organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 1| January 2013| Pages o142-o143

Cinnarizinium fumarate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 9 December 2012; accepted 18 December 2012; online 22 December 2012)

In the title salt {systematic name: 4-diphenyl­methyl-1-[(E)-3-phenyl­prop-2-en-1-yl]piperazin-1-ium (2Z)-3-carb­oxy­prop-2-enoate}, C26H29N2+·C4H3O4, the piperazine ring in the cation adopts a distorted chair conformation and contains a positively charged N atom with quaternary character. The dihedral angle between the mean planes of the phenyl rings of the diphenyl­methyl group is 74.2 (7)° and those between these rings and the phenyl ring of the 3-phenyl­prop-2-en-1-yl group are 12.7 (9) and 80.6 (8)°. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds form chains along [001]. Weak C—H⋯O inter­actions connect parallel chains along [010], forming layers perpendicular to the a-axis direction.

Related literature

For cinnarizine as a calcium channel blocker, see: Terland & Flatmark (1999[Terland, O. & Flatmark, T. (1999). Neuropharmacology, 38, 879-882.]), as a nootropic drug, see: Towse (1980[Towse, G. (1980). J. Laryngol. Otol. 94, 1009-1015.]) and for a clinical evaluation in various allergic disorders, see: Barrett & Zolov (1960[Barrett, R. J. & Zolov, B. (1960). J. Maine Med. Assoc. 51, 454-457.]). For related structures, see: Bertolasi et al. (1980[Bertolasi, V., Borea, P. A., Gilli, G. & Sacerdoti, M. (1980). Acta Cryst. B36, 1975-1977.]); Dayananda et al. (2012[Dayananda, A. S., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o1165-o1166.]); Jasinski et al. (2011[Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Chidan Kumar, C. S. (2011). Acta Cryst. E67, o500-o501.]); Mouillé et al. (1975[Mouillé, Y., Cotrait, M., Hospital, M. & Marsau, P. (1975). Acta Cryst. B31, 1495-1496.]); Siddegowda et al. (2011[Siddegowda, M. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Swamy, M. T. (2011). Acta Cryst. E67, o2296.]); Song et al. (2012[Song, Y., Chidan Kumar, C. S., Nethravathi, G. B., Naveen, S. & Li, H. (2012). Acta Cryst. E68, o1747.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C26H29N2+·C4H3O4

  • Mr = 484.58

  • Monoclinic, P 21 /c

  • a = 21.9467 (4) Å

  • b = 10.43729 (18) Å

  • c = 11.20623 (19) Å

  • β = 90.0458 (15)°

  • V = 2566.95 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 123 K

  • 0.60 × 0.30 × 0.25 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED and CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.]) Tmin = 0.732, Tmax = 1.000

  • 9777 measured reflections

  • 5146 independent reflections

  • 4289 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.121

  • S = 1.02

  • 5146 reflections

  • 333 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O4 0.943 (19) 1.740 (19) 2.6750 (15) 170.9 (17)
O1—H1O1⋯O4i 0.94 (3) 1.70 (3) 2.6270 (15) 168 (2)
C18—H18B⋯O3ii 0.97 2.56 3.3839 (18) 143
C15—H15A⋯O3ii 0.97 2.47 3.3463 (18) 151
C15—H15B⋯O2iii 0.97 2.46 3.1941 (19) 132
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cinnarizine (1-benzhydryl-4-cinnamyl-piperazine) is a drug derivative of piperazine and a calcium channel blocker (Terland & Flatmark, 1999). Cinnarizine is an antihistamine which is mainly used for the control of nausea and vomiting due to motion sickness. It could be also viewed as a nootropic drug because of its vasorelaxating abilities (due to calcium channel blockage), which happen mostly in the brain and it is also used as a labyrinthine sedative (Towse, 1980). A clinical evaluation of cinnarizine in various allergic disorders is published (Barrett & Zolov, 1960). Cinnarizine can be used in scuba divers without an increased risk of central nervous system oxygen toxicity. The crystal structures of some related compounds viz., cinnarizine (Mouillé et al., 1975), cyclizine hydrochloride (Bertolasi et al., 1980), cinnarizinium dipicrate (Jasinski et al., 2011), cinnarizinium picrate (Song et al., 2012), opipramolium fumarate (Siddegowda et al., 2011) and cinnarizinium 3,5-dinitrosalicylate (Dayananda et al., 2012) have been reported. In continuation of our work on the salts of pharmaceutical compounds and in view of the importance of cinnarizine, this paper reports the crystal structure of the title salt, C26H29N2+ . C4H3O4-, (I).

The asymmetric unit of (I) consists of a cinnarizinium-hydrogen fumarate cation-anion pair (Fig. 1). The six-membered piperazine ring (N1/C14/C15/N2/C16/C17) in the cation adopts a distorted chair conformation with puckering parameters Q = 0.6021 (14)Å, θ = 174.02 (12)°, ϕ = 184.5 (13)°, (Cremer & Pople (1975)) and contains a positively charged N atom (N2) with quaternary character. The dihderal angle between the mean planes of the two diphenyl rings (C1–C6 and C8–C13)is 74.2 (7)° and that between these rings and the extended phenyl ring (C21–C26) is 12.7 (9)° and 80.6 (8)°, respectively. Bond lengths are in normal ranges (Allen et al., 1987). Crystal packing is stabilized by N—H···O and O—H···O hydrogen bonds forming infinite one-dimensional chains along [001] (Fig. 2). Weak C—H···O intermolecular interactions (Table 1) are also observed connecting parallel chains along [010] (Fig. 3) to form layers perpendicular to the a-axis direction of the structure.

Related literature top

For cinnarizine as a calcium channel blocker, see: Terland & Flatmark (1999), as a nootropic drug, see: Towse (1980) and for a clinical evaluation in various allergic disorders, see: Barrett & Zolov (1960) . For related structures, see: Bertolasi et al. (1980); Dayananda et al. (2012); Jasinski et al. (2011); Mouillé et al. (1975); Siddegowda et al. (2011); Song et al. (2012). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Cinnarizine (3.68 g, 0.01 mol) and fumaric acid (1.16 g, 0.01 mol) were dissolved in hot dimethyl sulphoxide solution and stirred over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature. X-ray quality crystals of the title compound appeared after a few days. (m.p.: 468–471 K).

