)
C10.4143 (5)0.4517 (6)0.3029 (5)0.0334 (13)
C20.3246 (6)0.4438 (7)0.1981 (6)0.0379 (14)
H2A0.31190.50860.14760.045*
C30.2528 (7)0.3365 (8)0.1688 (7)0.0470 (17)
H3A0.19300.32880.09780.056*
C40.2710 (7)0.2427 (7)0.2451 (7)0.0483 (17)
H4A0.22300.17170.22610.058*
C50.3608 (7)0.2538 (7)0.3502 (7)0.0453 (16)
H5A0.37260.18930.40080.054*
C60.4350 (5)0.3602 (6)0.3828 (5)0.0350 (13)
C70.5306 (6)0.3735 (8)0.4978 (7)0.0502 (19)
H7A0.51980.45100.52950.075*
H7B0.60880.37220.49410.075*
H7C0.52440.30590.54340.075*
C80.4551 (6)0.7671 (6)0.1443 (5)0.0359 (13)
C90.3744 (6)0.8024 (8)0.1895 (6)0.0424 (15)
H9A0.35080.74640.23160.051*
C100.3283 (7)0.9222 (8)0.1720 (7)0.0490 (17)
H10A0.27540.94790.20420.059*
C110.3614 (8)1.0035 (8)0.1062 (7)0.0534 (19)
H11A0.32861.08320.09180.064*
C120.4437 (9)0.9654 (8)0.0621 (6)0.054 (2)
H12A0.46531.02070.01810.064*
C130.4950 (7)0.8473 (7)0.0814 (6)0.0407 (15)
C140.5853 (8)0.8076 (8)0.0345 (7)0.0540 (19)
H14A0.64870.76100.08950.081*
H14B0.61880.87980.01390.081*
H14C0.54610.75650.02990.081*
C150.9162 (7)0.1475 (8)0.7050 (7)0.0428 (17)
C161.0210 (8)0.1178 (10)0.7962 (7)0.051 (2)
H16A1.06690.18010.84300.061*
C171.0567 (9)0.0087 (11)0.8169 (9)0.065 (3)
H17A1.12530.03150.87790.078*
C180.9857 (8)0.0971 (9)0.7428 (9)0.061 (2)
H18A1.00860.18030.75440.073*
C190.8856 (8)0.0673 (8)0.6553 (8)0.055 (2)
H19A0.84090.13050.60880.065*
C200.8456 (5)0.0560 (12)0.6314 (6)0.0472 (15)
C210.7325 (7)0.0918 (8)0.5346 (7)0.0509 (19)
H21A0.74960.15940.49490.076*
H21B0.67200.11710.56130.076*
H21C0.70360.02170.48580.076*
O41.0800 (7)0.3917 (8)0.7289 (7)0.043 (2)0.747 (11)
C221.0991 (7)0.4823 (6)0.8088 (6)0.040 (3)0.747 (11)
C231.0368 (7)0.4817 (8)0.8790 (7)0.058 (3)0.747 (11)
H230.98020.41990.87210.069*0.747 (11)
C241.0591 (9)0.5736 (10)0.9595 (6)0.077 (6)0.747 (11)
H241.01750.57331.00650.093*0.747 (11)
C251.1437 (10)0.6661 (8)0.9699 (6)0.080 (5)0.747 (11)
H251.15860.72761.02380.096*0.747 (11)
C261.2060 (8)0.6666 (7)0.8997 (8)0.071 (5)0.747 (11)
H261.26250.72850.90660.086*0.747 (11)
C271.1836 (7)0.5747 (7)0.8192 (7)0.058 (3)0.747 (11)
C281.2475 (11)0.5753 (14)0.7405 (11)0.064 (4)0.747 (11)
H28A1.30500.64220.75960.096*0.747 (11)
H28B1.18970.58670.66580.096*0.747 (11)
H28C1.28870.49760.74580.096*0.747 (11)
O4A1.0570 (17)0.374 (2)0.762 (2)0.044 (6)0.253 (11)
C22A1.1269 (15)0.4788 (17)0.7926 (16)0.054 (11)0.253 (11)
C23A1.2071 (17)0.5125 (19)0.7443 (16)0.048 (8)0.253 (11)
H23A1.21180.46530.68630.057*0.253 (11)
C24A1.2802 (16)0.617 (2)0.7825 (18)0.045 (8)0.253 (11)
H24A1.33390.63910.75020.055*0.253 (11)
C25A1.2731 (19)0.6870 (18)0.8691 (18)0.060 (10)0.253 (11)
H25A1.32210.75670.89470.072*0.253 (11)
C26A1.193 (2)0.653 (2)0.9175 (16)0.045 (8)0.253 (11)
H26A1.18820.70050.97550.054*0.253 (11)
C27A1.1198 (16)0.549 (2)0.8793 (16)0.053 (7)0.253 (11)
C28A1.030 (3)0.511 (6)0.927 (3)0.09 (2)0.253 (11)
H28D1.04420.42620.95140.134*0.253 (11)
H28E0.94980.51890.87100.134*0.253 (11)
H28F1.03810.56380.98890.134*0.253 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0341 (6)0.0230 (7)0.0404 (7)0.0005 (5)0.0186 (6)0.0006 (5)
P20.0325 (7)0.0354 (9)0.0492 (9)0.0053 (7)0.0139 (6)0.0042 (7)
S10.0395 (7)0.0256 (8)0.0518 (8)0.0014 (6)0.0234 (6)0.0039 (6)
S20.0345 (7)0.0259 (7)0.0480 (8)0.0006 (6)0.0163 (6)0.0032 (6)
S30.0477 (10)0.0303 (8)0.0595 (10)0.0064 (8)0.0314 (8)0.0042 (7)
S40.0401 (7)0.0366 (12)0.0516 (8)0.0103 (6)0.0178 (6)0.0056 (6)
Pb0.03314 (9)0.02947 (11)0.05628 (12)0.00011 (13)0.02308 (8)0.00157 (14)
O10.0358 (16)0.028 (2)0.0381 (17)0.001 (2)0.0180 (14)0.001 (2)
O20.045 (2)0.024 (2)0.041 (2)0.0006 (18)0.0196 (19)0.0013 (17)
O30.042 (2)0.047 (3)0.051 (3)0.010 (2)0.024 (2)0.002 (2)
C10.036 (3)0.029 (3)0.043 (3)0.002 (2)0.022 (2)0.003 (2)
C20.041 (3)0.036 (4)0.042 (3)0.004 (3)0.021 (3)0.000 (3)
C30.047 (4)0.044 (4)0.055 (4)0.008 (3)0.025 (3)0.009 (3)
C40.058 (4)0.031 (4)0.067 (4)0.012 (3)0.037 (4)0.010 (3)
C50.049 (3)0.031 (4)0.069 (4)0.003 (3)0.038 (3)0.008 (3)
C60.035 (3)0.033 (3)0.045 (3)0.007 (3)0.024 (2)0.010 (3)
C70.036 (3)0.054 (5)0.061 (4)0.006 (3)0.020 (3)0.022 (4)
C80.040 (3)0.028 (3)0.038 (3)0.003 (3)0.013 (2)0.001 (2)
C90.042 (3)0.041 (4)0.046 (3)0.004 (3)0.019 (3)0.002 (3)
C100.055 (4)0.041 (4)0.051 (4)0.015 (3)0.020 (3)0.006 (3)
C110.075 (5)0.040 (4)0.052 (4)0.015 (4)0.032 (4)0.006 (3)
C120.083 (5)0.039 (4)0.044 (4)0.006 (4)0.030 (4)0.012 (3)
C130.054 (4)0.028 (3)0.042 (3)0.003 (3)0.021 (3)0.001 (3)
C140.079 (5)0.038 (4)0.058 (4)0.004 (4)0.040 (4)0.001 (3)
C150.047 (4)0.044 (4)0.050 (4)0.009 (3)0.032 (3)0.008 (3)
C160.050 (4)0.062 (6)0.045 (4)0.012 (4)0.024 (3)0.006 (4)
C170.057 (5)0.079 (7)0.062 (5)0.029 (5)0.027 (4)0.027 (5)
C180.059 (5)0.044 (5)0.095 (7)0.012 (4)0.046 (5)0.019 (4)
C190.069 (5)0.035 (4)0.084 (6)0.002 (4)0.055 (5)0.007 (4)
C200.044 (3)0.047 (4)0.063 (3)0.001 (5)0.034 (3)0.010 (5)
C210.043 (3)0.047 (4)0.067 (5)0.003 (3)0.027 (3)0.001 (3)
O40.033 (4)0.047 (4)0.049 (4)0.004 (3)0.018 (3)0.007 (3)
