organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(1R,3S)-2,2-Di­chloro-3-(hy­dr­oxy­meth­yl)cyclo­prop­yl]methanol

aDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan
*Correspondence e-mail: kailani@ju.edu.jo

(Received 17 December 2012; accepted 4 January 2013; online 12 January 2013)

The title compound, C5H8Cl2O2, represents a meso isomer crystallizing in a chiral space group with two mol­ecules per asymmetric unit. The mol­ecules form helical associates with a pitch of 6.31 Å along the a axis via O—H⋯O hydrogen bonds. The overall three-dimesional supra­molecular architecture is stabilized by C—Cl⋯O halogen bonding, with a Cl⋯O separation of 3.139 (3) Å and a C—Cl⋯O angle of 162.5 (2)°.

Related literature

For background on this class of compounds, see: Kean et al. (2012[Kean, Z. S., Black Ramirez, A. L. & Craig, S. L. (2012). J. Polym. Sci. Part A Polym. Chem. 50, 3481-3484.]); Lenhardt et al. (2009[Lenhardt, J. M., Black, A. L. & Craig, S. L. (2009). J. Am. Chem. Soc. 131, 10818-10819.]). For one-handed helical chains caused by hydrogen bonds, see: Abe et al. (2012[Abe, Y., Aoki, T., Jia, H., Hadano, H., Namikshi, T., Kakihana, Y., Liu, L., Zang, Y., Teraguchi, M. & Kaneko, T. (2012). Molecules, 17, 433-451.]). For the preparation of this type of compound, see: Kailani et al. (2012[Kailani, M. H., Al-Bakri, A. G., Saadeh, H. & Al-Hiari, Y. M. (2012). Jordan J. Chem. 7, 239-252.]); Pustovit et al. (1994[Pustovit, Y. M., Ogojko, P. I., Nazaretian, V. P. & Rozhenko, A. B. (1994). J. Fluorine Chem. 69, 231-236.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8Cl2O2

  • Mr = 171.02

  • Orthorhombic, P 21 21 21

  • a = 6.3110 (13) Å

  • b = 15.429 (3) Å

  • c = 15.433 (3) Å

  • V = 1502.7 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 293 K

  • 0.2 × 0.1 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (COLLECT; Nonius, 2004[Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.]) Tmin = 0.91, Tmax = 0.96

  • 6911 measured reflections

  • 2628 independent reflections

  • 1969 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.085

  • S = 1.03

  • 2627 reflections

  • 181 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1081 Friedel pairs

  • Flack parameter: 0.03 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H4⋯O2Bi 0.76 (3) 1.89 (3) 2.650 (4) 174 (4)
O2B—H3⋯O2Aii 0.84 (4) 1.84 (4) 2.668 (4) 171 (4)
O2A—H2⋯O1B 0.78 (4) 1.90 (4) 2.678 (4) 174 (4)
O1B—H1⋯O1Aiii 0.84 (4) 1.86 (4) 2.680 (5) 167 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{5\over 2}}, -y, z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2004[Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound contains gem-dichlororcyclopropane ring with two symmetrically positioned hydroxy groups. gem-dichlororcyclopropane ring was recently recognized as a mechanophore by Lenhardt et al. (2009) and the title compound was used by Kean et al. (2012) to make polymers with mechanophore properties. Recently, Kailani et al. (2012), also reported enhancement of antimicrobial activity for novel cis-dicarbamates prepared from title compound.

Although the title compound is a meso-isomer, it crystallizes in a chiral supramolecular architecture. Abe et al. (2012) suggested that the presence of two hydroxy groups, which form intramolecular hydrogen bonds, can result in formation of one-handed helical structures in polymers, even in an absence of chiral moieties.

The title compound, (I), crystallizes with two molecules in the asymmetric unit, as shown in Fig. 1. Although the title compound is expected to be achiral in solution due to presence of the internal plane of symmetry, in the solid state both of the molecules are found to lack a plane of symmetry. In addition, both of said molecules were found to be not superimposable with each other, resulting in a chiral, orthorhombic P2(1)2(1)2(1) space group. The structure also has a long range chiral order, helical hydrogen bonded O—H···O chains with a pitch of 6.311 Å, running along the a axis (Fig. 2). These chains are further reinforced by C1B—Cl1B···O1A halogen bonding interactions with interaction parameters of 3.139 (3) Å and 162.5 (2)° resulting in the three-dimensional supramolecular structure, as shown in Fig. 3.