Refinement top

H1N and H1O1 were located by Fourier maps and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH) or 0.97Å (CH2). Isotropic displacement parameters for these atoms were set to 1.19-1.21 (CH, CH2) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids. Dashed lines indicate N2—H2···O4 cation-anion hydrogen bonds.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Dashed lines indicate N—H···O and O—H···O hydrogen bonds forming infinite one-dimensional chains along [001].
[Figure 3] Fig. 3. Packing diagram of the title compound viewed along the c axis. Dashed lines indicate weak C—H···O intermolecular interactions (Table 1) which are also observed connecting parallel chains along [010] to form layers perpendicular to the a-axis direction of the structure.
4-Diphenylmethyl-1-[(E)-3-phenylprop-2-en-1-yl]piperazin-1-ium (2Z)-3-carboxyprop-2-enoate top
Crystal data top
C26H29N2+·C4H3O4F(000) = 1032
Mr = 484.58Dx = 1.254 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 3517 reflections
a = 21.9467 (4) Åθ = 3.9–75.4°
b = 10.43729 (18) ŵ = 0.67 mm1
c = 11.20623 (19) ÅT = 123 K
β = 90.0458 (15)°Prism, colorless
V = 2566.95 (8) Å30.60 × 0.30 × 0.25 mm
Z = 4
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
5146 independent reflections
Radiation source: Enhance (Cu) X-ray Source4289 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.5081 pixels mm-1θmax = 75.6°, θmin = 4.0°
ω scansh = 2327
Absorption correction: multi-scan
(CrysAlis RED and CrysAlis PRO; Agilent, 2011)
k = 128
Tmin = 0.732, Tmax = 1.000l = 1313
9777 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.4518P]
where P = (Fo2 + 2Fc2)/3
5146 reflections(Δ/σ)max = 0.001
333 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C26H29N2+·C4H3O4V = 2566.95 (8) Å3
Mr = 484.58Z = 4
Monoclinic, P21/cCu Kα radiation
a = 21.9467 (4) ŵ = 0.67 mm1
b = 10.43729 (18) ÅT = 123 K
c = 11.20623 (19) Å0.60 × 0.30 × 0.25 mm
β = 90.0458 (15)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
5146 independent reflections
Absorption correction: multi-scan
(CrysAlis RED and CrysAlis PRO; Agilent, 2011)
4289 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 1.000Rint = 0.028
9777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.27 e Å3
5146 reflectionsΔρmin = 0.22 e Å3
333 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.70117 (5)0.78316 (11)0.33222 (10)0.0323 (3)
O20.76739 (6)0.88857 (12)0.44702 (12)0.0446 (3)
O30.64077 (5)0.41055 (10)0.57965 (9)0.0298 (2)
O40.70688 (5)0.50977 (10)0.69945 (9)0.0272 (2)
N10.79869 (5)0.16984 (11)0.86255 (10)0.0208 (2)
N20.68573 (5)0.31174 (11)0.84519 (10)0.0200 (2)
C10.87241 (6)0.02312 (14)0.76576 (13)0.0237 (3)
C20.85173 (7)0.09616 (15)0.80480 (14)0.0287 (3)
H2A0.83210.10280.87800.034*
C30.86015 (7)0.20467 (16)0.73566 (16)0.0340 (3)
H3A0.84610.28370.76250.041*
C40.88951 (7)0.19554 (17)0.62621 (16)0.0362 (4)
H4A0.89540.26850.58000.043*
C50.90995 (7)0.07792 (18)0.58618 (15)0.0367 (4)
H5A0.92930.07160.51260.044*
C60.90159 (7)0.03164 (16)0.65610 (13)0.0288 (3)
H6A0.91560.11050.62910.035*
C70.86398 (6)0.14289 (13)0.84173 (12)0.0223 (3)
H7A0.88180.21580.79900.027*
C80.89718 (6)0.12793 (13)0.96069 (13)0.0241 (3)
C90.95738 (7)0.16951 (15)0.96988 (15)0.0315 (3)
H9A0.97590.20940.90520.038*
C100.98986 (8)0.15168 (18)1.07497 (17)0.0396 (4)
H10A1.03000.17961.08030.048*
C110.96277 (8)0.09271 (17)1.17150 (16)0.0402 (4)
H11A0.98470.08021.24160.048*
C120.90255 (8)0.05206 (15)1.16380 (14)0.0348 (4)
H12A0.88420.01271.22900.042*
C130.86965 (7)0.07003 (14)1.05883 (14)0.0280 (3)
H13A0.82930.04341.05420.034*
C140.79157 (6)0.29648 (13)0.91797 (12)0.0215 (3)
H14A0.80420.36240.86220.026*
H14B0.81740.30220.98810.026*
C150.72582 (6)0.31822 (13)0.95322 (11)0.0205 (3)
H15A0.71340.25351.01030.025*
H15B0.72170.40150.99080.025*
C160.69605 (6)0.18874 (13)0.78029 (12)0.0220 (3)
H16A0.67270.18880.70680.026*
H16B0.68200.11790.82900.026*
C170.76314 (6)0.17046 (14)0.75159 (12)0.0226 (3)
H17A0.76890.09010.70960.027*
H17B0.77710.23940.70030.027*
C180.61896 (6)0.32482 (14)0.87638 (12)0.0241 (3)
H18A0.59510.32750.80350.029*
H18B0.60620.25040.92170.029*
C190.60671 (6)0.44322 (14)0.94778 (13)0.0243 (3)
H19A0.61440.52290.91370.029*
C200.58525 (6)0.43782 (14)1.05838 (13)0.0234 (3)
H20A0.57860.35631.08920.028*
C210.57077 (6)0.54589 (14)1.13783 (12)0.0235 (3)
C220.57635 (6)0.67372 (15)1.10234 (13)0.0265 (3)
H22A0.59040.69261.02610.032*
C230.56116 (7)0.77284 (15)1.17925 (14)0.0307 (3)
H23A0.56510.85741.15430.037*
C240.54012 (7)0.74589 (16)1.29343 (14)0.0305 (3)
H24A0.52950.81231.34470.037*
C250.53502 (7)0.61982 (17)1.33073 (13)0.0318 (3)
H25A0.52130.60151.40730.038*
C260.55045 (7)0.52071 (15)1.25361 (13)0.0282 (3)
H26A0.54720.43631.27950.034*
C1000.73414 (7)0.79844 (14)0.43019 (13)0.0269 (3)
C1010.72630 (7)0.69456 (14)0.51966 (13)0.0253 (3)
H10B0.75100.69580.58710.030*
C1020.68628 (7)0.60047 (13)0.50916 (12)0.0233 (3)
H10C0.66270.59710.44020.028*
C1030.67661 (6)0.49876 (13)0.60193 (12)0.0222 (3)
H1N0.6971 (8)0.3776 (18)0.7921 (17)0.027 (4)*
H1O10.7076 (11)0.851 (2)0.279 (2)0.054 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0442 (6)0.0275 (5)0.0254 (5)0.0047 (5)0.0059 (4)0.0074 (4)
O20.0537 (8)0.0318 (6)0.0484 (7)0.0153 (6)0.0188 (6)0.0135 (5)
O30.0385 (6)0.0226 (5)0.0282 (5)0.0041 (4)0.0018 (4)0.0003 (4)
O40.0407 (6)0.0207 (5)0.0201 (5)0.0006 (4)0.0027 (4)0.0004 (4)
N10.0217 (5)0.0202 (5)0.0204 (5)0.0032 (4)0.0016 (4)0.0015 (4)
N20.0219 (5)0.0201 (5)0.0180 (5)0.0036 (4)0.0001 (4)0.0003 (4)
C10.0185 (6)0.0249 (7)0.0278 (7)0.0044 (5)0.0032 (5)0.0019 (5)
C20.0270 (7)0.0267 (7)0.0325 (8)0.0022 (6)0.0005 (5)0.0027 (6)
C30.0296 (8)0.0264 (8)0.0461 (9)0.0017 (6)0.0042 (6)0.0054 (7)
C40.0295 (8)0.0349 (8)0.0443 (9)0.0068 (7)0.0036 (6)0.0173 (7)
C50.0304 (8)0.0484 (10)0.0313 (8)0.0058 (7)0.0020 (6)0.0109 (7)
C60.0260 (7)0.0322 (8)0.0282 (7)0.0035 (6)0.0005 (5)0.0012 (6)
C70.0219 (6)0.0212 (6)0.0239 (6)0.0008 (5)0.0003 (5)0.0009 (5)
C80.0247 (7)0.0198 (6)0.0280 (7)0.0055 (5)0.0029 (5)0.0042 (5)
C90.0253 (7)0.0306 (8)0.0387 (8)0.0035 (6)0.0022 (6)0.0071 (6)
C100.0272 (8)0.0444 (10)0.0473 (10)0.0080 (7)0.0112 (7)0.0136 (8)
C110.0448 (9)0.0386 (9)0.0372 (9)0.0195 (8)0.0199 (7)0.0115 (7)
C120.0511 (10)0.0252 (7)0.0282 (7)0.0105 (7)0.0045 (7)0.0010 (6)
C130.0320 (7)0.0218 (7)0.0303 (7)0.0024 (6)0.0037 (6)0.0006 (6)
C140.0234 (6)0.0208 (6)0.0202 (6)0.0014 (5)0.0012 (5)0.0009 (5)
C150.0235 (6)0.0216 (6)0.0163 (6)0.0026 (5)0.0015 (4)0.0003 (5)
C160.0241 (7)0.0223 (6)0.0197 (6)0.0016 (5)0.0025 (5)0.0015 (5)
C170.0246 (7)0.0238 (7)0.0193 (6)0.0043 (5)0.0015 (5)0.0023 (5)
C180.0205 (6)0.0282 (7)0.0237 (6)0.0026 (5)0.0009 (5)0.0009 (5)
C190.0215 (6)0.0256 (7)0.0260 (7)0.0043 (5)0.0001 (5)0.0028 (6)
C200.0192 (6)0.0246 (7)0.0265 (7)0.0012 (5)0.0012 (5)0.0011 (5)
C210.0177 (6)0.0283 (7)0.0246 (7)0.0001 (5)0.0004 (5)0.0003 (5)
C220.0239 (7)0.0303 (8)0.0253 (7)0.0010 (6)0.0029 (5)0.0003 (6)
C230.0286 (7)0.0274 (8)0.0360 (8)0.0003 (6)0.0004 (6)0.0020 (6)
C240.0248 (7)0.0342 (8)0.0326 (8)0.0021 (6)0.0000 (5)0.0100 (6)
C250.0320 (8)0.0402 (9)0.0233 (7)0.0004 (7)0.0034 (5)0.0021 (6)
C260.0282 (7)0.0292 (7)0.0271 (7)0.0016 (6)0.0016 (5)0.0012 (6)
C1000.0291 (7)0.0233 (7)0.0284 (7)0.0019 (6)0.0019 (5)0.0035 (6)
C1010.0285 (7)0.0244 (7)0.0230 (6)0.0033 (6)0.0025 (5)0.0028 (5)
C1020.0297 (7)0.0209 (6)0.0194 (6)0.0045 (5)0.0009 (5)0.0011 (5)
C1030.0286 (7)0.0183 (6)0.0196 (6)0.0051 (5)0.0024 (5)0.0012 (5)
Geometric parameters (Å, º) top
O1—C1001.3240 (19)C12—H12A0.9300
O1—H1O10.94 (3)C13—H13A0.9300
O2—C1001.205 (2)C14—C151.5135 (18)
O3—C1031.2363 (18)C14—H14A0.9700
O4—C1031.2837 (18)C14—H14B0.9700
N1—C171.4675 (17)C15—H15A0.9700
N1—C141.4688 (17)C15—H15B0.9700
N1—C71.4790 (17)C16—C171.5194 (18)
N2—C161.4929 (17)C16—H16A0.9700
N2—C151.4976 (16)C16—H16B0.9700
N2—C181.5129 (17)C17—H17A0.9700
N2—H1N0.943 (19)C17—H17B0.9700
C1—C61.389 (2)C18—C191.497 (2)
C1—C21.395 (2)C18—H18A0.9700
C1—C71.5238 (19)C18—H18B0.9700
C2—C31.385 (2)C19—C201.327 (2)
C2—H2A0.9300C19—H19A0.9300
C3—C41.389 (3)C20—C211.472 (2)
C3—H3A0.9300C20—H20A0.9300
C4—C51.382 (3)C21—C261.397 (2)
C4—H4A0.9300C21—C221.398 (2)
C5—C61.398 (2)C22—C231.387 (2)
C5—H5A0.9300C22—H22A0.9300
C6—H6A0.9300C23—C241.389 (2)
C7—C81.5267 (19)C23—H23A0.9300
C7—H7A0.9800C24—C251.385 (2)
C8—C131.393 (2)C24—H24A0.9300
C8—C91.394 (2)C25—C261.390 (2)
C9—C101.389 (2)C25—H25A0.9300
C9—H9A0.9300C26—H26A0.9300
C10—C111.380 (3)C100—C1011.487 (2)
C10—H10A0.9300C101—C1021.323 (2)
C11—C121.391 (3)C101—H10B0.9300
C11—H11A0.9300C102—C1031.5010 (19)
C12—C131.392 (2)C102—H10C0.9300
C100—O1—H1O1110.6 (15)N2—C15—H15A109.7
C17—N1—C14107.31 (10)C14—C15—H15A109.7
C17—N1—C7112.44 (10)N2—C15—H15B109.7
C14—N1—C7109.95 (11)C14—C15—H15B109.7
C16—N2—C15110.08 (10)H15A—C15—H15B108.2
C16—N2—C18109.73 (11)N2—C16—C17111.02 (11)
C15—N2—C18112.20 (10)N2—C16—H16A109.4
C16—N2—H1N106.2 (11)C17—C16—H16A109.4
C15—N2—H1N108.8 (12)N2—C16—H16B109.4
C18—N2—H1N109.7 (11)C17—C16—H16B109.4
C6—C1—C2119.00 (14)H16A—C16—H16B108.0
C6—C1—C7119.86 (13)N1—C17—C16109.63 (11)
C2—C1—C7121.14 (13)N1—C17—H17A109.7
C3—C2—C1120.71 (14)C16—C17—H17A109.7
C3—C2—H2A119.6N1—C17—H17B109.7
C1—C2—H2A119.6C16—C17—H17B109.7
C2—C3—C4120.00 (16)H17A—C17—H17B108.2
C2—C3—H3A120.0C19—C18—N2111.86 (11)
C4—C3—H3A120.0C19—C18—H18A109.2
C5—C4—C3119.90 (15)N2—C18—H18A109.2
C5—C4—H4A120.1C19—C18—H18B109.2
C3—C4—H4A120.1N2—C18—H18B109.2
C4—C5—C6120.11 (15)H18A—C18—H18B107.9
C4—C5—H5A119.9C20—C19—C18121.87 (13)
C6—C5—H5A119.9C20—C19—H19A119.1
C1—C6—C5120.28 (15)C18—C19—H19A119.1
C1—C6—H6A119.9C19—C20—C21127.53 (14)
C5—C6—H6A119.9C19—C20—H20A116.2
N1—C7—C1111.23 (11)C21—C20—H20A116.2
N1—C7—C8110.08 (11)C26—C21—C22118.15 (14)
C1—C7—C8110.24 (11)C26—C21—C20119.13 (13)
N1—C7—H7A108.4C22—C21—C20122.72 (13)
C1—C7—H7A108.4C23—C22—C21120.93 (13)
C8—C7—H7A108.4C23—C22—H22A119.5
C13—C8—C9119.22 (14)C21—C22—H22A119.5
C13—C8—C7121.79 (13)C22—C23—C24120.09 (15)
C9—C8—C7118.95 (13)C22—C23—H23A120.0
C10—C9—C8120.44 (16)C24—C23—H23A120.0
C10—C9—H9A119.8C25—C24—C23119.81 (14)
C8—C9—H9A119.8C25—C24—H24A120.1
C11—C10—C9120.23 (16)C23—C24—H24A120.1
C11—C10—H10A119.9C24—C25—C26119.97 (14)
C9—C10—H10A119.9C24—C25—H25A120.0
C10—C11—C12119.84 (15)C26—C25—H25A120.0
C10—C11—H11A120.1C25—C26—C21121.03 (14)
C12—C11—H11A120.1C25—C26—H26A119.5
C11—C12—C13120.23 (16)C21—C26—H26A119.5
C11—C12—H12A119.9O2—C100—O1123.66 (14)
C13—C12—H12A119.9O2—C100—C101122.27 (14)
C12—C13—C8120.03 (15)O1—C100—C101114.07 (13)
C12—C13—H13A120.0C102—C101—C100123.96 (14)
C8—C13—H13A120.0C102—C101—H10B118.0
N1—C14—C15110.31 (11)C100—C101—H10B118.0
N1—C14—H14A109.6C101—C102—C103123.90 (13)
C15—C14—H14A109.6C101—C102—H10C118.0
N1—C14—H14B109.6C103—C102—H10C118.0
C15—C14—H14B109.6O3—C103—O4124.57 (13)
H14A—C14—H14B108.1O3—C103—C102118.50 (13)
N2—C15—C14110.00 (10)O4—C103—C102116.93 (12)
C6—C1—C2—C30.1 (2)C7—N1—C14—C15173.18 (10)
C7—C1—C2—C3179.34 (13)C16—N2—C15—C1454.01 (14)
C1—C2—C3—C40.1 (2)C18—N2—C15—C14176.51 (11)
C2—C3—C4—C50.4 (2)N1—C14—C15—N260.16 (14)
C3—C4—C5—C60.6 (2)C15—N2—C16—C1754.01 (14)
C2—C1—C6—C50.1 (2)C18—N2—C16—C17177.96 (10)
C7—C1—C6—C5179.51 (13)C14—N1—C17—C1663.17 (14)
C4—C5—C6—C10.4 (2)C7—N1—C17—C16175.81 (11)
C17—N1—C7—C150.90 (15)N2—C16—C17—N159.32 (14)
C14—N1—C7—C1170.41 (11)C16—N2—C18—C19176.75 (11)
C17—N1—C7—C8173.39 (11)C15—N2—C18—C1954.05 (15)
C14—N1—C7—C867.10 (14)N2—C18—C19—C20117.16 (14)
C6—C1—C7—N1119.21 (14)C18—C19—C20—C21179.45 (13)
C2—C1—C7—N161.36 (17)C19—C20—C21—C26177.76 (14)
C6—C1—C7—C8118.38 (14)C19—C20—C21—C222.4 (2)
C2—C1—C7—C861.04 (17)C26—C21—C22—C231.1 (2)
N1—C7—C8—C1336.25 (18)C20—C21—C22—C23178.80 (14)
C1—C7—C8—C1386.82 (16)C21—C22—C23—C240.1 (2)
N1—C7—C8—C9145.97 (13)C22—C23—C24—C250.7 (2)
C1—C7—C8—C990.96 (16)C23—C24—C25—C260.5 (2)
C13—C8—C9—C101.0 (2)C24—C25—C26—C210.5 (2)
C7—C8—C9—C10176.85 (14)C22—C21—C26—C251.3 (2)
C8—C9—C10—C110.1 (3)C20—C21—C26—C25178.60 (13)
C9—C10—C11—C120.6 (3)O2—C100—C101—C102173.65 (16)
C10—C11—C12—C130.4 (2)O1—C100—C101—C1025.8 (2)
C11—C12—C13—C80.5 (2)C100—C101—C102—C103177.35 (13)
C9—C8—C13—C121.2 (2)C101—C102—C103—O3175.41 (14)
C7—C8—C13—C12176.58 (13)C101—C102—C103—O44.2 (2)
C17—N1—C14—C1564.23 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O40.943 (19)1.740 (19)2.6750 (15)170.9 (17)
O1—H1O1···O4i0.94 (3)1.70 (3)2.6270 (15)168 (2)
C18—H18B···O3ii0.972.563.3839 (18)143
C15—H15A···O3ii0.972.473.3463 (18)151
C15—H15B···O2iii0.972.463.1941 (19)132
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H29N2+·C4H3O4
Mr484.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)21.9467 (4), 10.43729 (18), 11.20623 (19)
β (°) 90.0458 (15)
V3)2566.95 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.67
Crystal size (mm)0.60 × 0.30 × 0.25
Data collection
DiffractometerAgilent Xcalibur (Ruby, Gemini)
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED and CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.732, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9777, 5146, 4289
Rint0.028
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.121, 1.02
No. of reflections5146
No. of parameters333
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O40.943 (19)1.740 (19)2.6750 (15)170.9 (17)
O1—H1O1···O4i0.94 (3)1.70 (3)2.6270 (15)168 (2)
C18—H18B···O3ii0.972.563.3839 (18)143.4
C15—H15A···O3ii0.972.473.3463 (18)150.9
C15—H15B···O2iii0.972.463.1941 (19)132.4
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

CNK thanks the University of Mysore for research facilities. RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2011). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationBarrett, R. J. & Zolov, B. (1960). J. Maine Med. Assoc. 51, 454–457.  PubMed
First citationBertolasi, V., Borea, P. A., Gilli, G. & Sacerdoti, M. (1980). Acta Cryst. B36, 1975–1977.  CSD CrossRef CAS IUCr Journals Web of Science
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science
First citationDayananda, A. S., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o1165–o1166.  CSD CrossRef CAS IUCr Journals
First citationJasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Chidan Kumar, C. S. (2011). Acta Cryst. E67, o500–o501.  Web of Science CSD CrossRef IUCr Journals
First citationMouillé, Y., Cotrait, M., Hospital, M. & Marsau, P. (1975). Acta Cryst. B31, 1495–1496.  CSD CrossRef IUCr Journals Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSiddegowda, M. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Swamy, M. T. (2011). Acta Cryst. E67, o2296.  Web of Science CSD CrossRef IUCr Journals
First citationSong, Y., Chidan Kumar, C. S., Nethravathi, G. B., Naveen, S. & Li, H. (2012). Acta Cryst. E68, o1747.  CSD CrossRef IUCr Journals
First citationTerland, O. & Flatmark, T. (1999). Neuropharmacology, 38, 879–882.  Web of Science CrossRef PubMed CAS
First citationTowse, G. (1980). J. Laryngol. Otol. 94, 1009–1015.  CrossRef CAS PubMed Web of Science

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 1| January 2013| Pages o142-o143
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds