organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 1| January 2013| Pages o116-o117

6,12-Bis(hex­yl­oxy)-5H,11H-indolo[3,2-b]carbazole

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and bLaboratoire de Chimie Moléculaire et Thio-organique, UMR 6507, ENSICAEN, 6 Boulevard Maréchal Juin, 14050 Caen, France
*Correspondence e-mail: detert@uni-mainz.de

(Received 3 December 2012; accepted 12 December 2012; online 19 December 2012)

The title compound, C30H36N2O2, was prepared in a twofold Cadogan cyclization. The mol­ecule is located about a center of inversion. The indolocarbazole skeleton is essentially planar [maximum deviation = 0.028 (2) Å], the C—N bond lengths are nearly identical and the C—C bond lengths of the pyrrole unit are significantly longer than those of the benzene subunits.

Related literature

For the synthesis and structure of the starting material, see: Wrobel et al. (2012[Wrobel, N., Schollmeyer, D. & Detert, H. (2012). Acta Cryst. E68, o1022.]). For the Cadogan reaction, see: Cadogan (1962[Cadogan, J. I. G. (1962). Q. Rev. 16, 208-239.], 1969[Cadogan, J. I. G. (1969). Synthesis, pp. 11-17.]). For other approaches to Indolocarbazoles, see: Knölker & Reddy (2002[Knölker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 39, 6521-6527.]); Katritzky et al. (1995[Katritzky, A. R., Li, J. & Stevens, C. V. (1995). J. Org. Chem. 60, 3401-3404.]). For electronic properties of indolocarbazoles, see: Hu et al. (1999[Hu, N.-X., Xie, S., Popovic, Z., Ong, B. & Hor, A.-M. (1999). J. Am. Chem. Soc. 121, 5097-5098.]); Wakim et al. (2004[Wakim, S., Bouchard, J., Simard, M., Drolet, N., Tao, Y. & Leclerc, M. (2004). Chem. Mater. 16, 4386-4388.]); Nemkovich et al. (2009[Nemkovich, N. A., Kruchenok, Yu. V., Sobchuk, A. N., Detert, H., Wrobel, N. & Chernyavskii, E. A. (2009). Opt. Spectrosc. 107, 275-281.]). For heteroanalogous carbazoles, see: Dassonneville et al. (2011[Dassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836-2844.]); Nissen & Detert (2011[Nissen, F. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2845-2854.]); Letessier & Detert (2012[Letessier, J. & Detert, H. (2012). Synthesis, 44, 290-296.]); Letessier et al. (2012[Letessier, J., Detert, H., Götz, K. & Opatz, T. (2012). Synthesis, 44, 747-754.]). For conjugated oligomers see: Detert et al. (2010[Detert, H., Lehmann, M. & Meier, H. (2010). Materials, 3, 3218-3330.]).

[Scheme 1]

Experimental

Crystal data
  • C30H36N2O2

  • Mr = 456.61

  • Monoclinic, P 21 /c

  • a = 13.7136 (4) Å

  • b = 5.5026 (4) Å

  • c = 16.5563 (5) Å

  • β = 92.665 (3)°

  • V = 1247.99 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.59 mm−1

  • T = 298 K

  • 0.48 × 0.26 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 2466 measured reflections

  • 2363 independent reflections

  • 1993 reflections with I > 2σ(I)

  • Rint = 0.052

  • 3 standard reflections every 60 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.181

  • S = 1.06

  • 2363 reflections

  • 168 parameters

  • Only H-atom displacement parameters refined

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a larger project on the synthesis of carbazoles (Letessier & Detert, 2012) and carbolines (Dassonneville et al. 2011; Nissen & Detert, 2011; Letessier et al. 2012); indolo-annulated carbazoles were prepared for optoelectronic applications. The title compounds adopts a centrosymmetric geometry. The pentacyclic indolocarbazole framework is essentially planar with maximum deviations of 0.028 (2) Å from the mean plane. The dihedral angle between the mean plane of the aromatic system and and the adjacend O-alkyl unit (C3—C1—O1—C12) is -101.5 (2)° and the all-trans configured hexyl chain lies in a plane parallel to that of the aromatic system. Whereas the O11—C12—C13—C14 unit adopts a gauche conformation (torsion angle = -71.5 (3)°) the tail of the hexyl chain is nearly planar (dihedral angles -171.3 (2)°, 175.0 (2)°, 176.7 (2)°). The C—N bonds in the pyrrole units are nearly identical. The C—C bonds in the pyrrole subunit (C2—C3 = 1.418 (3) Å, C3—C4 1.448 (3) Å, C4—C9 1.406 (3) Å) are significantly longer than those of the benzene units (C4—C5 = 1.402 (3) Å, C5—C6 = 1.383 (3) Å, C6—C7 = 1.386 (3) Å, C7—C8 = 1.385 (3) Å, C8—C9 = 1.392 (3) Å, C1—C2 = 1.388 (3) Å, C1—C3 = 1.395 (3) Å). The hexyloxy chains are interdigitated.

Related literature top

For the synthesis and structure of the starting material, see: Wrobel et al. (2012). For the Cadogan reaction, see: Cadogan (1962, 1969). For other approaches to Indolocarbazoles, see: Knölker & Reddy (2002); Katritzky et al. (1995). For electronic properties of indolocarbazoles, see: Hu et al. (1999); Wakim et al. (2004); Nemkovich et al. (2009). For heteroanalogous carbazoles, see: Dassonneville et al. (2011); Nissen & Detert (2011); Letessier & Detert (2012); Letessier et al. (2012). For conjugated oligomers see: Detert et al. (2010).

Experimental top

6,12-Dihexyloxyindolo[3,2-b]carbazole was prepared from 1,4-dihexyloxy-2,5-bis(2-nitrophenyl)benzene (Wrobel et al. 2012) via Cadogan cyclization. In a microwave reactor tube 400 mg of the dinitro-compound were mixed with triethyl phosphite (4 ml) and irradiated (300 W, 483 K) for 15 min. The cooled mixture was dissolved in ethyl acetate (50 ml), and the same amount of hydrochloric acid (6 N) was added and the mixture heated for 3 h to reflux. After dilution with water, the product was extracted with dichloromethane (3x), the pooled organic solutions were washed with brine, dried (MgSO4), and concentrated. Purification by column chromatography (SiO2, petroleum ether/ethyl acetate = 9/1 (v/v), Rf = 0.40). Yield: 213 mg (61%) of an off-white solid with m.p. = 422–424 K. Single crystals were obtained by slow evaporation of a solution of the title compound in chloroform/ethanol (5/1).

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions (methyl H atoms allowed to rotate but not to tip) with C—H = 0.93 Å for aromatic, 0.97 Å for methylene and 0.96 Å for methyl H atoms and were refined in the riding-model approximation with a common isotropic displacement parameters for those H atoms connected to the same C atom. The N—H atom was located in the difference Fourier map and were refined using a riding model additional allowing drifting along the N–H vector.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: i = 1 - x,1 - y,1 - z.
6,12-Bis(hexyloxy)-5H,11H-indolo[3,2-b]carbazole top
Crystal data top
C30H36N2O2F(000) = 492
Mr = 456.61Dx = 1.215 Mg m3
Monoclinic, P21/cMelting point: 423 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54178 Å
a = 13.7136 (4) ÅCell parameters from 25 reflections
b = 5.5026 (4) Åθ = 35–52°
c = 16.5563 (5) ŵ = 0.59 mm1
β = 92.665 (3)°T = 298 K
V = 1247.99 (10) Å3Needle, colourless
Z = 20.48 × 0.26 × 0.18 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.052
Radiation source: rotating anodeθmax = 70.0°, θmin = 3.2°
Graphite monochromatorh = 016
ω/2θ scansk = 60
2466 measured reflectionsl = 2020
2363 independent reflections3 standard reflections every 60 min
1993 reflections with I > 2σ(I) intensity decay: 5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Only H-atom displacement parameters refined
wR(F2) = 0.181 w = 1/[σ2(Fo2) + (0.0992P)2 + 0.4797P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2363 reflectionsΔρmax = 0.26 e Å3
168 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0083 (12)
Crystal data top
C30H36N2O2V = 1247.99 (10) Å3
Mr = 456.61Z = 2
Monoclinic, P21/cCu Kα radiation
a = 13.7136 (4) ŵ = 0.59 mm1
b = 5.5026 (4) ÅT = 298 K
c = 16.5563 (5) Å0.48 × 0.26 × 0.18 mm
β = 92.665 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.052
2466 measured reflections3 standard reflections every 60 min
2363 independent reflections intensity decay: 5%
1993 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.181Only H-atom displacement parameters refined
S = 1.06Δρmax = 0.26 e Å3
2363 reflectionsΔρmin = 0.29 e Å3
168 parameters
Special details top

Experimental. H-NMR (400 MHz, CDCl3): 10.94 (s, 2 H, NH), 8.20 (d, J = 7.7 Hz, 2 H), 7.49 (d, J = 8.1 Hz, 2 H), 7.38 (dt, J = 7.6 Hz, JX= 1.2 Hz, 2 H), 7.12 (dt, J = 7.4 Hz, JX= 0.9 Hz, 2 H), 4.25 (t, J = 7.0 Hz, 4 H, OCH2), 1.98 (m, 4 H, β-CH2), 1.56 - 1.31 (m, 12 H), 0.87 (m, 6 H, CH3).

C-NMR (75 MHz, CDCl3): 140.9 (s), 133.7 (s), 127.7 (s), 125.4 (d), 122.0 (d), 121.7 (s), 118.1 (d), 116.4 (s), 110.8 (d), 72.7 (t), 31.3 (t), 30.0 (t), 25.3 (t), 22.2 (t), 14.0 (q).

IR (ATR) 3435, 3292, 2954, 2924, 2909, 2863, 2357, 1916, 1886, 1776, 1615, 1539, 1455, 1403, 1383, 1334, 1298, m1251, 1215, 1149, 1123, 1074, 1049, 1028, 1006, 983, 916 cm-1.

MS (EI): 456 (59%) [M]+; 187 (100%) [M-2 C6H12]+

UV-Vis (dichloromethane): λ = 377 nm (log ε = 3.82); 394 nm (log ε = 3.84); Fluorescence: 407 nm (dichloromethane).

Combustion analysis: calc. for C30H36N2O2: C: 78.91%, H: 7.95%, N: 6.13%. Found: C: 78.56%, H: 8.04%, N: 6.09%.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.42601 (13)0.3175 (3)0.48922 (12)0.0434 (5)
C20.49063 (13)0.3189 (3)0.55632 (12)0.0433 (5)
C30.43593 (12)0.5015 (3)0.43222 (12)0.0430 (5)
C40.38310 (13)0.5621 (4)0.35713 (12)0.0442 (5)
C50.30437 (14)0.4564 (4)0.31300 (13)0.0501 (5)
H50.27520.31540.33140.050 (6)*
C60.27074 (16)0.5650 (5)0.24173 (14)0.0587 (6)
H60.21820.49690.21220.068 (7)*
C70.31424 (17)0.7740 (5)0.21368 (14)0.0607 (6)
H70.29020.84330.16550.078 (8)*
C80.39253 (16)0.8825 (4)0.25545 (13)0.0545 (6)
H80.42161.02230.23610.060 (7)*
C90.42607 (13)0.7741 (4)0.32748 (12)0.0449 (5)
N100.50337 (11)0.8415 (3)0.37876 (10)0.0463 (5)
H100.5328 (10)0.985 (5)0.37714 (11)0.067 (7)*
O110.35653 (9)0.1369 (2)0.47790 (8)0.0478 (4)
C120.27228 (15)0.1745 (4)0.52366 (14)0.0552 (6)
H12A0.23910.32200.50580.071 (5)*
H12B0.29140.19200.58050.071 (5)*
C130.20475 (16)0.0403 (5)0.51188 (14)0.0613 (6)
H13A0.24230.18770.52160.086 (6)*
H13B0.15590.03260.55230.086 (6)*
C140.15331 (16)0.0584 (4)0.42985 (14)0.0577 (6)
H14A0.20090.09300.38990.071 (5)*
H14B0.12330.09680.41630.071 (5)*
C150.07519 (17)0.2551 (5)0.42592 (15)0.0627 (6)
H15A0.10650.41140.43520.088 (7)*
H15B0.03150.22830.46940.088 (7)*
C160.01583 (19)0.2668 (6)0.34785 (17)0.0729 (8)
H16A0.05880.30370.30460.131 (10)*
H16B0.01280.10830.33690.131 (10)*
C170.0645 (2)0.4534 (6)0.34732 (18)0.0794 (8)
H17A0.10120.44700.29650.114 (7)*
H17B0.10700.41980.39050.114 (7)*
H17C0.03660.61230.35460.114 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0352 (9)0.0377 (10)0.0578 (11)0.0060 (7)0.0076 (8)0.0050 (8)
C20.0374 (9)0.0390 (10)0.0539 (11)0.0025 (8)0.0068 (8)0.0003 (8)
C30.0357 (9)0.0399 (10)0.0537 (11)0.0016 (8)0.0051 (8)0.0040 (8)
C40.0387 (9)0.0418 (10)0.0526 (11)0.0013 (7)0.0058 (8)0.0055 (8)
C50.0436 (10)0.0495 (11)0.0571 (12)0.0043 (9)0.0004 (9)0.0048 (9)
C60.0502 (12)0.0659 (14)0.0593 (13)0.0025 (10)0.0070 (10)0.0077 (11)
C70.0572 (12)0.0666 (15)0.0577 (13)0.0078 (11)0.0028 (10)0.0035 (11)
C80.0527 (12)0.0503 (12)0.0608 (13)0.0037 (9)0.0051 (9)0.0057 (10)
C90.0394 (9)0.0425 (10)0.0531 (11)0.0015 (8)0.0052 (8)0.0030 (8)
N100.0436 (9)0.0399 (9)0.0554 (10)0.0058 (7)0.0031 (7)0.0018 (7)
O110.0406 (7)0.0415 (8)0.0618 (9)0.0100 (6)0.0071 (6)0.0094 (6)
C120.0434 (11)0.0580 (13)0.0650 (13)0.0121 (10)0.0104 (9)0.0111 (10)
C130.0526 (12)0.0632 (14)0.0683 (14)0.0213 (11)0.0049 (10)0.0022 (11)
C140.0501 (12)0.0532 (13)0.0697 (14)0.0101 (10)0.0003 (10)0.0028 (10)
C150.0562 (13)0.0605 (14)0.0710 (15)0.0148 (11)0.0016 (11)0.0019 (11)
C160.0620 (14)0.0834 (18)0.0731 (16)0.0141 (13)0.0005 (12)0.0021 (14)
C170.0616 (14)0.087 (2)0.0886 (19)0.0149 (14)0.0026 (13)0.0178 (16)
Geometric parameters (Å, º) top
C1—O111.383 (2)O11—C121.426 (2)
C1—C21.388 (3)C12—C131.508 (3)
C1—C31.395 (3)C12—H12A0.9700
C2—N10i1.390 (3)C12—H12B0.9700
C2—C3i1.418 (3)C13—C141.504 (3)
C3—C2i1.418 (3)C13—H13A0.9700
C3—C41.448 (3)C13—H13B0.9700
C4—C51.402 (3)C14—C151.522 (3)
C4—C91.406 (3)C14—H14A0.9700
C5—C61.383 (3)C14—H14B0.9700
C5—H50.9300C15—C161.496 (4)
C6—C71.386 (3)C15—H15A0.9700
C6—H60.9300C15—H15B0.9700
C7—C81.385 (3)C16—C171.506 (4)
C7—H70.9300C16—H16A0.9700
C8—C91.392 (3)C16—H16B0.9700
C8—H80.9300C17—H17A0.9600
C9—N101.378 (2)C17—H17B0.9600
N10—C2i1.390 (3)C17—H17C0.9600
N10—H100.89 (3)
O11—C1—C2121.48 (17)O11—C12—H12B109.9
O11—C1—C3121.19 (18)C13—C12—H12B109.9
C2—C1—C3117.30 (17)H12A—C12—H12B108.3
C1—C2—N10i128.88 (17)C14—C13—C12115.3 (2)
C1—C2—C3i122.28 (18)C14—C13—H13A108.4
N10i—C2—C3i108.84 (17)C12—C13—H13A108.4
C1—C3—C2i120.43 (18)C14—C13—H13B108.4
C1—C3—C4133.40 (17)C12—C13—H13B108.4
C2i—C3—C4106.16 (16)H13A—C13—H13B107.5
C5—C4—C9119.18 (19)C13—C14—C15112.67 (19)
C5—C4—C3133.98 (19)C13—C14—H14A109.1
C9—C4—C3106.84 (16)C15—C14—H14A109.1
C6—C5—C4118.9 (2)C13—C14—H14B109.1
C6—C5—H5120.5C15—C14—H14B109.1
C4—C5—H5120.5H14A—C14—H14B107.8
C5—C6—C7120.9 (2)C16—C15—C14114.9 (2)
C5—C6—H6119.6C16—C15—H15A108.5
C7—C6—H6119.6C14—C15—H15A108.5
C8—C7—C6121.7 (2)C16—C15—H15B108.5
C8—C7—H7119.1C14—C15—H15B108.5
C6—C7—H7119.1H15A—C15—H15B107.5
C7—C8—C9117.4 (2)C15—C16—C17113.8 (2)
C7—C8—H8121.3C15—C16—H16A108.8
C9—C8—H8121.3C17—C16—H16A108.8
N10—C9—C8128.81 (19)C15—C16—H16B108.8
N10—C9—C4109.33 (17)C17—C16—H16B108.8
C8—C9—C4121.83 (19)H16A—C16—H16B107.7
C9—N10—C2i108.77 (16)C16—C17—H17A109.5
C9—N10—H10123.97 (11)C16—C17—H17B109.5
C2i—N10—H10125.27 (11)H17A—C17—H17B109.5
C1—O11—C12113.19 (14)C16—C17—H17C109.5
O11—C12—C13108.99 (18)H17A—C17—H17C109.5
O11—C12—H12A109.9H17B—C17—H17C109.5
C13—C12—H12A109.9
O11—C1—C2—N10i1.9 (3)C6—C7—C8—C90.3 (3)
C3—C1—C2—N10i179.96 (18)C7—C8—C9—N10178.2 (2)
O11—C1—C2—C3i178.17 (16)C7—C8—C9—C40.3 (3)
C3—C1—C2—C3i0.2 (3)C5—C4—C9—N10178.17 (17)
O11—C1—C3—C2i178.18 (16)C3—C4—C9—N101.7 (2)
C2—C1—C3—C2i0.2 (3)C5—C4—C9—C80.1 (3)
O11—C1—C3—C43.1 (3)C3—C4—C9—C8179.96 (17)
C2—C1—C3—C4178.89 (19)C8—C9—N10—C2i179.61 (19)
C1—C3—C4—C51.8 (4)C4—C9—N10—C2i2.3 (2)
C2i—C3—C4—C5179.4 (2)C2—C1—O11—C1280.5 (2)
C1—C3—C4—C9178.37 (19)C3—C1—O11—C12101.5 (2)
C2i—C3—C4—C90.5 (2)C1—O11—C12—C13175.89 (17)
C9—C4—C5—C60.5 (3)O11—C12—C13—C1471.5 (3)
C3—C4—C5—C6179.7 (2)C12—C13—C14—C15171.3 (2)
C4—C5—C6—C70.5 (3)C13—C14—C15—C16175.0 (2)
C5—C6—C7—C80.1 (4)C14—C15—C16—C17176.7 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC30H36N2O2
Mr456.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.7136 (4), 5.5026 (4), 16.5563 (5)
β (°) 92.665 (3)
V3)1247.99 (10)
Z2
Radiation typeCu Kα
µ (mm1)0.59
Crystal size (mm)0.48 × 0.26 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2466, 2363, 1993
Rint0.052
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.181, 1.06
No. of reflections2363
No. of parameters168
H-atom treatmentOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.26, 0.29

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful to Heinz Kolshorn for helpful discussions.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals
First citationCadogan, J. I. G. (1962). Q. Rev. 16, 208–239.  CrossRef CAS Web of Science
First citationCadogan, J. I. G. (1969). Synthesis, pp. 11–17.  CrossRef
First citationDassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836–2844.  Web of Science CSD CrossRef
First citationDetert, H., Lehmann, M. & Meier, H. (2010). Materials, 3, 3218–3330.  Web of Science CrossRef CAS
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.
First citationHu, N.-X., Xie, S., Popovic, Z., Ong, B. & Hor, A.-M. (1999). J. Am. Chem. Soc. 121, 5097–5098.  Web of Science CSD CrossRef CAS
First citationKatritzky, A. R., Li, J. & Stevens, C. V. (1995). J. Org. Chem. 60, 3401–3404.  CrossRef CAS Web of Science
First citationKnölker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 39, 6521–6527.
First citationLetessier, J. & Detert, H. (2012). Synthesis, 44, 290–296.  CAS
First citationLetessier, J., Detert, H., Götz, K. & Opatz, T. (2012). Synthesis, 44, 747–754.  CAS
First citationNemkovich, N. A., Kruchenok, Yu. V., Sobchuk, A. N., Detert, H., Wrobel, N. & Chernyavskii, E. A. (2009). Opt. Spectrosc. 107, 275–281.  Web of Science CrossRef CAS
First citationNissen, F. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2845–2854.  Web of Science CSD CrossRef
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationWakim, S., Bouchard, J., Simard, M., Drolet, N., Tao, Y. & Leclerc, M. (2004). Chem. Mater. 16, 4386–4388.  Web of Science CSD CrossRef CAS
First citationWrobel, N., Schollmeyer, D. & Detert, H. (2012). Acta Cryst. E68, o1022.  CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 1| January 2013| Pages o116-o117
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds