metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 1| January 2013| Pages m47-m48

A dimer of bis­­(N-heterocyclic carbene)rhodium(I) centres spanned by a dibenzo-18-crown-6 bridge from synchrotron radiation

aSchool of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia, and bMark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
*Correspondence e-mail: s.colbran@unsw.edu.au

(Received 13 November 2012; accepted 29 November 2012; online 12 December 2012)

The compound (μ-3,3′,3′′,3′′′-{[2,5,8,15,18,21-hexa­oxatricyclo­[20.4.0.09,14]hexa­cosa-1(22),9,11,13,23,25-hexa­ene-11,12,24,25-tetra­yl]tetra­kis­(methyl­ene)}tetra­kis­(1-methyl-1H-imidazol-2-yl))bis­[(η4-cyclo­octa-1,4-diene)rhodium(I)] bis­(hexa­fluoridophosphate) acetonitrile sesquisolvate dihydrate, [Rh2(C8H12)2(C40H42N8O6)](PF6)2·1.5CH3CN·2H2O, crystallized from acetonitrile under an atmosphere of diethyl ether. In the crystal structure, the complex cation exhibits two square-planar RhI centres, each bound by a cyclo­octa­diene (COD) ligand and by two adjacent imidazolyl­idene N-heterocyclic carbene (NHC) donors from the same phen­oxy ring of the {[dibenzo-18-crown-6-11,12,24,25-tetra­yl]tetra­kis­(methyl­ene)}tetra­kis­(1-methyl-1H-imidazol-2-yl) (L) ligand. The dibenzo-crown ether bridge of L spans the Rh centres and forms hydrogen bonds with water mol­ecules. One water mol­ecule with half occupancy bridges adjacent macrocycles in the lattice. Another water with full occupancy forms weak hydrogen bonds to the crown ether O atoms and is, in turn, part hydrogen bonded by a lattice water with half occupancy. The latter water is within hydrogen-bonding distance of a fourth water also with partial occupancy. The result of these inter­actions is the formation of a layer in the ab plane. Two PF6 ions, one of which is twofold disordered, and one ordered and one twofold disordered (with 0.5 occupancy) lattice acetonitrile mol­ecules complete the crystal structure.

Related literature

For the related complex [K(L){Rh(COD)}2][PF6]3, which has a potassium ion bound within the crown ether bridge of the ligand L, see: Shrestha et al. (2011[Shrestha, S., Gimbert-Suriñach, C., Bhadbhade, M. & Colbran, S. B. (2011). Eur. J. Inorg. Chem. 28, 4331-4337.]). For the well known Rh(I)(NHC)2(COD) centres, see: Mata et al. (2004[Mata, J. A., Chianese, A. R., Miecznikowski, J. R., Poyatos, M., Peris, E., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 1253-1263.]); Riederer et al. (2010[Riederer, S. K. U., Gigler, P., Högerl, M. P., Herdtweck, E., Bechlars, B., Herrmann, W. A. & Kühn, F. (2010). Organometallics, 29, 5681-5692.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh2(C8H12)2(C40H42N8O6)](PF6)2·1.5C2H3N·2H2O

  • Mr = 1540.55

  • Triclinic, [P \overline 1]

  • a = 10.510 (2) Å

  • b = 15.630 (3) Å

  • c = 23.280 (5) Å

  • α = 104.69 (3)°

  • β = 90.20 (3)°

  • γ = 109.58 (3)°

  • V = 3468.9 (12) Å3

  • Z = 2

  • Synchrotron radiation

  • λ = 0.71073 Å

  • μ = 0.61 mm−1

  • T = 100 K

  • 0.03 × 0.02 × 0.01 mm

Data collection
  • 3-BM1 Australian Synchrotron diffractometer

  • 43942 measured reflections

  • 11473 independent reflections

  • 9939 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.164

  • S = 1.33

  • 11473 reflections

  • 964 parameters

  • 270 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.15 e Å−3

  • Δρmin = −1.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1M—H1MB⋯O2i 0.86 (1) 2.51 (3) 3.226 (5) 141 (3)
O1M—H1MB⋯O3i 0.86 (1) 2.50 (4) 3.076 (4) 125 (4)
O1M—H1MA⋯O1i 0.86 (1) 2.38 (3) 3.149 (5) 149 (4)
O1M—H1MA⋯O6i 0.86 (1) 2.39 (2) 3.138 (5) 145 (4)
O3W—H3WB⋯O5i 0.87 (1) 2.21 (9) 3.03 (2) 158 (23)
O3W—H3WA⋯O2ii 0.87 (1) 2.16 (10) 2.99 (2) 160 (27)
O1W—H1WA⋯O1M 0.87 (1) 2.00 (1) 2.796 (9) 151 (3)
O1W—H1WB⋯N1CN 0.87 (1) 2.06 (6) 2.805 (18) 143 (9)
Symmetry codes: (i) x, y-1, z; (ii) x-1, y-1, z.

Data collection: BLU-ICE (McPhillips et al., 2002[McPhillips, T. M., McPhillips, S. E., Chiu, H.-J., Cohen, A. E., Deacon, A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, R. P., Soltis, S. M. & Kuhn, P. (2002). J. Synchrotron Rad. 9, 401-406.]); cell refinement: XDS (Kabsch, 1993[Kabsch, W. (1993). J. Appl. Cryst. 26, 795-800.]); data reduction: XDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The sum of the acute C(NHC)-Rh-{C=C(centroid) for COD} bond angles is 360.2° for Rh1 and 359.3° for Rh2 indicative for the planarity of these centres. The Rh–C bond lengths are in the normal range (Mata et al., 2004; Riederer et al., 2010; Shrestha et al., 2011): 2.033 (4) - 2.042 (4) Å for the Rh—C(NHC) and 2.196 (5) - 2.214 (5) Å for the Rh–C(COD) distances. The dibenzo-18-crown-6 bridge adopts an 'umbrella' shape and forms hydrogen bonds with a centrally located water molecule (O1M; see Fig. 2). Other lattice water with partial occupancy are observed in the structure and are depicted in Fig. 2. To use the nomenclature introduced in Shrestha et al. (2011), the Rh(NHC)2(COD) centres are aligned 'up-and-out' for Rh1 and 'down-and-out' for Rh2.

Related literature top

For the related complex [K(L){Rh(COD)}2][PF6]3, which has a potassium ion bound within the crown ether bridge of the ligand L, see: Shrestha et al. (2011). For the well known Rh(I)(NHC)2(COD) centres, see: Mata et al. (2004); Riederer et al. (2010).

Experimental top

The synthesis of [(L){Rh(COD)}2]Br2 (L = bis{4,5-bis(1-methylene-3-methyl- imidazolidene)}benzo-18-crown-6; COD = 1,5-cyclooctadiene) has been described by us (Shrestha et al., 2011). This was dissolved in methanol and treated with aqueous [NH4][PF6]. The yellow-orange precipitate was collected by filtration, and recrystallized from acetonitrile under an atmosphere of diethyl ether to afford very thin yellow crystalline platelets of the title complex, which were used for this X-ray crystal structure determination.

Refinement top

The crystal lattice contained one ordered and one orientationally disordered PF6- anions and one ordered and one orientationally disordered acetonitrile (solvent) molecules. In addition, there is one lattice water with full occupancy and there are three water molecules with partial occupancies. All the disorders were modelled keeping the geometries of each entity in question restrained using DFIX / SADI commands and the atomic displacement parameters were restrained using DELU / SIMU commands. The H atoms to the water molecules were fixed so as achieve the best possible O—H···O interactions between them. The low occupancy entities were kept isotropic throughout the refinement.

A total of four water molecules have been located in difference Fourier maps, which are at favorable hydrogen bonding distances from each other and other possible H-bonding groups. However, difference Fourier maps did not reveal the H-atoms attached to these waters, probably because of the possible orientational disorder and/or low occupancies of some of the water molecules. One of the possible constellations for water H-atoms is modeled in the present structure using OLEX-2 software (Dolomanov et al., 2009).

Amongst the waters, O1M situated at the centre of the crown has the full occupancy. However, it is almost equidistant from the O atoms O1, O2, O3, O4, O5 and O6 of the crown (distances range from 3.060 – 3.219 Å), all of which are larger than the normally observed O···O distances (2.6 – 2.8 Å). Therefore, this water is likely to be orientationally disordered with H-atoms making weaker O—H···O hydrogen bonds with any of the pairs of crown O-atoms or forming bifurcated interactions. In the present model, the hydrogen atoms H1MA and H1MB make bifurcated O—H···O interactions with oxygen atoms O1, O6 and O2, O3 respectively. Water molecule O1W (occupancy 1/2) at a distance of 2.80 Å from O1M is modeled to make two H-bonding interactions, one with the water O1M (O1W– H1WA···O1M) and the other being the O—H···N contact with the major site of an acetonitrile (O1W—H1WB···N1CN). One of the H-atoms on O1W could also make O—H···O contact with the lowest occupied water molecule O2W (occupancy 1/4), but this would leave the acetonitrile without any (binding) short contact. It could be possible that one of the H-atoms on O2W makes O—H···O contact with the water O1W. However, considering the twofold symmetry about this water, it is preferred that both the H-atoms of O2W make O—H···π contacts with the adjacent imidazolylidene rings with shorter approaches to C2D, C3D on one side and C7D, C8D on the other. As O2W has low occupancy, efforts were not made to optimize the O—H···pi contacts. Water molecule O3W, with a partial occupancy (1/2), exhibits obvious O—H···O bonding: it forms O3W—H3WA···O2 and O3W—H3WB···O5 bridges between adjacent crown ether macrocycles in the crystal lattice.

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2-1.5Uequiv(C).

Computing details top

Data collection: BLU-ICE (McPhillips et al., 2002); cell refinement: XDS (Kabsch, 1993); data reduction: XDS (Kabsch, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the [(L){Rh(COD)}2]2+ cation showing 50% thermal ellipsoids (H-atoms are omitted for clarity).
[Figure 2] Fig. 2. Ball-and-stick view showing the packing of [(L){Rh(COD)}2]2+ cations and lattice water molecules in the crystal structure. The labelling scheme adopted for the waters is shown.
(µ-3,3',3'',3'''-{[2,5,8,15,18,21- Hexaoxatricyclo[20.4.0.09,14]hexacosa-1(22),9,11,13,23,25-hexaene- 11,12,24,25-tetrayl]tetrakis(methylene)}tetrakis(1-methyl-1H-imidazol- 2-yl))bis[(η4-cycloocta-1,4-diene)rhodium(I)] bis(hexafluoridophosphate) acetonitrile sesquisolvate dihydrate top
Crystal data top
[Rh2(C8H12)2(C40H42N8O6)](PF6)2·1.5C2H3N·2H2OZ = 2
Mr = 1540.55F(000) = 1574
Triclinic, P1Dx = 1.475 Mg m3
Hall symbol: -P 1Synchrotron radiation, λ = 0.71073 Å
a = 10.510 (2) ÅCell parameters from 9980 reflections
b = 15.630 (3) Åθ = 2.5–22.5°
c = 23.280 (5) ŵ = 0.61 mm1
α = 104.69 (3)°T = 100 K
β = 90.20 (3)°Plates, yellow
γ = 109.58 (3)°0.03 × 0.02 × 0.01 mm
V = 3468.9 (12) Å3
Data collection top
3-BM1 Australian Synchrotron
diffractometer
9939 reflections with I > 2σ(I)
Radiation source: Synchrotron BMRint = 0.038
Si<111> monochromatorθmax = 25.0°, θmin = 1.8°
Phi Scan scansh = 1212
43942 measured reflectionsk = 1818
11473 independent reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.33 w = 1/[σ2(Fo2) + (0.1P)2 + 0.5989P]
where P = (Fo2 + 2Fc2)/3
11473 reflections(Δ/σ)max = 0.001
964 parametersΔρmax = 1.15 e Å3
270 restraintsΔρmin = 1.40 e Å3
Crystal data top
[Rh2(C8H12)2(C40H42N8O6)](PF6)2·1.5C2H3N·2H2Oγ = 109.58 (3)°
Mr = 1540.55V = 3468.9 (12) Å3
Triclinic, P1Z = 2
a = 10.510 (2) ÅSynchrotron radiation, λ = 0.71073 Å
b = 15.630 (3) ŵ = 0.61 mm1
c = 23.280 (5) ÅT = 100 K
α = 104.69 (3)°0.03 × 0.02 × 0.01 mm
β = 90.20 (3)°
Data collection top
3-BM1 Australian Synchrotron
diffractometer
9939 reflections with I > 2σ(I)
43942 measured reflectionsRint = 0.038
11473 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051270 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.33Δρmax = 1.15 e Å3
11473 reflectionsΔρmin = 1.40 e Å3
964 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The crystal lattice contained one ordered and one orientationally disordered PF6- anions and one ordered and one orientationally disordered acetonitrile (solvent) molecules. In addition, there is one lattice water with full occupancy and there are three water molecules with partial occupancies. All the disorders were modelled keeping the geometries of each entity in question restrained using DFIX / SADI commands and the atomic displacement parameters were restrained using DELU / SIMU commands. The H atoms to the water molecules were fixed so as achieve the best possible O—H···O interactions between them. The low occupancy entities were kept isotropic throughout the refinement.

A total of four water molecules have been located in difference Fourier maps, which are at favorable hydrogen bonding distances from each other and other possible H-bonding groups. However, difference Fourier maps did not reveal the H-atoms attached to these waters, most probably because of the possible orientational disorder and/or low occupancies of some of the water molecules. One of the possible constellations for water H-atoms is modeled in the present structure using OLEX-2 v1.2 software (Dolomanov et al., 2009).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.60101 (3)1.202962 (19)0.134418 (12)0.02157 (12)
C1C0.6876 (5)1.1042 (3)0.1908 (2)0.0417 (11)
H1C0.73311.10330.15680.050*
C2C0.7299 (5)1.1861 (3)0.20809 (17)0.0353 (10)
H2C0.80301.23610.18540.042*
C3C0.6669 (7)1.2010 (6)0.2608 (3)0.074 (2)
H3C0.71601.21010.29330.089*
C4C0.5322 (6)1.2011 (6)0.2610 (3)0.074 (2)
H4C0.49181.21020.29350.089*
C5C0.4553 (4)1.1865 (3)0.20789 (17)0.0332 (9)
H5C0.43341.23670.18480.040*
C6C0.4158 (5)1.1050 (3)0.1915 (2)0.0417 (11)
H6C0.36851.10380.15780.050*
C7C0.4411 (7)1.0166 (4)0.2224 (4)0.085 (2)
H7C0.36910.96250.24160.102*
C8C0.5743 (7)1.0162 (4)0.2224 (4)0.087 (2)
H8C0.59180.96200.24170.104*
N1B0.7968 (3)1.2112 (2)0.03429 (14)0.0281 (7)
N2B0.8752 (3)1.3339 (2)0.06641 (14)0.0286 (7)
N3B0.4146 (3)1.2115 (2)0.03475 (14)0.0283 (7)
N4B0.4581 (3)1.3342 (2)0.06650 (14)0.0281 (7)
C1B0.7069 (4)1.1216 (3)0.02549 (18)0.0312 (9)
H1B10.75981.08220.02270.037*
H1B20.63991.08870.05970.037*
C2B0.9229 (4)1.2639 (3)0.00328 (18)0.0341 (10)
H2B0.96511.24890.02600.041*
C3B0.9726 (4)1.3406 (3)0.02344 (18)0.0344 (10)
H3B1.05611.38880.01110.041*
C4B0.7667 (4)1.2541 (3)0.07322 (16)0.0245 (8)
C5B0.8905 (5)1.4033 (3)0.0994 (2)0.0378 (10)
H5B10.80841.38670.12450.057*
H5B20.96451.40490.12360.057*
H5B30.90861.46430.07200.057*
C6B0.4144 (4)1.1213 (3)0.02577 (18)0.0305 (9)
H6B10.44841.08830.05980.037*
H6B20.32211.08210.02320.037*
C7B0.3685 (4)1.3410 (3)0.02353 (18)0.0349 (10)
H7B0.33381.38940.01100.042*
C8B0.3415 (4)1.2638 (3)0.00349 (18)0.0335 (9)
H8B0.28471.24870.02570.040*
C9B0.4873 (4)1.2543 (3)0.07371 (16)0.0237 (8)
C10B0.5125 (5)1.4037 (3)0.0996 (2)0.0380 (10)
H10A0.57351.38490.12630.057*
H10B0.56051.46400.07220.057*
H10C0.43951.40830.12210.057*
Rh20.30618 (4)0.61278 (2)0.415306 (15)0.03863 (14)
C1E0.3928 (6)0.5140 (4)0.4374 (3)0.0533 (13)
H1E0.43930.51460.40350.064*
C2E0.4338 (6)0.5957 (4)0.4838 (2)0.0486 (12)
H2E0.50620.64630.47860.058*
C3E0.3717 (8)0.6099 (7)0.5419 (3)0.089 (2)
H3E10.37450.56070.55960.107*
H3E20.42970.66940.56820.107*
C4E0.2381 (7)0.6104 (7)0.5416 (3)0.089 (2)
H4E10.24070.67010.56790.107*
H4E20.18560.56140.55940.107*
C5E0.1602 (6)0.5968 (4)0.4835 (2)0.0487 (12)
H5E0.13690.64700.47840.058*
C6E0.1207 (5)0.5140 (4)0.4370 (3)0.0515 (13)
H6E0.07590.51410.40250.062*
C7E0.1443 (7)0.4247 (4)0.4377 (4)0.094 (3)
H7E0.07210.37090.43870.113*
C8E0.2791 (7)0.4240 (4)0.4370 (5)0.096 (3)
H8E0.29680.36930.43640.115*
N1D0.5737 (4)0.7555 (3)0.40038 (16)0.0404 (9)
N2D0.5296 (4)0.6290 (3)0.32954 (17)0.0429 (9)
N3D0.1805 (4)0.7558 (3)0.39959 (17)0.0397 (9)
N4D0.0999 (4)0.6295 (3)0.32853 (17)0.0413 (9)
C1D0.5603 (6)0.8278 (3)0.45105 (19)0.0454 (12)
H1D10.64680.85930.47520.054*
H1D20.49460.79790.47550.054*
C2D0.6872 (5)0.7661 (4)0.3674 (2)0.0459 (12)
H2D0.76680.81830.37520.055*
C3D0.6599 (5)0.6878 (4)0.3231 (2)0.0488 (13)
H3D0.71570.67470.29380.059*
C4D0.4766 (4)0.6702 (3)0.37734 (18)0.0355 (10)
C5D0.4610 (5)0.5341 (4)0.2892 (2)0.0503 (13)
H5D10.50120.49120.29760.075*
H5D20.47070.53630.24860.075*
H5D30.36640.51300.29530.075*
C6D0.2675 (5)0.8278 (3)0.45104 (19)0.0432 (11)
H6D10.30340.79720.47510.052*
H6D20.21310.85930.47540.052*
C7D0.0796 (5)0.7668 (4)0.3668 (2)0.0446 (11)
H7D0.05280.81930.37440.053*
C8D0.0278 (5)0.6878 (4)0.3221 (2)0.0478 (12)
H8D0.04180.67450.29290.057*
C9D0.1938 (5)0.6706 (3)0.37649 (19)0.0363 (10)
C10D0.0738 (5)0.5352 (4)0.2884 (2)0.0492 (13)
H10D0.14850.51480.29390.074*
H10E0.06380.53720.24780.074*
H10F0.00790.49180.29730.074*
O10.6786 (3)1.1124 (2)0.37871 (12)0.0340 (7)
O20.8558 (3)1.1616 (2)0.28704 (13)0.0363 (7)
O30.7223 (3)1.1987 (2)0.19369 (12)0.0344 (7)
O40.4766 (3)1.1983 (2)0.19345 (12)0.0335 (6)
O50.3066 (3)1.1615 (2)0.28660 (12)0.0369 (7)
O60.4340 (3)1.1127 (2)0.37851 (12)0.0339 (7)
C1A0.5216 (4)1.1773 (3)0.13866 (19)0.0317 (9)
C2A0.6552 (4)1.1773 (3)0.13903 (18)0.0304 (9)
C3A0.8586 (4)1.2031 (4)0.1962 (2)0.0435 (11)
H3A10.91131.24680.17480.052*
H3A20.86361.14140.17790.052*
C4A0.9142 (4)1.2359 (4)0.2608 (2)0.0452 (12)
H4A11.01211.25320.26400.054*
H4A20.89201.29070.28120.054*
C5A0.8937 (4)1.1889 (3)0.34887 (19)0.0396 (10)
H5A10.87541.24610.36740.047*
H5A20.99011.20180.35610.047*
C6A0.8145 (4)1.1110 (3)0.37545 (19)0.0375 (10)
H6A10.81341.05060.35070.045*
H6A20.85591.12080.41500.045*
C7A0.5869 (5)1.0409 (3)0.39693 (16)0.0320 (9)
C8A0.4550 (4)1.0409 (3)0.39693 (16)0.0313 (9)
C9A0.2965 (5)1.1112 (3)0.37474 (19)0.0382 (10)
H9A10.26461.12070.41410.046*
H9A20.23731.05080.34970.046*
C10A0.2957 (5)1.1893 (3)0.3483 (2)0.0404 (11)
H10G0.21211.20220.35510.049*
H10H0.37111.24630.36700.049*
C11A0.3212 (5)1.2358 (4)0.2599 (2)0.0455 (12)
H11A0.39801.29090.28010.055*
H11B0.24031.25270.26280.055*
C12A0.3435 (5)1.2024 (4)0.1950 (2)0.0438 (11)
H12A0.27691.14050.17670.053*
H12B0.33451.24590.17340.053*
C13A0.7080 (4)1.1548 (3)0.08491 (18)0.0311 (9)
H13A0.79481.15150.08500.037*
C14A0.6355 (4)1.1370 (3)0.03055 (18)0.0299 (9)
C15A0.5010 (4)1.1365 (3)0.03027 (18)0.0296 (9)
C16A0.4464 (4)1.1551 (3)0.08463 (18)0.0306 (9)
H16A0.35671.15250.08460.037*
C17A0.6171 (5)0.9720 (3)0.41512 (17)0.0372 (10)
H17A0.70590.97250.41560.045*
C18A0.5160 (5)0.9009 (3)0.43301 (17)0.0376 (10)
C19A0.3853 (5)0.9012 (3)0.43272 (17)0.0379 (10)
C20A0.3553 (5)0.9719 (3)0.41488 (16)0.0346 (10)
H20A0.26710.97250.41510.042*
P1A0.19646 (11)0.39244 (7)0.14549 (5)0.0278 (2)
F1A0.1875 (3)0.37509 (17)0.21079 (11)0.0372 (6)
F2A0.0449 (2)0.39352 (18)0.14514 (11)0.0392 (6)
F3A0.2524 (3)0.50461 (16)0.17484 (10)0.0368 (6)
F4A0.2050 (3)0.40926 (17)0.08006 (10)0.0365 (6)
F5A0.3491 (2)0.39321 (18)0.14568 (11)0.0402 (6)
F6A0.1401 (3)0.28038 (16)0.11634 (11)0.0390 (6)
P1B0.00001.00000.50000.0398 (4)
F1B0.0190 (4)0.9672 (3)0.42946 (13)0.0703 (9)
F22B0.1506 (9)1.0019 (16)0.4994 (9)0.061 (5)0.30
F32B0.046 (2)0.8950 (7)0.5037 (11)0.062 (5)0.30
F23B0.1154 (13)0.9564 (11)0.4983 (8)0.080 (4)0.35
F33B0.1021 (11)0.9003 (6)0.5006 (6)0.059 (3)0.35
F21B0.1585 (8)1.0443 (11)0.5000 (10)0.079 (5)0.35
F31B0.0081 (15)0.9019 (7)0.5011 (9)0.067 (4)0.35
P1C1.00001.00000.00000.0819 (9)
F11C1.1315 (7)1.0416 (6)0.0452 (4)0.091 (2)0.70
F21C0.9550 (12)0.9040 (4)0.0199 (4)0.088 (2)0.70
F31C0.9107 (4)1.0365 (3)0.0469 (3)0.0743 (16)0.70
F12C1.1046 (19)1.0121 (15)0.0538 (9)0.100 (4)0.30
F22C0.934 (3)0.8909 (7)0.0044 (12)0.117 (7)0.30
F32C0.9967 (16)0.9995 (10)0.0678 (4)0.109 (4)0.30
C1AN0.9134 (9)0.8276 (9)0.1387 (4)0.055 (3)0.50
H1A10.93490.88540.16980.082*0.50
H1A20.83990.82190.11170.082*0.50
H1A30.99150.82790.11740.082*0.50
C2AN0.8752 (10)0.7509 (9)0.1639 (5)0.054 (3)0.50
N1AN0.8448 (10)0.6893 (9)0.1857 (5)0.077 (3)0.50
C1BN0.703 (2)0.4071 (14)0.1200 (8)0.146 (8)*0.75
H1B30.72620.45930.15520.218*0.75
H1B40.76080.37090.12100.218*0.75
H1B50.61020.36790.11870.218*0.75
C2BN0.7218 (18)0.4410 (10)0.0692 (6)0.112 (4)*0.75
N1BN0.7401 (10)0.4796 (7)0.0313 (5)0.105 (3)*0.75
C1CN0.697 (3)0.3958 (11)0.0953 (6)0.044 (5)0.25
H1C10.71240.44310.07410.065*0.25
H1C20.60530.35280.08550.065*0.25
H1C30.75830.36190.08410.065*0.25
C2CN0.720 (2)0.4395 (14)0.1575 (6)0.039 (4)0.25
N1CN0.7334 (18)0.4674 (16)0.2089 (6)0.064 (5)0.25
O2W0.8088 (13)0.6125 (9)0.4157 (6)0.043 (3)*0.25
H2WA0.762 (12)0.647 (9)0.432 (7)0.041 (9)*0.25
H2WB0.890 (6)0.646 (9)0.433 (7)0.041 (9)*0.25
O3W0.014 (2)0.0323 (16)0.2510 (11)0.093 (6)*0.25
H3WA0.040 (16)0.064 (13)0.252 (13)0.092 (10)*0.25
H3WB0.092 (9)0.077 (11)0.254 (13)0.092 (10)*0.25
O1W0.7268 (9)0.4509 (5)0.3262 (4)0.068 (2)0.50
H1WA0.677 (7)0.3972 (13)0.332 (4)0.063 (6)*0.50
H1WB0.739 (11)0.433 (5)0.2886 (15)0.061 (6)*0.50
O1M0.6277 (4)0.2579 (2)0.31771 (14)0.0453 (8)
H1MA0.607 (4)0.211 (2)0.333 (2)0.044 (5)*
H1MB0.702 (3)0.257 (3)0.302 (2)0.049 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.02500 (18)0.02144 (18)0.01569 (17)0.00805 (12)0.00344 (12)0.00066 (12)
C1C0.058 (3)0.041 (3)0.031 (2)0.032 (2)0.003 (2)0.0012 (19)
C2C0.043 (2)0.046 (3)0.0172 (18)0.021 (2)0.0062 (18)0.0013 (18)
C3C0.068 (4)0.143 (7)0.043 (3)0.055 (4)0.021 (3)0.054 (4)
C4C0.060 (3)0.148 (7)0.040 (3)0.047 (4)0.008 (3)0.056 (4)
C5C0.032 (2)0.047 (3)0.0179 (18)0.0153 (19)0.0089 (17)0.0022 (17)
C6C0.038 (2)0.040 (3)0.032 (2)0.002 (2)0.0161 (19)0.0012 (19)
C7C0.064 (4)0.035 (3)0.120 (6)0.009 (3)0.038 (4)0.032 (3)
C8C0.072 (4)0.032 (3)0.128 (6)0.017 (3)0.013 (4)0.027 (3)
N1B0.0321 (18)0.0330 (18)0.0203 (16)0.0150 (14)0.0028 (14)0.0042 (14)
N2B0.0285 (17)0.0281 (18)0.0261 (17)0.0104 (14)0.0047 (14)0.0015 (14)
N3B0.0254 (16)0.0331 (18)0.0235 (16)0.0084 (14)0.0041 (14)0.0050 (14)
N4B0.0277 (17)0.0289 (18)0.0239 (16)0.0092 (14)0.0000 (14)0.0014 (14)
C1B0.037 (2)0.031 (2)0.029 (2)0.0174 (18)0.0014 (18)0.0083 (17)
C2B0.029 (2)0.049 (3)0.025 (2)0.0188 (19)0.0056 (17)0.0055 (19)
C3B0.031 (2)0.038 (2)0.027 (2)0.0100 (18)0.0098 (18)0.0006 (18)
C4B0.0228 (18)0.026 (2)0.0224 (18)0.0102 (15)0.0001 (15)0.0008 (15)
C5B0.039 (2)0.028 (2)0.042 (2)0.0070 (18)0.004 (2)0.0079 (19)
C6B0.030 (2)0.031 (2)0.027 (2)0.0073 (17)0.0004 (17)0.0065 (17)
C7B0.034 (2)0.041 (2)0.028 (2)0.0178 (19)0.0007 (18)0.0023 (18)
C8B0.027 (2)0.049 (3)0.0229 (19)0.0155 (19)0.0049 (17)0.0045 (18)
C9B0.0226 (18)0.0231 (19)0.0220 (18)0.0068 (15)0.0050 (15)0.0018 (15)
C10B0.044 (2)0.028 (2)0.043 (2)0.0135 (19)0.006 (2)0.0092 (19)
Rh20.0490 (2)0.0290 (2)0.0288 (2)0.01073 (16)0.00532 (17)0.00377 (15)
C1E0.070 (4)0.035 (3)0.053 (3)0.021 (2)0.001 (3)0.006 (2)
C2E0.071 (3)0.041 (3)0.036 (2)0.024 (2)0.003 (2)0.008 (2)
C3E0.110 (6)0.136 (7)0.042 (3)0.079 (6)0.002 (4)0.013 (4)
C4E0.066 (4)0.136 (7)0.043 (3)0.016 (4)0.006 (3)0.015 (4)
C5E0.061 (3)0.042 (3)0.030 (2)0.003 (2)0.006 (2)0.007 (2)
C6E0.052 (3)0.037 (3)0.054 (3)0.005 (2)0.004 (2)0.006 (2)
C7E0.061 (4)0.035 (3)0.178 (9)0.005 (3)0.011 (5)0.032 (4)
C8E0.078 (5)0.034 (3)0.178 (9)0.021 (3)0.027 (5)0.028 (4)
N1D0.049 (2)0.035 (2)0.0308 (19)0.0139 (17)0.0159 (18)0.0006 (16)
N2D0.042 (2)0.042 (2)0.037 (2)0.0175 (18)0.0125 (18)0.0065 (17)
N3D0.047 (2)0.034 (2)0.0329 (19)0.0126 (17)0.0077 (17)0.0019 (16)
N4D0.037 (2)0.043 (2)0.035 (2)0.0141 (17)0.0022 (17)0.0045 (17)
C1D0.074 (3)0.033 (2)0.023 (2)0.014 (2)0.014 (2)0.0012 (18)
C2D0.036 (2)0.048 (3)0.052 (3)0.015 (2)0.011 (2)0.009 (2)
C3D0.033 (2)0.051 (3)0.055 (3)0.018 (2)0.011 (2)0.002 (2)
C4D0.042 (2)0.032 (2)0.027 (2)0.0130 (19)0.0102 (19)0.0015 (17)
C5D0.048 (3)0.049 (3)0.041 (3)0.019 (2)0.011 (2)0.012 (2)
C6D0.066 (3)0.032 (2)0.022 (2)0.012 (2)0.010 (2)0.0004 (18)
C7D0.035 (2)0.044 (3)0.052 (3)0.016 (2)0.010 (2)0.007 (2)
C8D0.034 (2)0.057 (3)0.049 (3)0.021 (2)0.003 (2)0.002 (2)
C9D0.041 (2)0.033 (2)0.027 (2)0.0103 (19)0.0000 (19)0.0016 (18)
C10D0.045 (3)0.049 (3)0.039 (3)0.017 (2)0.008 (2)0.013 (2)
O10.0407 (16)0.0329 (16)0.0259 (14)0.0113 (13)0.0031 (13)0.0054 (12)
O20.0378 (16)0.0405 (17)0.0263 (14)0.0085 (13)0.0040 (13)0.0089 (13)
O30.0340 (15)0.0422 (17)0.0265 (14)0.0113 (13)0.0012 (13)0.0115 (13)
O40.0386 (16)0.0404 (17)0.0267 (14)0.0180 (13)0.0045 (13)0.0121 (13)
O50.0503 (18)0.0416 (17)0.0241 (14)0.0225 (15)0.0032 (13)0.0092 (13)
O60.0415 (16)0.0339 (16)0.0258 (14)0.0140 (13)0.0002 (13)0.0059 (12)
C1A0.038 (2)0.031 (2)0.030 (2)0.0132 (18)0.0010 (18)0.0136 (17)
C2A0.034 (2)0.029 (2)0.029 (2)0.0093 (17)0.0016 (18)0.0133 (17)
C3A0.030 (2)0.064 (3)0.039 (2)0.009 (2)0.002 (2)0.027 (2)
C4A0.029 (2)0.054 (3)0.043 (3)0.001 (2)0.008 (2)0.020 (2)
C5A0.034 (2)0.046 (3)0.031 (2)0.009 (2)0.0103 (19)0.004 (2)
C6A0.044 (2)0.045 (3)0.025 (2)0.018 (2)0.0053 (19)0.0078 (19)
C7A0.048 (2)0.029 (2)0.0130 (17)0.0098 (18)0.0031 (17)0.0010 (15)
C8A0.047 (2)0.029 (2)0.0135 (17)0.0116 (18)0.0010 (17)0.0004 (15)
C9A0.040 (2)0.048 (3)0.024 (2)0.014 (2)0.0056 (19)0.0068 (19)
C10A0.048 (3)0.047 (3)0.030 (2)0.027 (2)0.004 (2)0.003 (2)
C11A0.055 (3)0.056 (3)0.044 (3)0.038 (3)0.014 (2)0.021 (2)
C12A0.049 (3)0.063 (3)0.040 (3)0.037 (2)0.010 (2)0.027 (2)
C13A0.033 (2)0.032 (2)0.032 (2)0.0133 (17)0.0001 (18)0.0135 (18)
C14A0.040 (2)0.026 (2)0.0260 (19)0.0115 (17)0.0032 (17)0.0108 (16)
C15A0.033 (2)0.027 (2)0.028 (2)0.0076 (17)0.0023 (17)0.0097 (16)
C16A0.029 (2)0.037 (2)0.029 (2)0.0114 (17)0.0044 (17)0.0159 (18)
C17A0.057 (3)0.034 (2)0.0153 (18)0.017 (2)0.0090 (19)0.0036 (16)
C18A0.060 (3)0.027 (2)0.0170 (18)0.009 (2)0.0047 (19)0.0022 (16)
C19A0.058 (3)0.029 (2)0.0163 (18)0.008 (2)0.0001 (19)0.0023 (16)
C20A0.047 (3)0.032 (2)0.0140 (17)0.0071 (19)0.0001 (18)0.0025 (16)
P1A0.0322 (5)0.0249 (5)0.0232 (5)0.0090 (4)0.0024 (4)0.0027 (4)
F1A0.0494 (15)0.0320 (13)0.0295 (12)0.0109 (11)0.0015 (11)0.0117 (10)
F2A0.0361 (13)0.0452 (15)0.0392 (14)0.0191 (11)0.0050 (11)0.0094 (12)
F3A0.0531 (15)0.0251 (12)0.0273 (12)0.0085 (11)0.0008 (11)0.0054 (10)
F4A0.0453 (14)0.0388 (14)0.0228 (11)0.0135 (11)0.0026 (10)0.0057 (10)
F5A0.0335 (13)0.0446 (15)0.0415 (14)0.0144 (11)0.0043 (11)0.0089 (12)
F6A0.0446 (14)0.0252 (12)0.0385 (14)0.0086 (11)0.0046 (11)0.0018 (10)
P1B0.0355 (9)0.0525 (11)0.0317 (8)0.0184 (8)0.0011 (7)0.0079 (7)
F1B0.090 (2)0.082 (2)0.0338 (16)0.0303 (19)0.0012 (16)0.0050 (15)
F22B0.034 (6)0.088 (11)0.061 (6)0.031 (6)0.001 (6)0.008 (11)
F32B0.055 (10)0.070 (6)0.063 (7)0.021 (6)0.011 (10)0.024 (5)
F23B0.065 (7)0.083 (7)0.078 (6)0.019 (6)0.009 (6)0.009 (7)
F33B0.048 (6)0.073 (6)0.053 (5)0.022 (5)0.008 (6)0.009 (4)
F21B0.068 (7)0.080 (9)0.081 (7)0.030 (6)0.004 (5)0.003 (8)
F31B0.054 (7)0.076 (6)0.066 (6)0.023 (5)0.002 (7)0.010 (5)
P1C0.0369 (10)0.0391 (11)0.153 (3)0.0145 (9)0.0049 (14)0.0050 (14)
F11C0.034 (4)0.060 (5)0.158 (6)0.008 (3)0.005 (4)0.007 (4)
F21C0.097 (5)0.043 (3)0.104 (6)0.011 (3)0.014 (5)0.006 (3)
F31C0.0227 (18)0.057 (3)0.125 (4)0.0214 (18)0.002 (2)0.016 (3)
F12C0.028 (5)0.066 (7)0.174 (7)0.012 (5)0.001 (6)0.018 (6)
F22C0.099 (10)0.043 (8)0.164 (14)0.007 (7)0.029 (12)0.028 (9)
F32C0.069 (5)0.068 (5)0.150 (6)0.001 (5)0.005 (6)0.007 (6)
C1AN0.031 (5)0.109 (9)0.028 (5)0.040 (5)0.004 (4)0.005 (5)
C2AN0.024 (4)0.076 (8)0.061 (7)0.030 (5)0.002 (4)0.000 (6)
N1AN0.046 (5)0.100 (9)0.073 (7)0.038 (6)0.016 (5)0.014 (6)
C1CN0.087 (13)0.010 (7)0.015 (8)0.008 (7)0.010 (8)0.005 (6)
C2CN0.041 (8)0.053 (9)0.020 (8)0.022 (7)0.012 (7)0.000 (7)
N1CN0.044 (9)0.104 (13)0.036 (8)0.031 (9)0.009 (7)0.002 (9)
O1W0.089 (5)0.045 (4)0.062 (4)0.012 (4)0.003 (4)0.015 (3)
O1M0.055 (2)0.0443 (19)0.0305 (16)0.0154 (16)0.0011 (15)0.0024 (14)
Geometric parameters (Å, º) top
Rh1—C9B2.037 (4)C10D—H10E0.9600
Rh1—C4B2.042 (4)C10D—H10F0.9600
Rh1—C5C2.198 (4)O1—C7A1.370 (5)
Rh1—C6C2.203 (4)O1—C6A1.438 (5)
Rh1—C1C2.205 (4)O2—C4A1.408 (6)
Rh1—C2C2.208 (4)O2—C5A1.408 (5)
C1C—C2C1.371 (7)O3—C2A1.359 (5)
C1C—C8C1.495 (8)O3—C3A1.412 (5)
C1C—H1C0.9300O4—C1A1.362 (5)
C2C—C3C1.497 (6)O4—C12A1.422 (5)
C2C—H2C0.9300O5—C10A1.407 (5)
C3C—C4C1.417 (8)O5—C11A1.417 (6)
C3C—H3C0.9300O6—C8A1.379 (5)
C4C—C5C1.503 (7)O6—C9A1.440 (5)
C4C—H4C0.9300C1A—C16A1.384 (6)
C5C—C6C1.354 (7)C1A—C2A1.404 (6)
C5C—H5C0.9300C2A—C13A1.389 (6)
C6C—C7C1.497 (8)C3A—C4A1.506 (6)
C6C—H6C0.9300C3A—H3A10.9700
C7C—C8C1.402 (9)C3A—H3A20.9700
C7C—H7C0.9300C4A—H4A10.9700
C8C—H8C0.9300C4A—H4A20.9700
N1B—C4B1.350 (5)C5A—C6A1.505 (6)
N1B—C2B1.384 (5)C5A—H5A10.9700
N1B—C1B1.468 (5)C5A—H5A20.9700
N2B—C4B1.351 (5)C6A—H6A10.9700
N2B—C3B1.389 (5)C6A—H6A20.9700
N2B—C5B1.448 (5)C7A—C17A1.378 (6)
N3B—C9B1.351 (5)C7A—C8A1.386 (6)
N3B—C8B1.383 (5)C8A—C20A1.382 (6)
N3B—C6B1.475 (5)C9A—C10A1.503 (7)
N4B—C9B1.354 (5)C9A—H9A10.9700
N4B—C7B1.385 (6)C9A—H9A20.9700
N4B—C10B1.454 (6)C10A—H10G0.9700
C1B—C14A1.515 (6)C10A—H10H0.9700
C1B—H1B10.9700C11A—C12A1.514 (7)
C1B—H1B20.9700C11A—H11A0.9700
C2B—C3B1.341 (7)C11A—H11B0.9700
C2B—H2B0.9300C12A—H12A0.9700
C3B—H3B0.9300C12A—H12B0.9700
C5B—H5B10.9600C13A—C14A1.390 (6)
C5B—H5B20.9600C13A—H13A0.9300
C5B—H5B30.9600C14A—C15A1.410 (6)
C6B—C15A1.509 (5)C15A—C16A1.395 (6)
C6B—H6B10.9700C16A—H16A0.9300
C6B—H6B20.9700C17A—C18A1.409 (7)
C7B—C8B1.345 (7)C17A—H17A0.9300
C7B—H7B0.9300C18A—C19A1.375 (7)
C8B—H8B0.9300C19A—C20A1.399 (6)
C10B—H10A0.9600C20A—H20A0.9300
C10B—H10B0.9600P1A—F2A1.599 (3)
C10B—H10C0.9600P1A—F5A1.600 (3)
Rh2—C4D2.033 (5)P1A—F6A1.606 (3)
Rh2—C9D2.037 (5)P1A—F3A1.608 (3)
Rh2—C1E2.196 (5)P1A—F4A1.608 (2)
Rh2—C6E2.196 (5)P1A—F1A1.608 (2)
Rh2—C2E2.204 (5)P1B—F31Bi1.570 (7)
Rh2—C5E2.214 (5)P1B—F31B1.570 (7)
C1E—C2E1.383 (7)P1B—F33Bi1.572 (7)
C1E—C8E1.508 (8)P1B—F33B1.572 (7)
C1E—H1E0.9300P1B—F22Bi1.573 (7)
C2E—C3E1.501 (9)P1B—F22B1.573 (7)
C2E—H2E0.9300P1B—F23B1.573 (7)
C3E—C4E1.407 (10)P1B—F23Bi1.573 (7)
C3E—H3E10.9700P1B—F32B1.574 (7)
C3E—H3E20.9700P1B—F32Bi1.574 (7)
C4E—C5E1.507 (8)P1B—F21Bi1.576 (7)
C4E—H4E10.9700P1B—F21B1.576 (7)
C4E—H4E20.9700P1C—F31C1.565 (4)
C5E—C6E1.396 (7)P1C—F31Cii1.565 (4)
C5E—H5E0.9300P1C—F11Cii1.576 (5)
C6E—C7E1.502 (8)P1C—F11C1.576 (5)
C6E—H6E0.9300P1C—F32Cii1.581 (8)
C7E—C8E1.420 (10)P1C—F32C1.581 (8)
C7E—H7E0.9300P1C—F22C1.587 (8)
C8E—H8E0.9300P1C—F22Cii1.587 (8)
N1D—C4D1.351 (6)P1C—F12C1.595 (8)
N1D—C2D1.407 (7)P1C—F12Cii1.595 (8)
N1D—C1D1.456 (6)P1C—F21C1.603 (5)
N2D—C4D1.358 (6)P1C—F21Cii1.603 (5)
N2D—C3D1.403 (7)F12C—F32C1.15 (3)
N2D—C5D1.474 (6)C1AN—C2AN1.407 (13)
N3D—C9D1.359 (6)C1AN—H1A10.9600
N3D—C7D1.385 (6)C1AN—H1A20.9600
N3D—C6D1.468 (6)C1AN—H1A30.9600
N4D—C9D1.355 (6)C2AN—N1AN1.152 (12)
N4D—C8D1.399 (6)C1BN—C2BN1.404 (14)
N4D—C10D1.466 (6)C1BN—H1B30.9600
C1D—C18A1.516 (6)C1BN—H1B40.9600
C1D—H1D10.9700C1BN—H1B50.9600
C1D—H1D20.9700C2BN—N1BN1.171 (12)
C2D—C3D1.329 (7)C1CN—C2CN1.417 (14)
C2D—H2D0.9300C1CN—H1C10.9600
C3D—H3D0.9300C1CN—H1C20.9600
C5D—H5D10.9600C1CN—H1C30.9600
C5D—H5D20.9600C2CN—N1CN1.156 (13)
C5D—H5D30.9600O2W—H2WA0.867 (10)
C6D—C19A1.528 (7)O2W—H2WB0.867 (11)
C6D—H6D10.9700O3W—H3WA0.871 (11)
C6D—H6D20.9700O3W—H3WB0.870 (11)
C7D—C8D1.341 (7)O1W—H1WA0.870 (10)
C7D—H7D0.9300O1W—H1WB0.871 (10)
C8D—H8D0.9300O1M—H1MA0.863 (10)
C10D—H10D0.9600O1M—H1MB0.860 (10)
C9B—Rh1—C4B92.09 (15)O3—C3A—C4A108.0 (4)
C9B—Rh1—C5C90.57 (15)O3—C3A—H3A1110.1
C4B—Rh1—C5C162.87 (17)C4A—C3A—H3A1110.1
C9B—Rh1—C6C90.60 (17)O3—C3A—H3A2110.1
C4B—Rh1—C6C160.89 (17)C4A—C3A—H3A2110.1
C5C—Rh1—C6C35.85 (17)H3A1—C3A—H3A2108.4
C9B—Rh1—C1C160.62 (18)O2—C4A—C3A108.2 (4)
C4B—Rh1—C1C90.47 (17)O2—C4A—H4A1110.1
C5C—Rh1—C1C92.62 (17)C3A—C4A—H4A1110.1
C6C—Rh1—C1C80.97 (19)O2—C4A—H4A2110.1
C9B—Rh1—C2C162.78 (16)C3A—C4A—H4A2110.1
C4B—Rh1—C2C90.74 (16)H4A1—C4A—H4A2108.4
C5C—Rh1—C2C81.94 (16)O2—C5A—C6A109.3 (4)
C6C—Rh1—C2C92.27 (18)O2—C5A—H5A1109.8
C1C—Rh1—C2C36.21 (18)C6A—C5A—H5A1109.8
C2C—C1C—C8C125.2 (5)O2—C5A—H5A2109.8
C2C—C1C—Rh172.0 (2)C6A—C5A—H5A2109.8
C8C—C1C—Rh1108.7 (4)H5A1—C5A—H5A2108.3
C2C—C1C—H1C117.4O1—C6A—C5A107.6 (3)
C8C—C1C—H1C117.4O1—C6A—H6A1110.2
Rh1—C1C—H1C89.2C5A—C6A—H6A1110.2
C1C—C2C—C3C124.7 (5)O1—C6A—H6A2110.2
C1C—C2C—Rh171.8 (3)C5A—C6A—H6A2110.2
C3C—C2C—Rh1107.7 (3)H6A1—C6A—H6A2108.5
C1C—C2C—H2C117.6O1—C7A—C17A125.0 (4)
C3C—C2C—H2C117.6O1—C7A—C8A115.6 (4)
Rh1—C2C—H2C90.5C17A—C7A—C8A119.4 (4)
C4C—C3C—C2C119.6 (5)O6—C8A—C20A124.6 (4)
C4C—C3C—H3C120.2O6—C8A—C7A115.6 (4)
C2C—C3C—H3C120.2C20A—C8A—C7A119.9 (4)
C3C—C4C—C5C119.2 (4)O6—C9A—C10A107.5 (4)
C3C—C4C—H4C120.4O6—C9A—H9A1110.2
C5C—C4C—H4C120.4C10A—C9A—H9A1110.2
C6C—C5C—C4C124.3 (5)O6—C9A—H9A2110.2
C6C—C5C—Rh172.3 (2)C10A—C9A—H9A2110.2
C4C—C5C—Rh1108.0 (3)H9A1—C9A—H9A2108.5
C6C—C5C—H5C117.9O5—C10A—C9A108.8 (4)
C4C—C5C—H5C117.9O5—C10A—H10G109.9
Rh1—C5C—H5C89.7C9A—C10A—H10G109.9
C5C—C6C—C7C126.1 (6)O5—C10A—H10H109.9
C5C—C6C—Rh171.9 (2)C9A—C10A—H10H109.9
C7C—C6C—Rh1108.4 (3)H10G—C10A—H10H108.3
C5C—C6C—H6C116.9O5—C11A—C12A108.2 (4)
C7C—C6C—H6C116.9O5—C11A—H11A110.1
Rh1—C6C—H6C89.7C12A—C11A—H11A110.1
C8C—C7C—C6C119.5 (5)O5—C11A—H11B110.1
C8C—C7C—H7C120.3C12A—C11A—H11B110.1
C6C—C7C—H7C120.3H11A—C11A—H11B108.4
C7C—C8C—C1C118.9 (5)O4—C12A—C11A107.4 (4)
C7C—C8C—H8C120.5O4—C12A—H12A110.2
C1C—C8C—H8C120.5C11A—C12A—H12A110.2
C4B—N1B—C2B110.7 (3)O4—C12A—H12B110.2
C4B—N1B—C1B124.5 (3)C11A—C12A—H12B110.2
C2B—N1B—C1B124.8 (3)H12A—C12A—H12B108.5
C4B—N2B—C3B110.7 (3)C2A—C13A—C14A122.2 (4)
C4B—N2B—C5B125.4 (3)C2A—C13A—H13A118.9
C3B—N2B—C5B123.9 (4)C14A—C13A—H13A118.9
C9B—N3B—C8B111.2 (3)C13A—C14A—C15A118.8 (4)
C9B—N3B—C6B124.6 (3)C13A—C14A—C1B117.9 (4)
C8B—N3B—C6B124.2 (3)C15A—C14A—C1B123.3 (3)
C9B—N4B—C7B111.1 (3)C16A—C15A—C14A118.7 (4)
C9B—N4B—C10B124.7 (3)C16A—C15A—C6B117.8 (4)
C7B—N4B—C10B124.2 (4)C14A—C15A—C6B123.4 (4)
N1B—C1B—C14A111.6 (3)C1A—C16A—C15A122.0 (4)
N1B—C1B—H1B1109.3C1A—C16A—H16A119.0
C14A—C1B—H1B1109.3C15A—C16A—H16A119.0
N1B—C1B—H1B2109.3C7A—C17A—C18A121.1 (5)
C14A—C1B—H1B2109.3C7A—C17A—H17A119.4
H1B1—C1B—H1B2108.0C18A—C17A—H17A119.4
C3B—C2B—N1B107.1 (3)C19A—C18A—C17A119.1 (4)
C3B—C2B—H2B126.5C19A—C18A—C1D124.3 (4)
N1B—C2B—H2B126.5C17A—C18A—C1D116.6 (4)
C2B—C3B—N2B106.5 (4)C18A—C19A—C20A119.6 (4)
C2B—C3B—H3B126.7C18A—C19A—C6D123.7 (4)
N2B—C3B—H3B126.7C20A—C19A—C6D116.7 (4)
N1B—C4B—N2B105.0 (3)C8A—C20A—C19A120.9 (4)
N1B—C4B—Rh1127.1 (3)C8A—C20A—H20A119.6
N2B—C4B—Rh1127.7 (3)C19A—C20A—H20A119.6
N2B—C5B—H5B1109.5F2A—P1A—F5A178.98 (15)
N2B—C5B—H5B2109.5F2A—P1A—F6A90.39 (14)
H5B1—C5B—H5B2109.5F5A—P1A—F6A90.49 (14)
N2B—C5B—H5B3109.5F2A—P1A—F3A89.45 (15)
H5B1—C5B—H5B3109.5F5A—P1A—F3A89.67 (15)
H5B2—C5B—H5B3109.5F6A—P1A—F3A179.78 (18)
N3B—C6B—C15A111.6 (3)F2A—P1A—F4A89.73 (14)
N3B—C6B—H6B1109.3F5A—P1A—F4A89.75 (14)
C15A—C6B—H6B1109.3F6A—P1A—F4A90.21 (14)
N3B—C6B—H6B2109.3F3A—P1A—F4A89.94 (13)
C15A—C6B—H6B2109.3F2A—P1A—F1A90.22 (14)
H6B1—C6B—H6B2108.0F5A—P1A—F1A90.31 (14)
C8B—C7B—N4B106.6 (4)F6A—P1A—F1A89.52 (14)
C8B—C7B—H7B126.7F3A—P1A—F1A90.33 (13)
N4B—C7B—H7B126.7F4A—P1A—F1A179.73 (17)
C7B—C8B—N3B106.7 (4)F31Bi—P1B—F31B179.997 (8)
C7B—C8B—H8B126.7F31B—P1B—F33Bi137.1 (6)
N3B—C8B—H8B126.7F31Bi—P1B—F33B137.1 (6)
N3B—C9B—N4B104.4 (3)F33Bi—P1B—F33B179.999 (3)
N3B—C9B—Rh1127.1 (3)F31Bi—P1B—F22Bi68.8 (9)
N4B—C9B—Rh1128.3 (3)F31B—P1B—F22Bi111.2 (9)
N4B—C10B—H10A109.5F33Bi—P1B—F22Bi111.7 (8)
N4B—C10B—H10B109.5F33B—P1B—F22Bi68.3 (8)
H10A—C10B—H10B109.5F31Bi—P1B—F22B111.2 (9)
N4B—C10B—H10C109.5F31B—P1B—F22B68.8 (9)
H10A—C10B—H10C109.5F33Bi—P1B—F22B68.3 (8)
H10B—C10B—H10C109.5F33B—P1B—F22B111.7 (8)
C4D—Rh2—C9D93.91 (18)F22Bi—P1B—F22B180.0 (17)
C4D—Rh2—C1E90.3 (2)F31Bi—P1B—F23B136.0 (7)
C9D—Rh2—C1E163.54 (19)F33Bi—P1B—F23B93.1 (7)
C4D—Rh2—C6E163.53 (19)F33B—P1B—F23B86.9 (7)
C9D—Rh2—C6E90.5 (2)F22Bi—P1B—F23B155.2 (7)
C1E—Rh2—C6E81.3 (2)F31B—P1B—F23Bi136.0 (7)
C4D—Rh2—C2E89.0 (2)F33Bi—P1B—F23Bi86.9 (7)
C9D—Rh2—C2E159.12 (18)F33B—P1B—F23Bi93.1 (7)
C1E—Rh2—C2E36.66 (19)F22B—P1B—F23Bi155.2 (7)
C6E—Rh2—C2E92.5 (2)F23B—P1B—F23Bi179.996 (9)
C4D—Rh2—C5E158.85 (18)F31Bi—P1B—F32B159.8 (8)
C9D—Rh2—C5E88.8 (2)F33Bi—P1B—F32B157.0 (6)
C1E—Rh2—C5E93.1 (2)F22Bi—P1B—F32B91.1 (10)
C6E—Rh2—C5E36.91 (19)F22B—P1B—F32B88.9 (10)
C2E—Rh2—C5E81.4 (2)F23B—P1B—F32B64.2 (8)
C2E—C1E—C8E125.6 (6)F23Bi—P1B—F32B115.8 (9)
C2E—C1E—Rh272.0 (3)F31B—P1B—F32Bi159.8 (8)
C8E—C1E—Rh2108.9 (4)F33B—P1B—F32Bi157.0 (6)
C2E—C1E—H1E117.2F22Bi—P1B—F32Bi88.9 (10)
C8E—C1E—H1E117.2F22B—P1B—F32Bi91.1 (10)
Rh2—C1E—H1E89.1F23B—P1B—F32Bi115.8 (9)
C1E—C2E—C3E125.7 (6)F23Bi—P1B—F32Bi64.2 (8)
C1E—C2E—Rh271.4 (3)F32B—P1B—F32Bi179.999 (8)
C3E—C2E—Rh2108.7 (4)F31Bi—P1B—F21Bi92.0 (8)
C1E—C2E—H2E117.2F31B—P1B—F21Bi88.0 (8)
C3E—C2E—H2E117.2F33Bi—P1B—F21Bi135.0 (7)
Rh2—C2E—H2E89.9F33B—P1B—F21Bi45.0 (7)
C4E—C3E—C2E118.9 (6)F22B—P1B—F21Bi156.7 (8)
C4E—C3E—H3E1107.6F23B—P1B—F21Bi131.9 (8)
C2E—C3E—H3E1107.6F23Bi—P1B—F21Bi48.1 (8)
C4E—C3E—H3E2107.6F32B—P1B—F21Bi67.9 (9)
C2E—C3E—H3E2107.6F32Bi—P1B—F21Bi112.1 (9)
H3E1—C3E—H3E2107.0F31Bi—P1B—F21B88.0 (8)
C3E—C4E—C5E119.9 (6)F31B—P1B—F21B92.0 (8)
C3E—C4E—H4E1107.4F33Bi—P1B—F21B45.0 (7)
C5E—C4E—H4E1107.4F33B—P1B—F21B135.0 (7)
C3E—C4E—H4E2107.4F22Bi—P1B—F21B156.7 (8)
C5E—C4E—H4E2107.4F23B—P1B—F21B48.1 (8)
H4E1—C4E—H4E2106.9F23Bi—P1B—F21B131.9 (8)
C6E—C5E—C4E124.4 (6)F32B—P1B—F21B112.1 (9)
C6E—C5E—Rh270.9 (3)F32Bi—P1B—F21B67.9 (9)
C4E—C5E—Rh2107.8 (4)F21Bi—P1B—F21B179.998 (2)
C6E—C5E—H5E117.8F31C—P1C—F31Cii180.0 (3)
C4E—C5E—H5E117.8F31C—P1C—F11Cii86.0 (5)
Rh2—C5E—H5E91.4F31Cii—P1C—F11Cii94.0 (4)
C5E—C6E—C7E125.6 (6)F31C—P1C—F11C94.0 (4)
C5E—C6E—Rh272.2 (3)F31Cii—P1C—F11C86.0 (5)
C7E—C6E—Rh2109.2 (4)F11Cii—P1C—F11C179.998 (2)
C5E—C6E—H6E117.2F31C—P1C—F32Cii128.4 (6)
C7E—C6E—H6E117.2F31Cii—P1C—F32Cii51.6 (6)
Rh2—C6E—H6E88.5F11Cii—P1C—F32Cii57.1 (6)
C8E—C7E—C6E118.7 (5)F11C—P1C—F32Cii122.9 (6)
C8E—C7E—H7E120.7F31C—P1C—F32C51.6 (6)
C6E—C7E—H7E120.7F31Cii—P1C—F32C128.4 (6)
C7E—C8E—C1E118.5 (5)F11Cii—P1C—F32C122.9 (6)
C7E—C8E—H8E120.8F11C—P1C—F32C57.1 (6)
C1E—C8E—H8E120.8F32Cii—P1C—F32C179.999 (5)
C4D—N1D—C2D110.8 (4)F31C—P1C—F22C98.0 (14)
C4D—N1D—C1D124.6 (4)F31Cii—P1C—F22C82.0 (14)
C2D—N1D—C1D124.6 (4)F11Cii—P1C—F22C72.3 (10)
C4D—N2D—C3D111.6 (4)F11C—P1C—F22C107.7 (10)
C4D—N2D—C5D124.9 (4)F32Cii—P1C—F22C102.4 (11)
C3D—N2D—C5D123.5 (4)F32C—P1C—F22C77.6 (11)
C9D—N3D—C7D111.3 (4)F31C—P1C—F22Cii82.0 (14)
C9D—N3D—C6D123.5 (4)F31Cii—P1C—F22Cii98.0 (14)
C7D—N3D—C6D125.2 (4)F11Cii—P1C—F22Cii107.7 (10)
C9D—N4D—C8D111.6 (4)F11C—P1C—F22Cii72.3 (10)
C9D—N4D—C10D124.9 (4)F32Cii—P1C—F22Cii77.6 (11)
C8D—N4D—C10D123.4 (4)F32C—P1C—F22Cii102.4 (11)
N1D—C1D—C18A113.3 (3)F22C—P1C—F22Cii179.997 (9)
N1D—C1D—H1D1108.9F31C—P1C—F12C88.6 (10)
C18A—C1D—H1D1108.9F31Cii—P1C—F12C91.4 (10)
N1D—C1D—H1D2108.9F11Cii—P1C—F12C160.4 (8)
C18A—C1D—H1D2108.9F32Cii—P1C—F12C137.7 (10)
H1D1—C1D—H1D2107.7F22C—P1C—F12C89.8 (12)
C3D—C2D—N1D107.4 (4)F22Cii—P1C—F12C90.2 (12)
C3D—C2D—H2D126.3F31C—P1C—F12Cii91.4 (10)
N1D—C2D—H2D126.3F31Cii—P1C—F12Cii88.6 (10)
C2D—C3D—N2D106.1 (5)F11C—P1C—F12Cii160.4 (8)
C2D—C3D—H3D127.0F32C—P1C—F12Cii137.7 (10)
N2D—C3D—H3D127.0F22C—P1C—F12Cii90.2 (12)
N1D—C4D—N2D104.2 (4)F22Cii—P1C—F12Cii89.8 (12)
N1D—C4D—Rh2126.1 (3)F12C—P1C—F12Cii179.998 (4)
N2D—C4D—Rh2129.0 (3)F31C—P1C—F21C88.5 (5)
N2D—C5D—H5D1109.5F31Cii—P1C—F21C91.5 (5)
N2D—C5D—H5D2109.5F11Cii—P1C—F21C89.5 (4)
H5D1—C5D—H5D2109.5F11C—P1C—F21C90.5 (4)
N2D—C5D—H5D3109.5F32Cii—P1C—F21C122.0 (6)
H5D1—C5D—H5D3109.5F32C—P1C—F21C58.0 (6)
H5D2—C5D—H5D3109.5F22Cii—P1C—F21C159.6 (9)
N3D—C6D—C19A112.6 (3)F12C—P1C—F21C71.4 (8)
N3D—C6D—H6D1109.1F12Cii—P1C—F21C108.6 (8)
C19A—C6D—H6D1109.1F31C—P1C—F21Cii91.5 (5)
N3D—C6D—H6D2109.1F31Cii—P1C—F21Cii88.5 (5)
C19A—C6D—H6D2109.1F11Cii—P1C—F21Cii90.5 (4)
H6D1—C6D—H6D2107.8F11C—P1C—F21Cii89.5 (4)
C8D—C7D—N3D107.3 (4)F32Cii—P1C—F21Cii58.0 (6)
C8D—C7D—H7D126.3F32C—P1C—F21Cii122.0 (6)
N3D—C7D—H7D126.3F22C—P1C—F21Cii159.6 (9)
C7D—C8D—N4D105.9 (4)F12C—P1C—F21Cii108.6 (8)
C7D—C8D—H8D127.0F12Cii—P1C—F21Cii71.4 (8)
N4D—C8D—H8D127.0F21C—P1C—F21Cii179.998 (3)
N4D—C9D—N3D103.8 (4)F32C—F12C—P1C68.2 (7)
N4D—C9D—Rh2129.1 (3)F12C—F32C—P1C69.5 (7)
N3D—C9D—Rh2126.3 (3)C2AN—C1AN—H1A1109.5
N4D—C10D—H10D109.5C2AN—C1AN—H1A2109.5
N4D—C10D—H10E109.5H1A1—C1AN—H1A2109.5
H10D—C10D—H10E109.5C2AN—C1AN—H1A3109.5
N4D—C10D—H10F109.5H1A1—C1AN—H1A3109.5
H10D—C10D—H10F109.5H1A2—C1AN—H1A3109.5
H10E—C10D—H10F109.5N1AN—C2AN—C1AN178.6 (14)
C7A—O1—C6A116.5 (3)N1BN—C2BN—C1BN172.1 (17)
C4A—O2—C5A111.9 (3)C2CN—C1CN—H1C1109.5
C2A—O3—C3A117.9 (3)C2CN—C1CN—H1C2109.5
C1A—O4—C12A116.9 (3)H1C1—C1CN—H1C2109.5
C10A—O5—C11A111.7 (4)C2CN—C1CN—H1C3109.5
C8A—O6—C9A116.7 (3)H1C1—C1CN—H1C3109.5
O4—C1A—C16A125.4 (4)H1C2—C1CN—H1C3109.5
O4—C1A—C2A115.2 (3)N1CN—C2CN—C1CN174 (2)
C16A—C1A—C2A119.3 (4)H2WA—O2W—H2WB101.5 (16)
O3—C2A—C13A125.2 (4)H3WA—O3W—H3WB100.7 (16)
O3—C2A—C1A116.0 (4)H1WA—O1W—H1WB100.5 (16)
C13A—C2A—C1A118.8 (4)H1MA—O1M—H1MB102.6 (16)
Symmetry codes: (i) x, y+2, z+1; (ii) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1M—H1MB···O2iii0.86 (1)2.51 (3)3.226 (5)141 (3)
O1M—H1MB···O3iii0.86 (1)2.50 (4)3.076 (4)125 (4)
O1M—H1MA···O1iii0.86 (1)2.38 (3)3.149 (5)149 (4)
O1M—H1MA···O6iii0.86 (1)2.39 (2)3.138 (5)145 (4)
O3W—H3WB···O5iii0.87 (1)2.21 (9)3.03 (2)158 (23)
O3W—H3WA···O2iv0.87 (1)2.16 (10)2.99 (2)160 (27)
O1W—H1WA···O1M0.87 (1)2.00 (1)2.796 (9)151 (3)
O1W—H1WB···N1CN0.87 (1)2.06 (6)2.805 (18)143 (9)
Symmetry codes: (iii) x, y1, z; (iv) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Rh2(C8H12)2(C40H42N8O6)](PF6)2·1.5C2H3N·2H2O
Mr1540.55
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.510 (2), 15.630 (3), 23.280 (5)
α, β, γ (°)104.69 (3), 90.20 (3), 109.58 (3)
V3)3468.9 (12)
Z2
Radiation typeSynchrotron, λ = 0.71073 Å
µ (mm1)0.61
Crystal size (mm)0.03 × 0.02 × 0.01
Data collection
Diffractometer3-BM1 Australian Synchrotron
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
43942, 11473, 9939
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.164, 1.33
No. of reflections11473
No. of parameters964
No. of restraints270
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.15, 1.40

Computer programs: BLU-ICE (McPhillips et al., 2002), XDS (Kabsch, 1993), SHELXS97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1M—H1MB···O2i0.860 (10)2.51 (3)3.226 (5)141 (3)
O1M—H1MB···O3i0.860 (10)2.50 (4)3.076 (4)125 (4)
O1M—H1MA···O1i0.863 (10)2.38 (3)3.149 (5)149 (4)
O1M—H1MA···O6i0.863 (10)2.39 (2)3.138 (5)145 (4)
O3W—H3WB···O5i0.870 (11)2.21 (9)3.03 (2)158 (23)
O3W—H3WA···O2ii0.871 (11)2.16 (10)2.99 (2)160 (27)
O1W—H1WA···O1M0.870 (10)2.001 (10)2.796 (9)151 (3)
O1W—H1WB···N1CN0.871 (10)2.06 (6)2.805 (18)143 (9)
Symmetry codes: (i) x, y1, z; (ii) x1, y1, z.
 

Acknowledgements

The authors thank the Australian Research Council (DP0988410) for financial support. They also thank the Australian Synchrotron Facility, Melbourne, for the X-ray data.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationKabsch, W. (1993). J. Appl. Cryst. 26, 795–800.  CrossRef CAS Web of Science IUCr Journals
First citationMata, J. A., Chianese, A. R., Miecznikowski, J. R., Poyatos, M., Peris, E., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 1253–1263.  Web of Science CSD CrossRef CAS
First citationMcPhillips, T. M., McPhillips, S. E., Chiu, H.-J., Cohen, A. E., Deacon, A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, R. P., Soltis, S. M. & Kuhn, P. (2002). J. Synchrotron Rad. 9, 401–406.  Web of Science CrossRef CAS IUCr Journals
First citationRiederer, S. K. U., Gigler, P., Högerl, M. P., Herdtweck, E., Bechlars, B., Herrmann, W. A. & Kühn, F. (2010). Organometallics, 29, 5681–5692.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationShrestha, S., Gimbert-Suriñach, C., Bhadbhade, M. & Colbran, S. B. (2011). Eur. J. Inorg. Chem. 28, 4331–4337.  Web of Science CSD CrossRef
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 1| January 2013| Pages m47-m48
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds