organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­ethyl-2-sulfanyl­­idene-5-(2,4,5-trimeth­­oxy­benzyl­­idene)-1,3-diazinane-4,6-dione

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, bCenter of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and cApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpure Road, Lahore 54600, Pakistan
*Correspondence e-mail: aasiri2@kau.edu.sa, rehman_pcsir@yahoo.com

(Received 2 December 2012; accepted 4 December 2012; online 8 December 2012)

The title compound, C18H22N2O5S, is largely planar, with an r.m.s. deviation of 0.0546 (1) Å of atoms from the mean plane through all non-H atoms except for the methyl groups. The benzene and pyrimidine­dione rings are inclined to one another at a dihedral angle of 1.41 (7)°. In the crystal, weak C—H⋯O inter­actions connect the mol­ecules into chains propagating along the b-axis direction.

Related literature

For the synthesis of the title compound, see: Asiri et al. (2004[Asiri, A. M., Alamry, K. A., Jalboutb, A. F. & Zhang, S. (2004). Molbank, 2004, m359.]). For a related structure, see: Asiri et al. (2009[Asiri, A. M., Khan, S. A. & Ng, S. W. (2009). Acta Cryst. E65, o1820.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22N2O5S

  • Mr = 378.44

  • Monoclinic, P 21 /c

  • a = 7.9711 (1) Å

  • b = 17.4106 (3) Å

  • c = 13.5265 (2) Å

  • β = 99.237 (2)°

  • V = 1852.89 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.83 mm−1

  • T = 296 K

  • 0.29 × 0.10 × 0.09 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas, CCD) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.875, Tmax = 1.000

  • 14850 measured reflections

  • 3777 independent reflections

  • 3083 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.121

  • S = 1.05

  • 3777 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13C⋯O2i 0.96 2.58 3.455 (2) 152
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]).

Supporting information


Comment top

The title compound is related to the arylidene 5-[3-(2,5-dimethoxyphenyl)prop- 2-enylidene]-1,3-diethyl-2-thioxohexahydropyrimidine-4,6-dione (II) already reported by our group (Asiri et al., 2009). The molecule is largely planar with a dihedral angle between the benzene and pyrimidine dione rings of 1.41 (7)°. The r. m. s. deviation of atoms from the best fit plane through the non-hydrogen atoms C1/N1/C2/C3/C4/N2/S1/O1/O2/C5/C6/C7/C8/C9/C10/C11/C12/ C14/O3/O4/O5) is 0.0546 (1) Å. Atoms S1 and O1 are displaced from this plane by -0.1187 (1) Å and 0.1131 (2) Å respectively. Non-classical C13–H13C···O2 hydrogen bonds connect the molecule into chains along the b axis (Table. 1, Fig. 2).

Related literature top

For the synthesis of the title compound, see: Asiri et al. (2004). For a related structure, see: Asiri et al. (2009).

Experimental top

1,3-Diethyl-2-thiobarbituric acid (0.005 mol) and 2,4,5-trimethoxybenzaldehyde (0.005 mol) were heated in ethanol (15 ml) for 3 h; several drops of diethylamine were added. The progress of reaction was monitored by TLC. The mixture was cooled and the resulting solid was recrystallized from methanol (Asiri et al. 2004) by slow evaporation at room temperature.

Refinement top

All the H-atoms bound to C were positioned with idealized geometry with C—H = 0.93 Å for aromatic, C—H = 0.97 Å for methylene & C—H = 0.96 Å for methyl groups. H-atoms were refined as riding with Uiso(H) = kUeq(C), where k = 1.5 for methyl H-atoms & k = 1.2 for other H-atoms .

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The structure of (I) with 50% probability ellipsoids.
[Figure 2] Fig. 2. Unit cell diagram showing C—H···O hydrogen bonds, drawn as dashed lines.
1,3-Diethyl-2-sulfanylidene-5-(2,4,5-trimethoxybenzylidene)-1,3-diazinane- 4,6-dione top
Crystal data top
C18H22N2O5SF(000) = 800
Mr = 378.44Dx = 1.357 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 6212 reflections
a = 7.9711 (1) Åθ = 3.3–75.4°
b = 17.4106 (3) ŵ = 1.83 mm1
c = 13.5265 (2) ÅT = 296 K
β = 99.237 (2)°Needle like, red
V = 1852.89 (5) Å30.29 × 0.10 × 0.09 mm
Z = 4
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas, CCD)
diffractometer
3777 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3083 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
ω scansθmax = 75.6°, θmin = 4.2°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 97
Tmin = 0.875, Tmax = 1.000k = 2121
14850 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.385P]
where P = (Fo2 + 2Fc2)/3
3777 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C18H22N2O5SV = 1852.89 (5) Å3
Mr = 378.44Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.9711 (1) ŵ = 1.83 mm1
b = 17.4106 (3) ÅT = 296 K
c = 13.5265 (2) Å0.29 × 0.10 × 0.09 mm
β = 99.237 (2)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas, CCD)
diffractometer
3777 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3083 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 1.000Rint = 0.027
14850 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
3777 reflectionsΔρmin = 0.20 e Å3
240 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22340 (6)0.56530 (3)0.08605 (3)0.05970 (16)
O10.0851 (2)0.69234 (8)0.38430 (11)0.0875 (5)
O20.10560 (19)0.42242 (7)0.36247 (9)0.0651 (4)
O30.40703 (17)0.63202 (7)0.63548 (9)0.0591 (3)
O40.58803 (17)0.38883 (7)0.78593 (9)0.0595 (3)
O50.42004 (19)0.31584 (7)0.63615 (9)0.0646 (4)
N10.05338 (18)0.62856 (8)0.25049 (10)0.0472 (3)
N20.05463 (17)0.49412 (7)0.24558 (10)0.0435 (3)
C10.1055 (2)0.56302 (9)0.19924 (12)0.0431 (4)
C20.0503 (2)0.63052 (10)0.34507 (13)0.0527 (4)
C30.1117 (2)0.55692 (9)0.38958 (11)0.0415 (3)
C40.0594 (2)0.48671 (9)0.33594 (11)0.0428 (3)
C50.2186 (2)0.56421 (8)0.47980 (11)0.0411 (3)
H50.23390.61570.49730.049*
C60.31256 (19)0.51620 (9)0.55427 (11)0.0388 (3)
C70.4108 (2)0.55426 (9)0.63690 (11)0.0420 (3)
C80.5034 (2)0.51281 (10)0.71486 (11)0.0456 (4)
H80.56620.53870.76860.055*
C90.5032 (2)0.43358 (10)0.71329 (11)0.0449 (4)
C100.4101 (2)0.39422 (9)0.63098 (11)0.0454 (4)
C110.3173 (2)0.43493 (9)0.55483 (11)0.0421 (3)
H110.25520.40830.50150.050*
C120.1014 (3)0.70471 (10)0.20484 (14)0.0615 (5)
H12A0.11200.74140.25740.074*
H12B0.21110.70070.16210.074*
C130.0275 (3)0.73339 (11)0.14422 (17)0.0764 (6)
H13A0.03350.69870.08970.115*
H13B0.13670.73640.18590.115*
H13C0.00520.78340.11820.115*
C140.1166 (2)0.42108 (10)0.19685 (13)0.0537 (4)
H14A0.22900.42910.15860.064*
H14B0.12630.38300.24800.064*
C150.0014 (3)0.39104 (12)0.12873 (15)0.0670 (5)
H15A0.11130.38520.16560.101*
H15B0.00090.42650.07460.101*
H15C0.04250.34220.10230.101*
C160.5046 (3)0.67409 (11)0.71491 (15)0.0659 (5)
H16A0.62270.66150.71850.099*
H16B0.46820.66100.77710.099*
H16C0.48870.72810.70270.099*
C170.6693 (3)0.42503 (13)0.87605 (14)0.0652 (5)
H17A0.58840.45650.90280.098*
H17B0.76130.45640.86160.098*
H17C0.71260.38650.92410.098*
C180.3502 (4)0.27476 (12)0.54961 (16)0.0889 (8)
H18A0.39960.29270.49360.133*
H18B0.22940.28260.53640.133*
H18C0.37390.22100.55980.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0627 (3)0.0666 (3)0.0436 (2)0.0013 (2)0.01048 (19)0.00529 (18)
O10.1387 (15)0.0401 (7)0.0671 (9)0.0214 (8)0.0336 (9)0.0107 (6)
O20.0932 (10)0.0372 (6)0.0533 (7)0.0014 (6)0.0234 (7)0.0007 (5)
O30.0709 (8)0.0411 (6)0.0572 (7)0.0051 (6)0.0145 (6)0.0083 (5)
O40.0676 (8)0.0606 (7)0.0434 (6)0.0106 (6)0.0122 (5)0.0023 (5)
O50.0981 (10)0.0408 (6)0.0467 (7)0.0036 (6)0.0128 (6)0.0039 (5)
N10.0545 (8)0.0427 (7)0.0412 (7)0.0128 (6)0.0015 (6)0.0003 (5)
N20.0476 (7)0.0419 (7)0.0382 (6)0.0027 (6)0.0019 (5)0.0003 (5)
C10.0397 (8)0.0492 (9)0.0399 (8)0.0026 (6)0.0047 (6)0.0014 (6)
C20.0670 (11)0.0424 (9)0.0441 (8)0.0112 (8)0.0048 (8)0.0045 (7)
C30.0467 (8)0.0389 (8)0.0374 (7)0.0037 (6)0.0023 (6)0.0004 (6)
C40.0481 (9)0.0403 (8)0.0377 (7)0.0016 (6)0.0005 (6)0.0020 (6)
C50.0459 (8)0.0370 (7)0.0394 (8)0.0006 (6)0.0037 (6)0.0036 (6)
C60.0391 (7)0.0413 (8)0.0352 (7)0.0016 (6)0.0033 (6)0.0020 (6)
C70.0412 (8)0.0420 (8)0.0417 (8)0.0030 (6)0.0033 (6)0.0041 (6)
C80.0417 (8)0.0520 (9)0.0401 (8)0.0026 (7)0.0027 (6)0.0073 (6)
C90.0427 (8)0.0536 (9)0.0363 (8)0.0034 (7)0.0002 (6)0.0023 (6)
C100.0538 (9)0.0413 (8)0.0390 (8)0.0000 (7)0.0009 (7)0.0013 (6)
C110.0485 (9)0.0412 (8)0.0343 (7)0.0030 (6)0.0001 (6)0.0009 (6)
C120.0780 (13)0.0455 (9)0.0548 (10)0.0238 (9)0.0076 (9)0.0010 (8)
C130.1027 (17)0.0430 (10)0.0783 (14)0.0035 (11)0.0015 (12)0.0120 (9)
C140.0613 (11)0.0513 (9)0.0444 (9)0.0132 (8)0.0039 (8)0.0005 (7)
C150.0834 (15)0.0549 (11)0.0608 (11)0.0030 (10)0.0053 (10)0.0092 (9)
C160.0708 (12)0.0523 (11)0.0663 (12)0.0143 (9)0.0142 (10)0.0139 (9)
C170.0611 (11)0.0810 (14)0.0456 (10)0.0059 (10)0.0158 (8)0.0016 (9)
C180.157 (2)0.0432 (10)0.0560 (11)0.0000 (13)0.0162 (13)0.0037 (9)
Geometric parameters (Å, º) top
S1—C11.6634 (16)C9—C101.412 (2)
O1—C21.212 (2)C10—C111.366 (2)
O2—C41.2145 (19)C11—H110.9300
O3—C71.3542 (19)C12—C131.499 (3)
O3—C161.424 (2)C12—H12A0.9700
O4—C91.3478 (19)C12—H12B0.9700
O4—C171.431 (2)C13—H13A0.9600
O5—C101.368 (2)C13—H13B0.9600
O5—C181.408 (2)C13—H13C0.9600
N1—C11.365 (2)C14—C151.496 (3)
N1—C21.407 (2)C14—H14A0.9700
N1—C121.487 (2)C14—H14B0.9700
N2—C11.384 (2)C15—H15A0.9600
N2—C41.407 (2)C15—H15B0.9600
N2—C141.480 (2)C15—H15C0.9600
C2—C31.466 (2)C16—H16A0.9600
C3—C51.377 (2)C16—H16B0.9600
C3—C41.448 (2)C16—H16C0.9600
C5—C61.426 (2)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C6—C111.415 (2)C17—H17C0.9600
C6—C71.421 (2)C18—H18A0.9600
C7—C81.389 (2)C18—H18B0.9600
C8—C91.380 (2)C18—H18C0.9600
C8—H80.9300
C7—O3—C16119.70 (14)N1—C12—C13111.77 (15)
C9—O4—C17118.14 (15)N1—C12—H12A109.3
C10—O5—C18116.88 (14)C13—C12—H12A109.3
C1—N1—C2124.63 (13)N1—C12—H12B109.3
C1—N1—C12119.84 (14)C13—C12—H12B109.3
C2—N1—C12115.49 (14)H12A—C12—H12B107.9
C1—N2—C4125.06 (13)C12—C13—H13A109.5
C1—N2—C14119.37 (13)C12—C13—H13B109.5
C4—N2—C14115.52 (13)H13A—C13—H13B109.5
N1—C1—N2116.84 (14)C12—C13—H13C109.5
N1—C1—S1121.91 (12)H13A—C13—H13C109.5
N2—C1—S1121.25 (12)H13B—C13—H13C109.5
O1—C2—N1118.63 (15)N2—C14—C15112.36 (15)
O1—C2—C3123.93 (16)N2—C14—H14A109.1
N1—C2—C3117.44 (14)C15—C14—H14A109.1
C5—C3—C4127.53 (14)N2—C14—H14B109.1
C5—C3—C2113.68 (14)C15—C14—H14B109.1
C4—C3—C2118.78 (14)H14A—C14—H14B107.9
O2—C4—N2117.66 (14)C14—C15—H15A109.5
O2—C4—C3125.48 (15)C14—C15—H15B109.5
N2—C4—C3116.85 (13)H15A—C15—H15B109.5
C3—C5—C6138.77 (14)C14—C15—H15C109.5
C3—C5—H5110.6H15A—C15—H15C109.5
C6—C5—H5110.6H15B—C15—H15C109.5
C11—C6—C7116.80 (14)O3—C16—H16A109.5
C11—C6—C5126.91 (14)O3—C16—H16B109.5
C7—C6—C5116.29 (14)H16A—C16—H16B109.5
O3—C7—C8122.56 (14)O3—C16—H16C109.5
O3—C7—C6116.54 (14)H16A—C16—H16C109.5
C8—C7—C6120.90 (15)H16B—C16—H16C109.5
C9—C8—C7120.58 (14)O4—C17—H17A109.5
C9—C8—H8119.7O4—C17—H17B109.5
C7—C8—H8119.7H17A—C17—H17B109.5
O4—C9—C8124.58 (15)O4—C17—H17C109.5
O4—C9—C10115.65 (15)H17A—C17—H17C109.5
C8—C9—C10119.77 (14)H17B—C17—H17C109.5
C11—C10—O5125.18 (15)O5—C18—H18A109.5
C11—C10—C9119.67 (15)O5—C18—H18B109.5
O5—C10—C9115.14 (14)H18A—C18—H18B109.5
C10—C11—C6122.25 (14)O5—C18—H18C109.5
C10—C11—H11118.9H18A—C18—H18C109.5
C6—C11—H11118.9H18B—C18—H18C109.5
C2—N1—C1—N21.4 (2)C3—C5—C6—C7178.82 (18)
C12—N1—C1—N2179.25 (15)C16—O3—C7—C81.8 (3)
C2—N1—C1—S1178.14 (14)C16—O3—C7—C6178.93 (16)
C12—N1—C1—S10.3 (2)C11—C6—C7—O3179.37 (14)
C4—N2—C1—N16.7 (2)C5—C6—C7—O31.0 (2)
C14—N2—C1—N1175.91 (14)C11—C6—C7—C81.3 (2)
C4—N2—C1—S1172.90 (12)C5—C6—C7—C8178.27 (14)
C14—N2—C1—S14.5 (2)O3—C7—C8—C9179.83 (15)
C1—N1—C2—O1178.32 (19)C6—C7—C8—C90.6 (2)
C12—N1—C2—O13.8 (3)C17—O4—C9—C87.1 (3)
C1—N1—C2—C32.5 (3)C17—O4—C9—C10173.28 (16)
C12—N1—C2—C3175.38 (16)C7—C8—C9—O4179.43 (15)
O1—C2—C3—C52.0 (3)C7—C8—C9—C101.0 (2)
N1—C2—C3—C5177.12 (15)C18—O5—C10—C1110.0 (3)
O1—C2—C3—C4179.2 (2)C18—O5—C10—C9171.0 (2)
N1—C2—C3—C41.7 (3)O4—C9—C10—C11178.64 (15)
C1—N2—C4—O2172.69 (16)C8—C9—C10—C111.7 (2)
C14—N2—C4—O24.8 (2)O4—C9—C10—O50.4 (2)
C1—N2—C4—C37.3 (2)C8—C9—C10—O5179.17 (15)
C14—N2—C4—C3175.18 (14)O5—C10—C11—C6179.94 (16)
C5—C3—C4—O21.4 (3)C9—C10—C11—C61.0 (2)
C2—C3—C4—O2177.22 (18)C7—C6—C11—C100.5 (2)
C5—C3—C4—N2178.57 (15)C5—C6—C11—C10178.98 (16)
C2—C3—C4—N22.8 (2)C1—N1—C12—C1389.7 (2)
C4—C3—C5—C61.4 (3)C2—N1—C12—C1388.3 (2)
C2—C3—C5—C6179.87 (18)C1—N2—C14—C1590.12 (19)
C3—C5—C6—C111.6 (3)C4—N2—C14—C1587.55 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13C···O2i0.962.583.455 (2)152
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H22N2O5S
Mr378.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.9711 (1), 17.4106 (3), 13.5265 (2)
β (°) 99.237 (2)
V3)1852.89 (5)
Z4
Radiation typeCu Kα
µ (mm1)1.83
Crystal size (mm)0.29 × 0.10 × 0.09
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas, CCD)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.875, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14850, 3777, 3083
Rint0.027
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.121, 1.05
No. of reflections3777
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 2012) and X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13C···O2i0.962.583.455 (2)152.4
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors would like to thank the Deanship of Scientific Research at King Abdulaziz University for the support of this research via the Research Group Track (grant No. 3-102/428).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
First citationAsiri, A. M., Alamry, K. A., Jalboutb, A. F. & Zhang, S. (2004). Molbank, 2004, m359.  CrossRef
First citationAsiri, A. M., Khan, S. A. & Ng, S. W. (2009). Acta Cryst. E65, o1820.  Web of Science CSD CrossRef IUCr Journals
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds