supplementary materials


Acta Cryst. (2013). E69, i2    [ doi:10.1107/S1600536812049884 ]

[beta]-K(VO2)2(PO4)

S. Ezzine Yahmed, M. Ayed, M. F. Zid and A. Driss

Abstract top

A new vanadium oxide, potassium bis(dioxovanadyl) phosphate, [beta]-K(VO2)2(PO4), has been synthesized by a solid-state reaction. In the title compound, the [V2PO8] framework is built up from infinite pyramidal [V2O8][infinity] and [VPO7][infinity] chains linked together by V-O-P bridges, leading to a three-dimensional framework which delimits two types of intersecting tunnels running along [100] and [010] in which the four unique K+ ions, showing coordination numbers of nine and ten, are located.

Comment top

Materials developed in the A—V—X—O systems (where A=Alkali, X= P or As) and having open mixed anionic frameworks (uni, bi, and three-dimensional) have interesting physical properties, especially catalytic (Pierini et al., 2005) and ionic conductivity (Daidouh et al., 1997). This has led to the synthesis, by a solid state reaction, of a new form of divanadium phosphate KV2PO8. The asymmetric unit, (Fig. 1) of the title compound, is built up from four double pyramidal units V2O9 (consisting of distorted vertices-sharing VO5 trigonal-bipyramids encountered in A6V6P6O31 (A= Rb and K (Benhamada et al., 1991; Leclaire & Raveau, 2006)) interconnected by corner-sharing PO4 single tetrahedra. The junction of each kind of V2O9 unit by V–O–V bridges leads to two types of infinite chains with formula (V2O8). The first kind is parallel to the b axis where two successive pairs of pyramids have their apical oxygen atoms pointing towards the same direction (Fig. 2a). The second type is parallel to the a axis (Fig. 3) and two successive pairs of pyramids have their apical oxygen atoms pointing towards opposite directions. The compound can be described as a connection between the (V2O8) chains by vertex sharing of VO5 pentahedra and PO4 tetrahedra. Projections of the structure along the a and b axis show that the VO5 and PO4 polyhedra alternate along the a axis to form infinite chains (VPO7) in which vanadium polyhedra share an oxygen with one neighboring chain, leading to double chains (V2P2O12). Adjacent (V2O8) chains running along b are connected by double chains of vanadyl phosphate via corner sharing. The structure is depicted in (Fig. 4) and (Fig. 5) and can be denoted as a three-dimensional framework with two types of tunnels running along a and b axis where the monovalent cations K+ are located.

The bond valence sums (BVS) calculations using the empirical formula of Brown (Brown & Altermatt, 1985) assuming cations bonds give the values: P1(5.045), P2(4.991), P3(5.013), P4(5.027), V1(5.106), V2(5.066), V3(5.028), V4(5.127), V5(5.056), V6(5.081), V7(5.087), V8(5.115), K1(1.029), K2(0.991), K3(1.031) and K4(1.004) which verify coordination geometries and oxidation states for each atom.

The comparison of our material with those found in the literature reveals the presence of infinite chains (VPO7), (V2P2O12) and (V2O8) in the noncentrosymmetric compound with similar formulation α-KV2PO8 (Berrah et al., 1999). However, two successive pairs of pyramids have their apical oxygen in a trans-position leading to the sequence "cis-trans-trans-cis" (Fig. 2b). This leads to eight-sided tunnels that are smaller than those encountered in our structure. (V2O8) chains similar to those found in our phase where two successive pairs of pyramids have their apical oxygen atoms pointing towards the same direction have already been observed for the ammonium hydrogenophosphate α-NH4VO2PO3OH (Amoros & Le Bail, 1992). Materials K3V3As2O14 (Ezzine et al., 2009) and A2VP2O8 (A = Rb, Cs (Lii & Wang, 1989) and Na, Rb (Daidouh et al., 1998)) also contain chains (VXO7) (X = As or P) whose linkage form infinite layers of type (V2As2O14) and (VP2O8). The junction of these chains along the three directions of the cell edges leads to three-dimensional structures with large tunnels for α-KV2PO8 and K3V3As2O14 compounds. As far as the series of A2VP2O8 (A= Alkali) compounds is concerned, they form by P–O–P bridges two-dimensional structures, characterized by the presence of interlayer space where the cations are located.

Related literature top

For α-K(VO2)2(PO4), see: Berrah et al. (1999). For background to the physico-chemical properties of related compounds, see: Daidouh et al. (1997); Pierini & Lombardo (2005). For details of structurally related compounds, see: Leclaire & Raveau (2006); Amoros & Le Bail (1992); Lii & Wang (1989); Daidouh et al. (1998); Benhamada et al. (1991). For the preparation, see: Ezzine et al. (2009). For bond-valence sums, see: Brown & Altermatt (1985).

Experimental top

In order to obtain a new phosphate isotypic with K3V3As2O14 (Ezzine et al., 2009), KNO3 (Fluka, 60415), NH4VO3 (Riedel-De Haën, 12739) and NH4H2PO4 (Scharlau, AM0335) were first mixed in the molar ratio 3:3:2 and heated at 573 K to decompose the ammonium phosphate and the nitrate. In a second step, the resulting mixture was crushed then heated at 793 K for two days, cooled slowly (5°C/24 h) down to 743 K and finally quenched to room temperature. From the resulting product, well-shaped crystals of various sizes, of satisfactory quality for analysis by X-ray diffraction, were retrieved. A yellow ochre parallelpipedic crystal was chosen from the selection for the determination of cell parameters.

Refinement top

The electron density maximum and minimum in the remaining Fourier differences are acceptable and are located respectively at 0.88 Å from O25 and 0.73 Å from V2.

Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of β-K(VO2)2(PO4). Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes:(i) x+1, y, z; (ii) - x+1, -y+2, -z+1; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+1; (v) x, y, z+1; (vi) x-1, y, z+1; (vii) x, y, z-1.
[Figure 2] Fig. 2. Representation of the first type of infinite chains (V2O8) showing the disposition of apical oxygen atoms: (a) in cis-cis position in β-K(VO2)2(PO4). (b) in cis-cis-trans-trans position in α-K(VO2)2(PO4).
[Figure 3] Fig. 3. Representation of the second type of (V2O8) chains, running along a.
[Figure 4] Fig. 4. Projection of the structure of β-K(VO2)2(PO4) along a showing S shaped tunnels.
[Figure 5] Fig. 5. Projection of the structure of β-K(VO2)2(PO4) along b showing 'Pacman' shaped tunnels.
Potassium bis(dioxovanadyl) phosphate top
Crystal data top
K(VO2)2(PO4)Z = 8
Mr = 299.95F(000) = 1152
Triclinic, P1Dx = 3.020 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.7438 (8) ÅCell parameters from 25 reflections
b = 13.889 (2) Åθ = 10–16°
c = 21.201 (3) ŵ = 3.71 mm1
α = 70.89 (2)°T = 298 K
β = 89.55 (3)°Prism, yellow ochre
γ = 88.66 (3)°0.28 × 0.18 × 0.12 mm
V = 1319.5 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
4828 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 27.0°, θmin = 2.0°
ω/2θ scansh = 61
Absorption correction: ψ scan
(North et al., 1968)
k = 1717
Tmin = 0.447, Tmax = 0.668l = 2727
7567 measured reflections2 standard reflections every 120 min
5673 independent reflections intensity decay: 1.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.045P)2 + 1.4475P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.80 e Å3
5673 reflectionsΔρmin = 0.50 e Å3
434 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0177 (5)
Crystal data top
K(VO2)2(PO4)γ = 88.66 (3)°
Mr = 299.95V = 1319.5 (4) Å3
Triclinic, P1Z = 8
a = 4.7438 (8) ÅMo Kα radiation
b = 13.889 (2) ŵ = 3.71 mm1
c = 21.201 (3) ÅT = 298 K
α = 70.89 (2)°0.28 × 0.18 × 0.12 mm
β = 89.55 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
4828 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.021
Tmin = 0.447, Tmax = 0.668θmax = 27.0°
7567 measured reflections2 standard reflections every 120 min
5673 independent reflections intensity decay: 1.2%
Refinement top
R[F2 > 2σ(F2)] = 0.030Δρmax = 0.80 e Å3
wR(F2) = 0.086Δρmin = 0.50 e Å3
S = 1.08Absolute structure: ?
5673 reflectionsFlack parameter: ?
434 parametersRogers parameter: ?
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.81894 (16)0.82998 (6)0.62044 (4)0.00927 (16)
P20.30877 (16)0.66561 (6)0.38286 (4)0.00846 (16)
P30.69764 (16)0.95394 (6)0.88110 (4)0.00847 (16)
P40.18695 (16)0.55208 (6)0.11864 (4)0.00897 (16)
V10.67895 (11)0.62518 (4)0.74349 (2)0.01025 (12)
V20.20740 (11)0.84522 (4)0.97612 (2)0.00914 (12)
V30.67812 (11)0.86795 (4)0.75923 (3)0.01073 (12)
V40.33078 (11)0.63012 (4)0.24341 (3)0.01087 (12)
V50.79712 (10)0.68009 (4)0.47752 (2)0.00898 (12)
V60.32962 (11)0.87164 (4)0.25925 (3)0.01096 (12)
V70.30088 (11)0.82752 (4)0.52064 (2)0.00904 (12)
V80.70261 (11)0.65479 (4)0.01947 (2)0.00902 (12)
K10.19194 (17)0.53056 (6)0.62537 (4)0.02600 (18)
K20.80918 (17)0.84200 (7)0.12683 (4)0.02642 (18)
K30.25658 (18)0.65377 (7)0.87178 (4)0.02692 (19)
K40.74706 (18)0.97341 (6)0.36973 (4)0.02608 (19)
O10.6015 (5)0.78815 (16)0.46573 (11)0.0130 (4)
O20.4024 (4)0.74851 (16)0.96467 (11)0.0132 (4)
O30.8822 (4)0.93237 (16)0.94288 (10)0.0116 (4)
O40.1257 (4)0.85042 (17)0.59847 (11)0.0146 (4)
O50.1243 (4)0.62663 (16)0.44482 (10)0.0113 (4)
O60.9010 (4)0.75197 (16)0.02434 (11)0.0135 (4)
O70.1026 (5)0.72520 (17)0.52599 (11)0.0135 (4)
O80.8785 (4)0.55572 (16)0.09744 (11)0.0145 (5)
O90.6199 (5)0.65051 (17)0.40334 (11)0.0146 (4)
O100.2347 (5)0.77905 (16)0.34598 (11)0.0143 (5)
O110.3322 (5)0.86573 (18)0.03997 (11)0.0184 (5)
O120.3868 (4)0.94798 (16)0.90171 (11)0.0136 (4)
O130.2543 (5)0.93608 (16)0.16436 (11)0.0129 (4)
O140.6717 (5)0.59606 (18)0.54165 (11)0.0177 (5)
O150.7832 (6)0.71576 (17)0.65851 (11)0.0201 (5)
O160.3734 (4)0.57915 (17)0.05664 (11)0.0141 (4)
O170.7492 (5)0.89548 (16)0.66473 (11)0.0131 (4)
O180.2579 (5)0.59998 (16)0.33811 (11)0.0126 (4)
O190.2327 (6)0.62756 (17)0.15666 (11)0.0196 (5)
O200.1780 (5)0.92122 (18)0.46105 (12)0.0195 (5)
O210.8267 (5)0.62017 (18)0.96030 (12)0.0184 (5)
O220.7748 (5)0.87717 (16)0.84469 (11)0.0143 (5)
O230.6303 (5)0.86329 (17)0.55904 (11)0.0143 (4)
O240.2538 (5)0.44138 (16)0.16220 (11)0.0131 (4)
O250.2320 (5)0.98015 (16)0.27381 (11)0.0174 (5)
O260.7750 (5)0.74426 (16)0.77524 (11)0.0163 (5)
O270.2304 (5)0.75295 (16)0.22901 (11)0.0175 (5)
O280.7767 (5)0.51742 (16)0.72784 (11)0.0166 (5)
O290.3424 (5)0.62895 (19)0.74222 (12)0.0219 (5)
O300.6654 (5)0.8693 (2)0.25991 (13)0.0236 (5)
O310.3413 (5)0.86967 (19)0.76068 (12)0.0215 (5)
O320.6666 (5)0.6285 (2)0.24292 (13)0.0231 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0107 (4)0.0107 (3)0.0072 (3)0.0017 (3)0.0015 (3)0.0039 (3)
P20.0090 (4)0.0101 (3)0.0066 (3)0.0001 (3)0.0001 (3)0.0032 (3)
P30.0086 (4)0.0090 (3)0.0070 (3)0.0001 (3)0.0002 (3)0.0016 (3)
P40.0105 (4)0.0087 (3)0.0069 (3)0.0003 (3)0.0015 (3)0.0013 (3)
V10.0148 (3)0.0087 (2)0.0071 (2)0.00055 (19)0.00053 (19)0.00236 (19)
V20.0078 (2)0.0107 (2)0.0082 (2)0.00032 (18)0.00125 (18)0.00212 (19)
V30.0153 (3)0.0088 (2)0.0081 (2)0.00139 (19)0.00208 (19)0.00273 (19)
V40.0157 (3)0.0089 (2)0.0081 (2)0.00129 (19)0.0007 (2)0.00267 (19)
V50.0072 (2)0.0115 (2)0.0083 (2)0.00063 (18)0.00118 (18)0.00344 (19)
V60.0161 (3)0.0088 (2)0.0082 (2)0.00082 (19)0.0007 (2)0.00290 (19)
V70.0077 (2)0.0114 (2)0.0083 (2)0.00012 (18)0.00159 (18)0.00353 (19)
V80.0081 (2)0.0101 (2)0.0083 (2)0.00074 (18)0.00148 (19)0.00222 (19)
K10.0215 (4)0.0238 (4)0.0267 (4)0.0012 (3)0.0034 (3)0.0002 (3)
K20.0228 (4)0.0352 (4)0.0265 (4)0.0008 (3)0.0044 (3)0.0173 (4)
K30.0252 (4)0.0351 (4)0.0268 (4)0.0088 (3)0.0098 (3)0.0186 (4)
K40.0262 (4)0.0217 (4)0.0252 (4)0.0035 (3)0.0088 (3)0.0003 (3)
O10.0112 (10)0.0162 (11)0.0130 (10)0.0018 (8)0.0012 (8)0.0069 (9)
O20.0106 (10)0.0134 (10)0.0139 (11)0.0001 (8)0.0009 (8)0.0023 (8)
O30.0109 (10)0.0149 (10)0.0085 (10)0.0027 (8)0.0021 (8)0.0032 (8)
O40.0077 (10)0.0244 (12)0.0149 (11)0.0013 (9)0.0013 (8)0.0110 (9)
O50.0090 (10)0.0150 (10)0.0085 (10)0.0021 (8)0.0012 (8)0.0024 (8)
O60.0092 (10)0.0120 (10)0.0169 (11)0.0007 (8)0.0019 (9)0.0014 (8)
O70.0099 (10)0.0176 (11)0.0160 (11)0.0025 (8)0.0016 (9)0.0094 (9)
O80.0083 (10)0.0172 (11)0.0142 (11)0.0006 (8)0.0006 (8)0.0001 (9)
O90.0095 (11)0.0224 (11)0.0156 (11)0.0013 (9)0.0015 (9)0.0114 (9)
O100.0217 (12)0.0102 (10)0.0103 (10)0.0013 (9)0.0003 (9)0.0025 (8)
O110.0184 (12)0.0234 (12)0.0137 (11)0.0025 (9)0.0029 (9)0.0063 (9)
O120.0082 (10)0.0146 (10)0.0137 (11)0.0003 (8)0.0015 (8)0.0011 (8)
O130.0190 (12)0.0105 (10)0.0087 (10)0.0037 (8)0.0014 (9)0.0022 (8)
O140.0149 (11)0.0218 (12)0.0135 (11)0.0046 (9)0.0032 (9)0.0015 (9)
O150.0389 (15)0.0112 (11)0.0105 (11)0.0044 (10)0.0079 (10)0.0040 (9)
O160.0095 (10)0.0193 (11)0.0122 (10)0.0033 (8)0.0012 (8)0.0030 (9)
O170.0187 (12)0.0112 (10)0.0097 (10)0.0000 (8)0.0032 (9)0.0041 (8)
O180.0176 (11)0.0128 (10)0.0078 (10)0.0019 (8)0.0010 (8)0.0037 (8)
O190.0354 (14)0.0116 (11)0.0119 (11)0.0016 (10)0.0066 (10)0.0038 (9)
O200.0195 (12)0.0199 (12)0.0161 (12)0.0051 (9)0.0034 (10)0.0021 (9)
O210.0183 (12)0.0234 (12)0.0150 (11)0.0029 (9)0.0039 (9)0.0085 (9)
O220.0214 (12)0.0105 (10)0.0113 (11)0.0003 (9)0.0010 (9)0.0041 (8)
O230.0105 (11)0.0223 (11)0.0117 (10)0.0019 (9)0.0019 (8)0.0076 (9)
O240.0197 (12)0.0095 (10)0.0090 (10)0.0015 (8)0.0022 (9)0.0017 (8)
O250.0343 (14)0.0103 (10)0.0075 (10)0.0020 (9)0.0023 (9)0.0028 (8)
O260.0294 (13)0.0107 (10)0.0086 (10)0.0004 (9)0.0008 (9)0.0029 (8)
O270.0334 (14)0.0109 (10)0.0075 (10)0.0016 (9)0.0031 (10)0.0017 (8)
O280.0317 (13)0.0099 (10)0.0081 (10)0.0020 (9)0.0023 (9)0.0027 (8)
O290.0166 (12)0.0270 (13)0.0201 (13)0.0027 (10)0.0033 (10)0.0049 (10)
O300.0173 (13)0.0282 (13)0.0248 (13)0.0003 (10)0.0031 (10)0.0082 (11)
O310.0165 (12)0.0269 (13)0.0213 (13)0.0015 (10)0.0030 (10)0.0080 (10)
O320.0155 (12)0.0304 (14)0.0243 (13)0.0037 (10)0.0018 (10)0.0098 (11)
Geometric parameters (Å, º) top
P1—O231.521 (3)V7—O71.695 (2)
P1—O4i1.529 (2)V7—O231.917 (2)
P1—O171.536 (2)V7—O41.955 (2)
P1—O151.539 (2)V7—O12.010 (3)
P2—O51.524 (2)V8—O21vii1.588 (2)
P2—O91.532 (2)V8—O61.694 (2)
P2—O181.539 (2)V8—O161.918 (3)
P2—O101.546 (2)V8—O81.950 (3)
P3—O31.523 (2)V8—O2vii2.005 (3)
P3—O121.531 (2)K1—O18viii2.771 (3)
P3—O13ii1.537 (2)K1—O142.852 (3)
P3—O221.544 (2)K1—O72.856 (3)
P4—O161.525 (3)K1—O28iii2.885 (3)
P4—O8iii1.529 (2)K1—O9iv2.895 (3)
P4—O191.537 (2)K1—O14iii2.996 (3)
P4—O241.539 (2)K1—O32iv3.008 (4)
V1—O291.596 (2)K1—O18iv3.097 (3)
V1—O281.690 (2)K1—O293.287 (3)
V1—O151.899 (3)K2—O13i2.763 (3)
V1—O24iv1.934 (2)K2—O62.866 (3)
V1—O262.041 (2)K2—O112.873 (3)
V2—O11v1.593 (2)K2—O27i2.901 (4)
V2—O21.694 (2)K2—O12ii2.910 (3)
V2—O3iii1.927 (3)K2—O11i3.037 (3)
V2—O121.952 (3)K2—O303.038 (3)
V2—O6vi2.008 (3)K2—O133.124 (3)
V3—O311.598 (2)K2—O323.256 (4)
V3—O261.692 (2)K3—O21iii2.704 (3)
V3—O221.918 (2)K3—O22.802 (3)
V3—O171.941 (2)K3—O24iv2.848 (3)
V3—O25ii2.048 (2)K3—O8iv2.853 (3)
V4—O321.592 (2)K3—O292.903 (3)
V4—O271.689 (2)K3—O24viii2.988 (3)
V4—O191.912 (2)K3—O26iii3.040 (4)
V4—O181.942 (2)K3—O313.181 (4)
V4—O28iv2.014 (2)K3—O263.193 (4)
V5—O141.595 (3)K3—O213.240 (3)
V5—O11.694 (2)K4—O20i2.744 (3)
V5—O5i1.926 (2)K4—O12.806 (3)
V5—O91.952 (2)K4—O4ii2.822 (3)
V5—O7i2.009 (3)K4—O17ii2.889 (3)
V6—O301.593 (3)K4—O31ii2.933 (3)
V6—O251.688 (2)K4—O17ix2.977 (3)
V6—O101.924 (3)K4—O25i3.041 (3)
V6—O131.948 (2)K4—O303.147 (3)
V6—O272.021 (2)K4—O253.171 (3)
V7—O201.590 (3)K4—O203.264 (4)
O23—P1—O4i109.01 (14)O22—V3—O25ii83.48 (11)
O23—P1—O17109.42 (14)O17—V3—O25ii76.99 (11)
O4i—P1—O17106.61 (14)O32—V4—O27105.91 (15)
O23—P1—O15110.17 (15)O32—V4—O19103.89 (15)
O4i—P1—O15109.90 (17)O27—V4—O1995.54 (12)
O17—P1—O15111.63 (13)O32—V4—O18100.53 (14)
O5—P2—O9109.44 (14)O27—V4—O1890.26 (12)
O5—P2—O18108.38 (13)O19—V4—O18152.23 (11)
O9—P2—O18106.84 (14)O32—V4—O28iv105.13 (15)
O5—P2—O10109.41 (14)O27—V4—O28iv148.24 (12)
O9—P2—O10111.43 (16)O19—V4—O28iv83.39 (11)
O18—P2—O10111.26 (13)O18—V4—O28iv77.61 (11)
O3—P3—O12109.42 (13)O14—V5—O1106.78 (13)
O3—P3—O13ii108.56 (14)O14—V5—O5i110.53 (13)
O12—P3—O13ii106.81 (15)O1—V5—O5i142.54 (11)
O3—P3—O22109.33 (14)O14—V5—O9103.24 (12)
O12—P3—O22111.71 (15)O1—V5—O993.29 (12)
O13ii—P3—O22110.93 (13)O5i—V5—O981.56 (10)
O16—P4—O8iii109.06 (13)O14—V5—O7i96.23 (12)
O16—P4—O19109.92 (14)O1—V5—O7i93.05 (11)
O8iii—P4—O19110.26 (15)O5i—V5—O7i79.85 (10)
O16—P4—O24108.94 (14)O9—V5—O7i156.79 (10)
O8iii—P4—O24106.65 (15)O30—V6—O25105.48 (15)
O19—P4—O24111.92 (13)O30—V6—O10103.21 (15)
O29—V1—O28105.95 (15)O25—V6—O1096.97 (11)
O29—V1—O15104.16 (15)O30—V6—O13101.01 (15)
O28—V1—O1595.75 (11)O25—V6—O1390.43 (12)
O29—V1—O24iv100.43 (15)O10—V6—O13151.70 (10)
O28—V1—O24iv90.45 (11)O30—V6—O27103.95 (14)
O15—V1—O24iv151.84 (11)O25—V6—O27149.67 (12)
O29—V1—O26102.98 (14)O10—V6—O2783.24 (10)
O28—V1—O26150.24 (12)O13—V6—O2776.87 (10)
O15—V1—O2683.72 (10)O20—V7—O7107.46 (13)
O24iv—V1—O2677.53 (10)O20—V7—O23111.76 (13)
O11v—V2—O2106.92 (13)O7—V7—O23140.64 (12)
O11v—V2—O3iii110.30 (13)O20—V7—O4101.96 (12)
O2—V2—O3iii142.66 (11)O7—V7—O494.01 (12)
O11v—V2—O12103.25 (12)O23—V7—O481.21 (10)
O2—V2—O1293.04 (11)O20—V7—O195.37 (13)
O3iii—V2—O1281.45 (11)O7—V7—O193.37 (11)
O11v—V2—O6vi96.50 (12)O23—V7—O180.05 (10)
O2—V2—O6vi92.90 (11)O4—V7—O1158.15 (10)
O3iii—V2—O6vi80.19 (10)O21vii—V8—O6107.21 (13)
O12—V2—O6vi156.70 (10)O21vii—V8—O16110.63 (12)
O31—V3—O26105.43 (15)O6—V8—O16142.02 (11)
O31—V3—O22102.93 (14)O21vii—V8—O8102.02 (12)
O26—V3—O2297.24 (12)O6—V8—O893.61 (11)
O31—V3—O17101.01 (14)O16—V8—O881.75 (11)
O26—V3—O1790.49 (12)O21vii—V8—O2vii95.70 (12)
O22—V3—O17151.81 (10)O6—V8—O2vii93.36 (10)
O31—V3—O25ii102.47 (15)O16—V8—O2vii79.98 (10)
O26—V3—O25ii151.14 (12)O8—V8—O2vii158.08 (10)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x, y, z+1; (vi) x1, y, z+1; (vii) x, y, z1; (viii) x, y+1, z+1; (ix) x+2, y+2, z+1.
references
References top

Amoros, P. & Le Bail, A. (1992). J. Solid State Chem. 97, 283–291.

Benhamada, L., Grandin, A., Borel, M. M., Leclaire, A. & Raveau, B. (1991). J. Solid State Chem. 94, 274–280.

Berrah, F., Borel, M. M., Leclaire, A., Daturi, M. & Raveau, B. (1999). J. Solid State Chem. 145, 643–648.

Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.

Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.

Daidouh, A., Veiga, M. L. & Pico, C. (1997). J. Solid State Chem. 130, 28–34.

Daidouh, A., Veiga, M. L. & Pico, C. (1998). Solid State Ionics, 106, 103–112.

Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.

Ezzine, S., Zid, M. F. & Driss, A. (2009). Acta Cryst. E65, i31.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

Leclaire, A. & Raveau, B. (2006). J. Solid State Chem. 179, 205–211.

Lii, K. H. & Wang, S. L. (1989). J. Solid State Chem. 82, 239–246.

Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Pierini, B. T. & Lombardo, E. A. (2005). Mater. Chem. Phys. 92, 197–204.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.