C220.046 (5)0.036 (6)0.034 (5)0.000 (4)0.010 (4)0.007 (4)
C230.067 (7)0.068 (8)0.040 (6)0.013 (6)0.022 (5)0.001 (5)
C240.087 (10)0.098 (16)0.037 (6)0.031 (9)0.012 (6)0.004 (7)
C250.087 (10)0.064 (9)0.052 (7)0.012 (8)0.013 (7)0.013 (6)
C260.073 (9)0.046 (7)0.058 (8)0.003 (7)0.015 (7)0.004 (6)
C270.050 (5)0.054 (9)0.055 (6)0.001 (5)0.003 (4)0.017 (5)
C280.042 (6)0.060 (10)0.082 (8)0.012 (6)0.014 (6)0.020 (7)
O4A0.014 (8)0.058 (14)0.056 (14)0.003 (8)0.010 (8)0.007 (11)
C22A0.044 (17)0.05 (2)0.047 (18)0.011 (15)0.003 (15)0.016 (15)
C23A0.028 (13)0.044 (19)0.067 (19)0.008 (12)0.014 (13)0.015 (14)
C24A0.039 (10)0.044 (11)0.051 (10)0.010 (8)0.015 (8)0.005 (8)
C25A0.047 (17)0.042 (18)0.06 (2)0.017 (15)0.008 (15)0.011 (15)
C26A0.050 (11)0.040 (11)0.033 (10)0.003 (8)0.005 (8)0.001 (8)
C27A0.033 (10)0.060 (16)0.072 (15)0.016 (18)0.025 (10)0.03 (2)
C28A0.039 (15)0.19 (8)0.04 (2)0.01 (3)0.015 (16)0.02 (3)
Geometric parameters (Å, º) top
P1—O11.608 (4)C15—C161.394 (11)
P1—O21.609 (5)C15—C201.406 (14)
P1—S11.980 (2)C16—C171.419 (13)
P1—S21.984 (2)C16—H16A0.9300
P2—O31.612 (6)C17—C181.388 (15)
P2—O41.611 (8)C17—H17A0.9300
P2—O4A1.67 (2)C18—C191.337 (14)
P2—S31.969 (3)C18—H18A0.9300
P2—S41.980 (2)C19—C201.403 (15)
S1—Pb2.8205 (16)C19—H19A0.9300
S2—Pb2.8104 (16)C20—C211.503 (10)
S3—Pb3.0910 (18)C21—H21A0.9600
S4—Pb2.7710 (18)C21—H21B0.9600
O1—C11.414 (8)C21—H21C0.9600
O2—C81.413 (8)O4—C221.379 (9)
O3—C151.404 (10)C22—C231.3900
C1—C21.376 (9)C22—C271.3900
C1—C61.384 (9)C23—C241.3900
C2—C31.402 (10)C23—H230.9300
C2—H2A0.9300C24—C251.3900
C3—C41.373 (12)C24—H240.9300
C3—H3A0.9300C25—C261.3900
C4—C51.382 (12)C25—H250.9300
C4—H4A0.9300C26—C271.3900
C5—C61.410 (10)C26—H260.9300
C5—H5A0.9300C27—C281.502 (14)
C6—C71.501 (10)C28—H28A0.9600
C7—H7A0.9600C28—H28B0.9600
C7—H7B0.9600C28—H28C0.9600
C7—H7C0.9600O4A—C22A1.371 (16)
C8—C91.370 (10)C22A—C23A1.3900
C8—C131.397 (10)C22A—C27A1.3900
C9—C101.384 (11)C23A—C24A1.3900
C9—H9A0.9300C23A—H23A0.9300
C10—C111.387 (12)C24A—C25A1.3900
C10—H10A0.9300C24A—H24A0.9300
C11—C121.387 (12)C25A—C26A1.3900
C11—H11A0.9300C25A—H25A0.9300
C12—C131.391 (11)C26A—C27A1.3900
C12—H12A0.9300C26A—H26A0.9300
C13—C141.500 (11)C27A—C28A1.50 (2)
C14—H14A0.9600C28A—H28D0.9600
C14—H14B0.9600C28A—H28E0.9600
C14—H14C0.9600C28A—H28F0.9600
O1—P1—O2104.9 (2)H14A—C14—H14B109.5
O1—P1—S1110.6 (2)C13—C14—H14C109.5
O2—P1—S1106.93 (19)H14A—C14—H14C109.5
O1—P1—S2107.4 (2)H14B—C14—H14C109.5
O2—P1—S2109.71 (19)C16—C15—O3119.2 (8)
S1—P1—S2116.68 (10)C16—C15—C20122.0 (9)
O3—P2—O4107.3 (4)O3—C15—C20118.9 (7)
O3—P2—O4A87.0 (8)C15—C16—C17119.2 (9)
O4—P2—O4A21.9 (7)C15—C16—H16A120.4
O3—P2—S3111.9 (2)C17—C16—H16A120.4
O4—P2—S3104.0 (3)C18—C17—C16117.7 (9)
O4A—P2—S3120.3 (8)C18—C17—H17A121.2
O3—P2—S4106.1 (2)C16—C17—H17A121.2
O4—P2—S4111.2 (3)C19—C18—C17122.5 (9)
O4A—P2—S4110.9 (8)C19—C18—H18A118.8
S3—P2—S4116.12 (12)C17—C18—H18A118.8
P1—S1—Pb84.63 (7)C18—C19—C20122.3 (9)
P1—S2—Pb84.84 (7)C18—C19—H19A118.9
P2—S3—Pb81.99 (8)C20—C19—H19A118.9
P2—S4—Pb90.71 (8)C19—C20—C15116.4 (8)
S4—Pb—S281.03 (5)C19—C20—C21123.3 (9)
S4—Pb—S1100.49 (5)C15—C20—C21120.3 (10)
S2—Pb—S173.63 (4)C20—C21—H21A109.5
S4—Pb—S369.50 (4)C20—C21—H21B109.5
S2—Pb—S3143.66 (5)H21A—C21—H21B109.5
S1—Pb—S390.89 (5)C20—C21—H21C109.5
C1—O1—P1119.7 (4)H21A—C21—H21C109.5
C8—O2—P1120.7 (4)H21B—C21—H21C109.5
C15—O3—P2120.7 (5)C22—O4—P2120.1 (6)
C2—C1—C6123.2 (6)O4—C22—C23121.4 (6)
C2—C1—O1120.1 (6)O4—C22—C27118.6 (6)
C6—C1—O1116.6 (6)C23—C22—C27120.0
C1—C2—C3118.9 (7)C22—C23—C24120.0
C1—C2—H2A120.5C22—C23—H23120.0
C3—C2—H2A120.5C24—C23—H23120.0
C4—C3—C2119.9 (7)C25—C24—C23120.0
C4—C3—H3A120.1C25—C24—H24120.0
C2—C3—H3A120.1C23—C24—H24120.0
C3—C4—C5119.9 (7)C26—C25—C24120.0
C3—C4—H4A120.0C26—C25—H25120.0
C5—C4—H4A120.0C24—C25—H25120.0
C4—C5—C6121.9 (7)C27—C26—C25120.0
C4—C5—H5A119.0C27—C26—H26120.0
C6—C5—H5A119.0C25—C26—H26120.0
C1—C6—C5116.1 (6)C26—C27—C22120.0
C1—C6—C7122.0 (6)C26—C27—C28120.9 (8)
C5—C6—C7121.9 (6)C22—C27—C28119.1 (8)
C6—C7—H7A109.5C22A—O4A—P2118.4 (18)
C6—C7—H7B109.5O4A—C22A—C23A122.3 (15)
H7A—C7—H7B109.5O4A—C22A—C27A117.6 (15)
C6—C7—H7C109.5C23A—C22A—C27A120.0
H7A—C7—H7C109.5C24A—C23A—C22A120.0
H7B—C7—H7C109.5C24A—C23A—H23A120.0
C9—C8—C13123.0 (7)C22A—C23A—H23A120.0
C9—C8—O2120.4 (6)C25A—C24A—C23A120.0
C13—C8—O2116.6 (6)C25A—C24A—H24A120.0
C8—C9—C10119.4 (7)C23A—C24A—H24A120.0
C8—C9—H9A120.3C24A—C25A—C26A120.0
C10—C9—H9A120.3C24A—C25A—H25A120.0
C9—C10—C11119.7 (8)C26A—C25A—H25A120.0
C9—C10—H10A120.2C27A—C26A—C25A120.0
C11—C10—H10A120.2C27A—C26A—H26A120.0
C12—C11—C10119.6 (8)C25A—C26A—H26A120.0
C12—C11—H11A120.2C26A—C27A—C22A120.0
C10—C11—H11A120.2C26A—C27A—C28A122 (2)
C11—C12—C13122.1 (8)C22A—C27A—C28A118 (2)
C11—C12—H12A118.9C27A—C28A—H28D109.5
C13—C12—H12A118.9C27A—C28A—H28E109.5
C12—C13—C8116.1 (7)H28D—C28A—H28E109.5
C12—C13—C14121.7 (7)C27A—C28A—H28F109.5
C8—C13—C14122.2 (7)H28D—C28A—H28F109.5
C13—C14—H14A109.5H28E—C28A—H28F109.5
C13—C14—H14B109.5
O1—P1—S1—Pb118.69 (17)C10—C11—C12—C130.0 (14)
O2—P1—S1—Pb127.58 (19)C11—C12—C13—C82.5 (12)
S2—P1—S1—Pb4.39 (10)C11—C12—C13—C14179.2 (8)
O1—P1—S2—Pb120.3 (2)C9—C8—C13—C122.9 (11)
O2—P1—S2—Pb126.2 (2)O2—C8—C13—C12175.9 (6)
S1—P1—S2—Pb4.41 (11)C9—C8—C13—C14178.8 (7)
O3—P2—S3—Pb133.5 (2)O2—C8—C13—C142.4 (10)
O4—P2—S3—Pb110.9 (4)P2—O3—C15—C1675.9 (8)
O4A—P2—S3—Pb126.8 (9)P2—O3—C15—C20104.6 (7)
S4—P2—S3—Pb11.61 (11)O3—C15—C16—C17178.3 (9)
O3—P2—S4—Pb137.8 (2)C20—C15—C16—C171.1 (13)
O4—P2—S4—Pb105.8 (3)C15—C16—C17—C181.3 (15)
O4A—P2—S4—Pb129.3 (8)C16—C17—C18—C191.1 (16)
S3—P2—S4—Pb12.84 (12)C17—C18—C19—C200.7 (14)
P2—S4—Pb—S2166.17 (8)C18—C19—C20—C150.4 (11)
P2—S4—Pb—S194.80 (8)C18—C19—C20—C21179.1 (8)
P2—S4—Pb—S37.80 (7)C16—C15—C20—C190.7 (10)
P1—S2—Pb—S4100.91 (7)O3—C15—C20—C19178.7 (7)
P1—S2—Pb—S12.88 (7)C16—C15—C20—C21179.4 (7)
P1—S2—Pb—S365.29 (11)O3—C15—C20—C210.1 (10)
P1—S1—Pb—S474.43 (7)O3—P2—O4—C2287.1 (8)
P1—S1—Pb—S22.89 (7)O4A—P2—O4—C2265 (2)
P1—S1—Pb—S3143.73 (7)S3—P2—O4—C22154.3 (7)
P2—S3—Pb—S47.92 (7)S4—P2—O4—C2228.5 (8)
P2—S3—Pb—S245.83 (12)P2—O4—C22—C2357.5 (9)
P2—S3—Pb—S1108.79 (8)P2—O4—C22—C27123.2 (6)
O2—P1—O1—C176.3 (5)O4—C22—C23—C24179.3 (8)
S1—P1—O1—C138.7 (5)C27—C22—C23—C240.0
S2—P1—O1—C1167.0 (4)C22—C23—C24—C250.0
O1—P1—O2—C877.3 (5)C23—C24—C25—C260.0
S1—P1—O2—C8165.2 (4)C24—C25—C26—C270.0
S2—P1—O2—C837.8 (5)C25—C26—C27—C220.0
O4—P2—O3—C1568.9 (6)C25—C26—C27—C28178.4 (8)
O4A—P2—O3—C1577.0 (10)O4—C22—C27—C26179.3 (7)
S3—P2—O3—C1544.6 (6)C23—C22—C27—C260.0
S4—P2—O3—C15172.1 (5)O4—C22—C27—C282.3 (9)
P1—O1—C1—C269.4 (7)C23—C22—C27—C28178.4 (8)
P1—O1—C1—C6114.0 (5)O3—P2—O4A—C22A153.3 (16)
C6—C1—C2—C32.2 (10)O4—P2—O4A—C22A47.8 (19)
O1—C1—C2—C3178.5 (6)S3—P2—O4A—C22A93.1 (16)
C1—C2—C3—C41.4 (11)S4—P2—O4A—C22A47.2 (18)
C2—C3—C4—C50.6 (12)P2—O4A—C22A—C23A69 (2)
C3—C4—C5—C60.6 (12)P2—O4A—C22A—C27A114.4 (17)
C2—C1—C6—C52.0 (9)O4A—C22A—C23A—C24A177 (2)
O1—C1—C6—C5178.5 (5)C27A—C22A—C23A—C24A0.0
C2—C1—C6—C7177.7 (6)C22A—C23A—C24A—C25A0.0
O1—C1—C6—C71.2 (9)C23A—C24A—C25A—C26A0.0
C4—C5—C6—C11.2 (10)C24A—C25A—C26A—C27A0.0
C4—C5—C6—C7178.6 (7)C25A—C26A—C27A—C22A0.0
P1—O2—C8—C963.7 (8)C25A—C26A—C27A—C28A179 (3)
P1—O2—C8—C13117.6 (6)O4A—C22A—C27A—C26A177 (2)
C13—C8—C9—C100.7 (11)C23A—C22A—C27A—C26A0.0
O2—C8—C9—C10178.0 (6)O4A—C22A—C27A—C28A5 (3)
C8—C9—C10—C112.0 (12)C23A—C22A—C27A—C28A179 (3)
C9—C10—C11—C122.3 (13)
Acknowledgements top

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

references
References top

Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.

Bajia, S., Butcher, R. J., Drake, J. E. & Ratnani, R. (2009). Polyhedron, 28, 1556–1560.

Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.

Davidovich, R. L., Stavila, V. & Whitmire, K. H. (2010). Coord. Chem. Rev. 254, 2193–2226.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Gillespie, R. J. & Nyholm, R. S. (1957). Q. Rev. 11, 339–380.

Harrison, Ph. G., Steel, A., Pelizzi, G. & Pellizi, C. (1988). Main Group Met. Chem. 11, 181–204.

Ito, T. (1972). Acta Cryst. B28, 1034–1040.

Ito, T. & Maeda, Y. (2004). Acta Cryst. E60, m1349–m1350.

Larsson, A.-C., Ivanov, A. V., Antzutkin, O. N., Gerasimenko, A. V. & Forsling, W. (2004). Inorg. Chim. Acta, 357, 2510–2518.

Lawton, S. L. & Kokotailo, G. T. (1969). Nature (London), 221, 550–551.

Lawton, S. L. & Kokotailo, G. T. (1972). Inorg. Chem. 11, 363–368.

Maheshwari, S., Drake, J. E., Kori, K., Light, M. E. & Ratnani, R. (2009). Polyhedron, 28, 689–694.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Van Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13–45.

Van Zyl, W. E. & Fackler, J. P. (2000). Phosphorus Sulfur Silicon Relat. Elem. 167, 117–132.