The lack of plane of symmetry in each molecule in the asymmetric unit is mainly caused by the differences in the spatial arrangements of the oxygen atoms within each molecule. This is thought to be caused by the presence of high concentration of strongly associating groups, two hydroxy groups and two Cl atoms, in the relatively small title compound.

Related literature top

For background on this class of compounds, see: Kean et al. (2012); Lenhardt et al. (2009). For one-handed helical chains caused by hydrogen bonds, see: Abe et al. (2012). For the preparation of this type of compound, see: Kailani et al. (2012); Pustovit et al. (1994).

Experimental top

The title compound was prepared according to literature procedure, Kailani et al. (2012), which was a modification of reported procedure, Pustovit et al. (1994), in order to improve the yield.

Refinement top

The structure represents a merohedral twin with 8.2% contribution of the opposite chirality. All carbon-attached hydrogen atoms were placed in the calculated positions using riding model with Ueq. of 1.2 times that of the riding atom. Oxygen-attached hydrogen atoms were located from Fourier map difference, and then refined isotropically without restraints.

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Two independent molecules in asymmetric unit with numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Left-handed hydrogen-bonded helix (oxygens are in red and hydrogens - in blue), running along a-axis with supporting halogen bonding interactions, shown as black dotted lines.
[Figure 3] Fig. 3. Packing diagram, viewed down the a-axis. Hydrogen bonds are shown as blue dotted lines and halogen bonds shown as red dotted lines.
[(1R,3S)-2,2-Dichloro-3-(hydroxymethyl)cyclopropyl]methanol top
Crystal data top
C5H8Cl2O2Dx = 1.512 Mg m3
Mr = 171.02Melting point = 346–347 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2370 reflections
a = 6.3110 (13) Åθ = 1.0–27.5°
b = 15.429 (3) ŵ = 0.79 mm1
c = 15.433 (3) ÅT = 293 K
V = 1502.7 (5) Å3Chunk, colorless
Z = 80.2 × 0.1 × 0.05 mm
F(000) = 704
Data collection top
Nonius KappaCCD
diffractometer
2628 independent reflections
Radiation source: fine-focus sealed tube1969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 1.3°
CCD scansh = 76
Absorption correction: multi-scan
(COLLECT; Nonius, 2004)
k = 1818
Tmin = 0.91, Tmax = 0.96l = 1218
6911 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0363P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.17 e Å3
2627 reflectionsΔρmin = 0.17 e Å3
181 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0080 (12)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1081 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.03 (9)
Crystal data top
C5H8Cl2O2V = 1502.7 (5) Å3
Mr = 171.02Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 6.3110 (13) ŵ = 0.79 mm1
b = 15.429 (3) ÅT = 293 K
c = 15.433 (3) Å0.2 × 0.1 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
2628 independent reflections
Absorption correction: multi-scan
(COLLECT; Nonius, 2004)
1969 reflections with I > 2σ(I)
Tmin = 0.91, Tmax = 0.96Rint = 0.047
6911 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085Δρmax = 0.17 e Å3
S = 1.03Δρmin = 0.17 e Å3
2627 reflectionsAbsolute structure: Flack (1983), 1081 Friedel pairs
181 parametersAbsolute structure parameter: 0.03 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl2B0.87935 (18)0.17519 (6)0.46132 (7)0.0716 (4)
Cl1B1.21060 (18)0.08413 (7)0.55235 (8)0.0763 (4)
Cl2A1.4218 (2)0.27973 (6)0.07758 (7)0.0795 (4)
Cl1A1.08097 (18)0.18830 (7)0.16287 (8)0.0769 (4)
O1B1.2516 (5)0.04682 (18)0.3348 (2)0.0665 (8)
O1A1.0243 (5)0.40988 (19)0.28993 (19)0.0620 (8)
O2B0.7810 (5)0.03519 (18)0.6574 (2)0.0690 (9)
C5B0.8709 (7)0.0635 (2)0.5790 (2)0.0600 (11)
H5BA0.80910.11870.56250.072*
H5BB1.02220.07180.58640.072*
O2A1.5018 (5)0.08789 (19)0.2961 (2)0.0699 (9)
C5A1.4000 (7)0.1672 (2)0.3187 (2)0.0637 (11)
H5AA1.44960.18650.37500.076*
H5AB1.24810.15820.32230.076*
C3B0.8318 (6)0.0018 (2)0.5091 (2)0.0497 (9)
H3BA0.68230.01720.50150.060*
C4A1.1354 (6)0.3326 (2)0.3103 (3)0.0583 (11)
H4AA1.03820.28390.30780.070*
H4AB1.18970.33650.36890.070*
C4B1.1321 (7)0.0657 (2)0.4107 (3)0.0626 (11)
H4BA1.22610.06670.46040.075*
H4BB1.06890.12270.40510.075*
C2B0.9584 (6)0.0010 (2)0.4257 (3)0.0529 (10)
H2BB0.87670.01590.37380.063*
C3A1.4473 (6)0.23491 (19)0.2521 (3)0.0548 (10)
H3AA1.59830.24320.23990.066*
C1A1.3052 (6)0.2518 (2)0.1778 (2)0.0507 (10)
C2A1.3162 (6)0.3166 (2)0.2490 (2)0.0524 (9)
H2AB1.39730.36880.23440.063*
C1B0.9818 (6)0.07341 (19)0.4897 (2)0.0486 (10)
H41.095 (6)0.448 (2)0.302 (2)0.047 (13)*
H30.859 (6)0.054 (2)0.697 (3)0.060 (13)*
H21.424 (7)0.051 (2)0.310 (3)0.068 (15)*
H11.181 (6)0.063 (2)0.292 (3)0.066 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl2B0.0888 (8)0.0565 (5)0.0694 (7)0.0161 (6)0.0126 (7)0.0145 (5)
Cl1B0.0631 (7)0.0797 (6)0.0862 (9)0.0072 (6)0.0204 (7)0.0111 (6)
Cl2A0.1087 (10)0.0682 (6)0.0617 (7)0.0140 (6)0.0250 (8)0.0129 (5)
Cl1A0.0669 (7)0.0800 (7)0.0837 (8)0.0173 (6)0.0128 (7)0.0142 (6)
O1B0.068 (2)0.0746 (17)0.057 (2)0.0007 (16)0.0102 (19)0.0108 (16)
O1A0.0628 (19)0.0592 (18)0.064 (2)0.0011 (17)0.0012 (17)0.0048 (14)
O2B0.085 (2)0.0726 (17)0.049 (2)0.0196 (17)0.0000 (19)0.0076 (15)
C5B0.072 (3)0.047 (2)0.061 (3)0.0013 (19)0.006 (3)0.0043 (19)
O2A0.078 (2)0.0605 (18)0.071 (2)0.0117 (17)0.0192 (19)0.0079 (15)
C5A0.073 (3)0.070 (2)0.048 (3)0.016 (2)0.005 (3)0.0061 (19)
C3B0.043 (2)0.0554 (19)0.051 (2)0.0040 (17)0.0057 (19)0.0036 (18)
C4A0.069 (3)0.058 (2)0.048 (3)0.005 (2)0.003 (2)0.0028 (18)
C4B0.073 (3)0.057 (2)0.058 (3)0.007 (2)0.003 (3)0.0065 (19)
C2B0.052 (2)0.058 (2)0.049 (2)0.0065 (18)0.001 (2)0.0027 (17)
C3A0.047 (2)0.058 (2)0.059 (3)0.0016 (19)0.005 (2)0.0018 (19)
C1A0.054 (2)0.053 (2)0.045 (2)0.0014 (17)0.003 (2)0.0036 (18)
C2A0.060 (2)0.0474 (18)0.050 (2)0.0061 (19)0.004 (2)0.0014 (17)
C1B0.053 (2)0.0450 (19)0.048 (2)0.0008 (17)0.0006 (19)0.0030 (16)
Geometric parameters (Å, º) top
Cl2B—C1B1.754 (3)C5A—H5AB0.9700
Cl1B—C1B1.746 (4)C3B—C1B1.486 (5)
Cl2A—C1A1.767 (4)C3B—C2B1.515 (5)
Cl1A—C1A1.737 (4)C3B—H3BA0.9800
O1B—C4B1.423 (5)C4A—C2A1.502 (5)
O1B—H10.84 (4)C4A—H4AA0.9700
O1A—C4A1.419 (4)C4A—H4AB0.9700
O1A—H40.76 (3)C4B—C2B1.521 (5)
O2B—C5B1.407 (4)C4B—H4BA0.9700
O2B—H30.84 (4)C4B—H4BB0.9700
C5B—C3B1.497 (5)C2B—C1B1.499 (5)
C5B—H5BA0.9700C2B—H2BB0.9800
C5B—H5BB0.9700C3A—C1A1.478 (5)
O2A—C5A1.425 (4)C3A—C2A1.509 (5)
O2A—H20.78 (4)C3A—H3AA0.9800
C5A—C3A1.496 (5)C1A—C2A1.487 (5)
C5A—H5AA0.9700C2A—H2AB0.9800
C4B—O1B—H1108 (3)C2B—C4B—H4BB109.3
C4A—O1A—H4108 (3)H4BA—C4B—H4BB108.0
C5B—O2B—H3107 (3)C1B—C2B—C3B59.1 (2)
O2B—C5B—C3B110.2 (3)C1B—C2B—C4B122.2 (3)
O2B—C5B—H5BA109.6C3B—C2B—C4B121.0 (3)
C3B—C5B—H5BA109.6C1B—C2B—H2BB114.5
O2B—C5B—H5BB109.6C3B—C2B—H2BB114.5
C3B—C5B—H5BB109.6C4B—C2B—H2BB114.5
H5BA—C5B—H5BB108.1C1A—C3A—C5A122.3 (3)
C5A—O2A—H2106 (3)C1A—C3A—C2A59.7 (2)
O2A—C5A—C3A110.0 (3)C5A—C3A—C2A119.7 (3)
O2A—C5A—H5AA109.7C1A—C3A—H3AA114.7
C3A—C5A—H5AA109.7C5A—C3A—H3AA114.7
O2A—C5A—H5AB109.7C2A—C3A—H3AA114.7
C3A—C5A—H5AB109.7C3A—C1A—C2A61.2 (2)
H5AA—C5A—H5AB108.2C3A—C1A—Cl1A119.9 (3)
C1B—C3B—C5B122.8 (3)C2A—C1A—Cl1A121.1 (3)
C1B—C3B—C2B59.9 (2)C3A—C1A—Cl2A118.0 (3)
C5B—C3B—C2B121.3 (3)C2A—C1A—Cl2A117.6 (2)
C1B—C3B—H3BA114.1Cl1A—C1A—Cl2A111.1 (2)
C5B—C3B—H3BA114.1C1A—C2A—C4A122.6 (3)
C2B—C3B—H3BA114.1C1A—C2A—C3A59.1 (2)
O1A—C4A—C2A112.0 (3)C4A—C2A—C3A122.3 (3)
O1A—C4A—H4AA109.2C1A—C2A—H2AB114.0
C2A—C4A—H4AA109.2C4A—C2A—H2AB114.0
O1A—C4A—H4AB109.2C3A—C2A—H2AB114.0
C2A—C4A—H4AB109.2C3B—C1B—C2B61.0 (2)
H4AA—C4A—H4AB107.9C3B—C1B—Cl1B119.1 (3)
O1B—C4B—C2B111.6 (3)C2B—C1B—Cl1B121.1 (3)
O1B—C4B—H4BA109.3C3B—C1B—Cl2B118.8 (3)
C2B—C4B—H4BA109.3C2B—C1B—Cl2B117.8 (3)
O1B—C4B—H4BB109.3Cl1B—C1B—Cl2B111.00 (18)
O2B—C5B—C3B—C1B90.9 (4)Cl1A—C1A—C2A—C3A109.4 (3)
O2B—C5B—C3B—C2B163.1 (3)Cl2A—C1A—C2A—C3A108.5 (3)
C5B—C3B—C2B—C1B112.3 (4)O1A—C4A—C2A—C1A103.1 (4)
C1B—C3B—C2B—C4B111.4 (4)O1A—C4A—C2A—C3A174.7 (3)
C5B—C3B—C2B—C4B0.9 (5)C5A—C3A—C2A—C1A112.3 (4)
O1B—C4B—C2B—C1B100.3 (4)C1A—C3A—C2A—C4A111.5 (4)
O1B—C4B—C2B—C3B171.0 (3)C5A—C3A—C2A—C4A0.8 (6)
O2A—C5A—C3A—C1A93.8 (4)C5B—C3B—C1B—C2B110.0 (4)
O2A—C5A—C3A—C2A164.8 (3)C5B—C3B—C1B—Cl1B1.6 (5)
C5A—C3A—C1A—C2A108.1 (4)C2B—C3B—C1B—Cl1B111.6 (3)
C5A—C3A—C1A—Cl1A3.2 (5)C5B—C3B—C1B—Cl2B142.3 (3)
C2A—C3A—C1A—Cl1A111.3 (3)C2B—C3B—C1B—Cl2B107.7 (3)
C5A—C3A—C1A—Cl2A144.1 (3)C4B—C2B—C1B—C3B109.4 (4)
C2A—C3A—C1A—Cl2A107.8 (3)C3B—C2B—C1B—Cl1B108.3 (3)
C3A—C1A—C2A—C4A110.8 (4)C4B—C2B—C1B—Cl1B1.0 (5)
Cl1A—C1A—C2A—C4A1.4 (5)C3B—C2B—C1B—Cl2B109.3 (3)
Cl2A—C1A—C2A—C4A140.7 (3)C4B—C2B—C1B—Cl2B141.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H4···O2Bi0.76 (3)1.89 (3)2.650 (4)174 (4)
O2B—H3···O2Aii0.84 (4)1.84 (4)2.668 (4)171 (4)
O2A—H2···O1B0.78 (4)1.90 (4)2.678 (4)174 (4)
O1B—H1···O1Aiii0.84 (4)1.86 (4)2.680 (5)167 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+5/2, y, z+1/2; (iii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H8Cl2O2
Mr171.02
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.3110 (13), 15.429 (3), 15.433 (3)
V3)1502.7 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.2 × 0.1 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(COLLECT; Nonius, 2004)
Tmin, Tmax0.91, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
6911, 2628, 1969
Rint0.047
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.085, 1.03
No. of reflections2627
No. of parameters181
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.17
Absolute structureFlack (1983), 1081 Friedel pairs
Absolute structure parameter0.03 (9)

Computer programs: COLLECT (Nonius, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H4···O2Bi0.76 (3)1.89 (3)2.650 (4)174 (4)
O2B—H3···O2Aii0.84 (4)1.84 (4)2.668 (4)171 (4)
O2A—H2···O1B0.78 (4)1.90 (4)2.678 (4)174 (4)
O1B—H1···O1Aiii0.84 (4)1.86 (4)2.680 (5)167 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+5/2, y, z+1/2; (iii) x+2, y1/2, z+1/2.
 

Acknowledgements

Data were collected by Malva Liu Gonzalez (Universitat València–SCSIE, Carrer del Dr Moliner, 50 Edifici de Investigació, Lab-1.46/-1.51, 46100 Burjassot–València, España).

References

First citationAbe, Y., Aoki, T., Jia, H., Hadano, H., Namikshi, T., Kakihana, Y., Liu, L., Zang, Y., Teraguchi, M. & Kaneko, T. (2012). Molecules, 17, 433–451.  Web of Science CrossRef CAS PubMed
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationKailani, M. H., Al-Bakri, A. G., Saadeh, H. & Al-Hiari, Y. M. (2012). Jordan J. Chem. 7, 239–252.  CAS
First citationKean, Z. S., Black Ramirez, A. L. & Craig, S. L. (2012). J. Polym. Sci. Part A Polym. Chem. 50, 3481–3484.  Web of Science CrossRef CAS
First citationLenhardt, J. M., Black, A. L. & Craig, S. L. (2009). J. Am. Chem. Soc. 131, 10818–10819.  Web of Science CrossRef PubMed CAS
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals
First citationNonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationPustovit, Y. M., Ogojko, P. I., Nazaretian, V. P. & Rozhenko, A. B. (1994). J. Fluorine Chem. 69, 231–236.  CrossRef CAS Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds