organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-1-Chloro-1-[2-(2-nitro­phen­yl)hydrazinyl­­idene]propan-2-one

aChemistry Department, Faculty of Science, Islamic University of Gaza, PO Box 108, Gaza, Palestine, bDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany, and cManchester Institute of Biotechnology, School of Chemistry and EPS, The University of Manchester, Manchester M1 7DN, England
*Correspondence e-mail: john.m.gardiner@manchester.ac.uk

(Received 14 September 2012; accepted 5 December 2012; online 12 December 2012)

The title mol­ecule, C9H8ClN3O3, lies on a mirror plane. Intra­molecular N—H⋯O and N—H⋯Cl hydrogen bonds occur. One of the nitro O atoms is disordered (site occupancy ratio = 0.40:0.10).

Related literature

For details of the synthesis and for the importance of hydrazonoyl halides in organic synthesis and their biological activity and metabolism, see: Awadallah et al. (2006[Awadallah, A. M., Seppelt, K. & Shorafa, H. (2006). Tetrahedron, 62, 7744-7746.], 2008[Awadallah, A. & Zahra, J. (2008). Molecules, 13, 170-176.]); Budarina et al. (2007[Budarina, E. V., Dolgushina, T. S., Petrov, M. L., Labeish, N. N., Koltsov, A. A. & Belskii, K. (2007). Russ. J. Org. Chem. 43, 1516-1525.]); Shawalia et al. (2009[Shawalia, A. S. & Samy, N. A. (2009). The Open Bioactive Compd J. 2, 8-16.]); Thaher et al. (2002[Thaher, B. A., Zahra, J. A. & El-Abadelah, M. M. (2002). J. Heterocycl. Chem. 39, 901-904.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8ClN3O3

  • Mr = 241.63

  • Orthorhombic, P n m a

  • a = 14.1344 (10) Å

  • b = 6.5420 (5) Å

  • c = 11.3748 (8) Å

  • V = 1051.80 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 173 K

  • 0.25 × 0.13 × 0.05 mm

Data collection
  • Bruker APEXII diffractometer

  • 6908 measured reflections

  • 1365 independent reflections

  • 1003 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.121

  • S = 1.05

  • 1365 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10⋯Cl1 0.93 2.44 2.912 (2) 111
N10—H10⋯O8 0.93 2.00 2.616 (3) 122

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Hydrozonyl halides are considered as an important precursor in organic synthesis. They have been used extensively as starting material for in situ generation of 1,3-dipoles which in turn can be reacted with a wide range of organic species to generate five and six membered heterocyclic ring compounds. The molecule has two intermolecular NH···O and NH···Cl hydrogen bonds (Table 1) and distance between the molecules is 3.2710 (1) Å. The ring centers are ~2.87 Å apart. The packing is characterized by parallel molecules (perpendicular distance between the centre of gravity of the aromatic rings 3.2710 (1) Å). The molecule is planar and in order to calculate the distance a plane is required to be defined through a set of atoms (phenyl rings) and the distance of any atom of the nearest symmetry related molecules to this plane is then calculated. The distance between the symmetrical related phenyl rings is 3.2710 (1) Å but due to the slippage of centres of gravity of the rings (2.866 Å) there is no π-π interaction between the two rings.

Related literature top

For details of the synthesis and for the importance of hydrazonoyl halides in organic synthesis and their biological activity and metabolism, see: Awadallah et al. (2006, 2008); Budarina et al. (2007); Shawalia et al. (2009); Thaher et al. (2002).

Experimental top

2-Nitroaniline (0.1 mol) was dissolved in cold aqueous hydrochloric acid (80 ml, 5 N). To this solution was added dropwise a solution of sodium nitrite (7.6 g, 0.1 mol) in water (25 ml) with efficient stirring at 273–278 K. Stirring was continued for 20–30 min. The resulting freshly prepared solution of 2-nitrobenzendiazonium chloride was poured into a vigorously stirred cold solution (268 K) of 3-chloroacetylacetone (13.5 g, 0.1 mol) in pyridine/ water (160 ml 1:1 v/v). Stirring was continued until a solid precipitate was formed (10–20 min.). The reaction mixture was then diluted with cold water (200 ml), the solid product formed was collected, washed several times with cold water, dried and washed with ethanol. A small amount of the product was dissolved in DMF and left at room temperature for 2 days. Yellow needle crystals were isolated, m.p. 393 K.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). Hydrogen atoms attached to nitrogen were located in diff. Fourier maps. All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom). The NO2 group is disorderd where one oxygen atom just off the mirror plane has two positions with relative site occupancies set to 0.4, (O9) and 0.1 (O9B) which generate a further two positions (their mirror images) with the same occupancies.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size. Hydrogen bonds and bonds to disordered oxygen atom O9 are shown with dashed lines.
(Z)-1-Chloro-1-[2-(2-nitrophenyl)hydrazinylidene]propan-2-one top
Crystal data top
C9H8ClN3O3F(000) = 496
Mr = 241.63Dx = 1.526 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1147 reflections
a = 14.1344 (10) Åθ = 2.3–25.8°
b = 6.5420 (5) ŵ = 0.36 mm1
c = 11.3748 (8) ÅT = 173 K
V = 1051.80 (13) Å3Needle, yellow
Z = 40.25 × 0.13 × 0.05 mm
Data collection top
Bruker APEXII
diffractometer
1003 reflections with I > 2σ(I)
Radiation source: sealed TubeRint = 0.045
Graphite monochromatorθmax = 27.9°, θmin = 2.3°
CCD scanh = 1818
6908 measured reflectionsk = 88
1365 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.198P]
where P = (Fo2 + 2Fc2)/3
1365 reflections(Δ/σ)max = 0.001
109 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C9H8ClN3O3V = 1051.80 (13) Å3
Mr = 241.63Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 14.1344 (10) ŵ = 0.36 mm1
b = 6.5420 (5) ÅT = 173 K
c = 11.3748 (8) Å0.25 × 0.13 × 0.05 mm
Data collection top
Bruker APEXII
diffractometer
1003 reflections with I > 2σ(I)
6908 measured reflectionsRint = 0.045
1365 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.05Δρmax = 0.58 e Å3
1365 reflectionsΔρmin = 0.28 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.17306 (5)0.25000.30944 (6)0.0416 (3)
C10.00994 (17)0.25000.0079 (2)0.0227 (5)
C20.02943 (17)0.25000.1054 (2)0.0240 (5)
C30.02668 (19)0.25000.2057 (2)0.0276 (6)
H30.00120.25000.27980.033*
C40.12361 (18)0.25000.1949 (2)0.0294 (6)
H40.16170.25000.26160.035*
C50.16419 (17)0.25000.0832 (2)0.0302 (6)
H50.22970.25000.07590.036*
C60.10892 (18)0.25000.0161 (2)0.0268 (6)
H60.13750.25000.08980.032*
N70.13162 (16)0.25000.1243 (2)0.0357 (6)
O80.18551 (13)0.25000.04010 (17)0.0413 (5)
O90.1605 (11)0.2922 (10)0.2234 (15)0.031 (9)0.40
O9B0.156 (5)0.135 (13)0.225 (6)0.033 (15)0.10
N100.04475 (14)0.25000.10920 (17)0.0270 (5)
H100.11060.25000.10910.040*
N110.00142 (15)0.25000.21389 (18)0.0259 (5)
C120.05021 (18)0.25000.3081 (2)0.0277 (6)
C130.0018 (2)0.25000.4244 (2)0.0362 (7)
O140.04865 (17)0.25000.51438 (17)0.0502 (6)
C150.1042 (2)0.25000.4226 (3)0.0517 (9)
H15A0.12740.25000.50190.078*
H15B0.12650.13020.38260.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0303 (4)0.0640 (5)0.0305 (4)0.0000.0087 (3)0.000
C10.0224 (12)0.0260 (13)0.0198 (11)0.0000.0032 (9)0.000
C20.0186 (11)0.0320 (14)0.0215 (12)0.0000.0008 (9)0.000
C30.0321 (13)0.0315 (14)0.0192 (12)0.0000.0016 (10)0.000
C40.0270 (13)0.0376 (15)0.0236 (13)0.0000.0081 (11)0.000
C50.0196 (11)0.0413 (16)0.0297 (14)0.0000.0047 (10)0.000
C60.0234 (12)0.0373 (15)0.0197 (12)0.0000.0029 (10)0.000
N70.0293 (12)0.0544 (16)0.0235 (12)0.0000.0018 (10)0.000
O80.0236 (10)0.0659 (15)0.0344 (11)0.0000.0027 (9)0.000
O90.031 (2)0.03 (3)0.028 (2)0.002 (5)0.0129 (16)0.006 (6)
O9B0.040 (10)0.03 (4)0.027 (8)0.010 (18)0.001 (7)0.016 (19)
N100.0214 (10)0.0401 (13)0.0194 (10)0.0000.0004 (8)0.000
N110.0265 (11)0.0307 (12)0.0206 (10)0.0000.0007 (9)0.000
C120.0277 (13)0.0352 (15)0.0203 (13)0.0000.0011 (10)0.000
C130.0430 (16)0.0457 (18)0.0199 (12)0.0000.0012 (12)0.000
O140.0572 (14)0.0749 (17)0.0186 (10)0.0000.0033 (10)0.000
C150.0446 (18)0.079 (3)0.0315 (17)0.0000.0111 (15)0.000
Geometric parameters (Å, º) top
Cl1—C121.736 (3)N7—O91.230 (16)
C1—N101.388 (3)N7—O9i1.230 (16)
C1—C61.402 (3)N7—O9B1.42 (6)
C1—C21.403 (3)N7—O9Bi1.42 (6)
C2—C31.390 (3)O9—O9i0.553 (13)
C2—N71.460 (3)O9B—O9Bi1.50 (17)
C3—C41.376 (4)N10—N111.339 (3)
C3—H30.9300N10—H100.9315
C4—C51.394 (4)N11—C121.275 (3)
C4—H40.9300C12—C131.489 (4)
C5—C61.374 (3)C13—O141.220 (3)
C5—H50.9300C13—C151.497 (4)
C6—H60.9300C15—H15A0.9600
N7—O81.224 (3)C15—H15B0.9600
N10—C1—C6120.0 (2)O8—N7—O9Bi119 (3)
N10—C1—C2122.8 (2)O9—N7—O9Bi19 (3)
C6—C1—C2117.2 (2)O9i—N7—O9Bi45 (4)
C3—C2—C1121.8 (2)O9B—N7—O9Bi64 (7)
C3—C2—N7116.3 (2)O8—N7—C2120.0 (2)
C1—C2—N7121.8 (2)O9—N7—C2117.6 (8)
C4—C3—C2119.7 (2)O9i—N7—C2117.6 (8)
C4—C3—H3120.2O9B—N7—C2111 (2)
C2—C3—H3120.2O9Bi—N7—C2111 (2)
C3—C4—C5119.4 (2)O9i—O9—N777.0 (3)
C3—C4—H4120.3N7—O9B—O9Bi58 (4)
C5—C4—H4120.3N11—N10—C1118.9 (2)
C6—C5—C4121.1 (2)N11—N10—H10117.3
C6—C5—H5119.5C1—N10—H10123.8
C4—C5—H5119.5C12—N11—N10120.0 (2)
C5—C6—C1120.8 (2)N11—C12—C13119.9 (2)
C5—C6—H6119.6N11—C12—Cl1123.26 (19)
C1—C6—H6119.6C13—C12—Cl1116.89 (18)
O8—N7—O9120.7 (8)O14—C13—C12119.7 (3)
O8—N7—O9i120.7 (8)O14—C13—C15123.7 (3)
O9—N7—O9i26.0 (6)C12—C13—C15116.6 (2)
O8—N7—O9B119 (3)C13—C15—H15A109.2
O9—N7—O9B45 (4)C13—C15—H15B109.6
O9i—N7—O9B19 (3)H15A—C15—H15B109.5
N10—C1—C2—C3180.0C3—C2—N7—O9Bi35 (4)
C6—C1—C2—C30.0C1—C2—N7—O9Bi145 (4)
N10—C1—C2—N70.0O8—N7—O9—O9i97.9 (3)
C6—C1—C2—N7180.0O9B—N7—O9—O9i4 (5)
C1—C2—C3—C40.0O9Bi—N7—O9—O9i172 (11)
N7—C2—C3—C4180.0C2—N7—O9—O9i96.9 (3)
C2—C3—C4—C50.0O8—N7—O9B—O9Bi110 (2)
C3—C4—C5—C60.0O9—N7—O9B—O9Bi4 (6)
C4—C5—C6—C10.0O9i—N7—O9B—O9Bi9 (13)
N10—C1—C6—C5180.0C2—N7—O9B—O9Bi104 (3)
C2—C1—C6—C50.0C6—C1—N10—N110.0
C3—C2—N7—O8180.0C2—C1—N10—N11180.0
C1—C2—N7—O80.0C1—N10—N11—C12180.0
C3—C2—N7—O914.7 (4)N10—N11—C12—C13180.0
C1—C2—N7—O9165.3 (4)N10—N11—C12—Cl10.0
C3—C2—N7—O9i14.7 (4)N11—C12—C13—O14180.0
C1—C2—N7—O9i165.3 (4)Cl1—C12—C13—O140.0
C3—C2—N7—O9B35 (4)N11—C12—C13—C150.0
C1—C2—N7—O9B145 (4)Cl1—C12—C13—C15180.0
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···Cl10.932.442.912 (2)111
N10—H10···O80.932.002.616 (3)122

Experimental details

Crystal data
Chemical formulaC9H8ClN3O3
Mr241.63
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)173
a, b, c (Å)14.1344 (10), 6.5420 (5), 11.3748 (8)
V3)1051.80 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.25 × 0.13 × 0.05
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6908, 1365, 1003
Rint0.045
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.121, 1.05
No. of reflections1365
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.28

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···Cl10.932.442.912 (2)111
N10—H10···O80.932.002.616 (3)122
 

Acknowledgements

The authors would like to thank the Deanship of Scientific Research at the Islamic University of Gaza for their financial support to RYM, BAAT and AMA. Thanks are due to the graduate students Rasha Alsalahat and Huda Hammouda for their practical scientific contribution.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals
First citationAwadallah, A. M., Seppelt, K. & Shorafa, H. (2006). Tetrahedron, 62, 7744–7746.  Web of Science CSD CrossRef CAS
First citationAwadallah, A. & Zahra, J. (2008). Molecules, 13, 170–176.  Web of Science CrossRef PubMed CAS
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBudarina, E. V., Dolgushina, T. S., Petrov, M. L., Labeish, N. N., Koltsov, A. A. & Belskii, K. (2007). Russ. J. Org. Chem. 43, 1516–1525.  Web of Science CrossRef CAS
First citationShawalia, A. S. & Samy, N. A. (2009). The Open Bioactive Compd J. 2, 8–16.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationThaher, B. A., Zahra, J. A. & El-Abadelah, M. M. (2002). J. Heterocycl. Chem. 39, 901–904.  CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds