organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Methyl-1-phenyl-1,10-di­hydro­pyrazolo­[3,4-a]carbazole

aPostgraduate Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Tamkang University, Tamsui 25137, Taiwan, cDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, eSchool of Studies in Chemistry, Jiwaji University, Gwalior 474 011, MP, India, and fFaculty of Sciences, Department of Physics, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 18 April 2013; accepted 23 April 2013; online 27 April 2013)

In the title mol­ecule, C20H15N3, the atoms in the carbazole unit deviate from planarity [maximum deviation from mean plane = 0.1082 (15) Å]. The pyrrole ring makes dihedral angles of 3.17 (8)/4.10 (9), 7.20 (9) and 44.62 (9)° with the fused benzene, pyrazole and phenyl rings, respectively. In the crystal, mol­ecules are linked via N—H⋯N hydrogen bonds, forming an infinite chain along [010]. Mol­ecules are further linked by nine ππ [centroid–centroid distances vary from 3.6864 (11) to 3.9802 (11) Å] and one C—H⋯π inter­action, forming a three-dimensional network.

Related literature

For related structures and the biological and pharmacological activity of carbazole alkaloids, see: Archana et al. (2010[Archana, R., Prabakaran, K., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o3146.], 2011[Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2011). Acta Cryst. E67, o1799.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15N3

  • Mr = 297.35

  • Monoclinic, P 21 /c

  • a = 12.0727 (6) Å

  • b = 7.5934 (3) Å

  • c = 16.8355 (8) Å

  • β = 104.087 (5)°

  • V = 1496.95 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 123 K

  • 0.43 × 0.35 × 0.30 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.967, Tmax = 0.977

  • 6773 measured reflections

  • 3212 independent reflections

  • 2354 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.115

  • S = 1.03

  • 3212 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the N10/C10A/C5A/C5B/C9A pyrrole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10⋯N2i 0.89 (2) 2.24 (2) 3.092 (2) 159 (2)
C17—H17BCg2ii 0.98 2.70 3.401 (2) 129
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

As part of our research (Archana et al., 2010, 2011), we have synthesized the title compound (I), and report its crystal structure here.

In the title molecule (Scheme I, Fig. 1), C20H15N3, the atoms in the carbazole unit deviate from planarity. Maximum deviation from carbazole mean plane = -0.1082 (15) Å for atom C4. The pyrrole ring makes dihedral angles of 3.17 (8), 4.10 (9), 7.20 (9) and 44.62 (9)° with the fused benzene rings, pyrazole and phenyl rings, respectively.

In the crystal structure, molecules are linked via a N10—H10···N2 interaction, forming an infinite one-dimensional chain with base vector [0 1 0] (Table 1, Fig. 2). Molecules are further linked by nine π-π [Cg1—Cg5i = Cg5—Cg1iii = 3.9802 (11), Cg1—Cg5iii = Cg5—Cg1i = 3.6864 (11), Cg2—Cg5i = Cg5—Cg2iii = 3.9402 (11), Cg3—Cg5i = 3.7920 (11), Cg4—Cg4ii = 3.8456 (9) and Cg5—Cg3iii = 3.7921 (11) Å, symmetry code (i): -x, -1/2 + y, 1/2 - z, (ii): 1 - x, 2 - y, 1 - z, (iii): -x, 1/2 + y, 1/2 - z where Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the pyrazole (N1/N2/C3/C3A/C10B), pyrrole (N10/C10A/C5A/C5B/C9A), benzene (C3A/C4/C5/C5A/C10A/C10B), benzene (C5B/C6—C9/C9A) and phenyl (C11—C16) rings, respectively (Fig. 3)] and one C17—H17B···π interactions to form a three-dimensional network (Table 1, Fig. 4).

Related literature top

For related structures and the biological and pharmacological activity of carbazole alkaloids, see: Archana et al. (2010, 2011).

Experimental top

A mixture of 2-(hydroxymethylene)-6-methyl-2,3,4,9-tetrahydro-1H- carbazol-1-one (0.227 g, 0.001 mol), phenyl hydrazine (0.540 g, 0.005 mol) and glacial acetic acid (5 ml) was refluxed at 393 K for 6 h. After completion of reaction it was then cooled and poured onto crushed ice, the solid thus separated out was filtered, washed with water, dried and purified by column chromatography over silica gel (eluting with a petroleum ether and ethyl acetate mixture, 95:5) to give the title compound (0.228 g, 77%). This pure compound was recrystallized from EtOAc and ethanol.

Refinement top

The H atom bonded to N10 was located in a difference Fourier map and refined freely; N10—H10 = 0.89 (2) Å. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.98 Å, and with Uiso(H) = 1.2–1.5Ueq(parent atom).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The partial packing of the title compound, viewed approximately down the c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
[Figure 3] Fig. 3. The crystal structure of compound, showing the formation of π-π stacking interactions.
[Figure 4] Fig. 4. Part of the crystal structure of compound, showing the formation of C—H···π interactions. Symmetry code ii: 1 - x, 2 - y, 1 - z
7-Methyl-1-phenyl-1,10-dihydropyrazolo[3,4-a]carbazole top
Crystal data top
C20H15N3F(000) = 624
Mr = 297.35Dx = 1.319 Mg m3
Monoclinic, P21/cMelting point: 509 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.0727 (6) ÅCell parameters from 2152 reflections
b = 7.5934 (3) Åθ = 3.2–28.7°
c = 16.8355 (8) ŵ = 0.08 mm1
β = 104.087 (5)°T = 123 K
V = 1496.95 (12) Å3Block, colourless
Z = 40.43 × 0.35 × 0.30 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
3212 independent reflections
Radiation source: Enhance (Mo) X-ray Source2354 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.5081 pixels mm-1θmax = 28.8°, θmin = 3.2°
ω scansh = 1115
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 99
Tmin = 0.967, Tmax = 0.977l = 2217
6773 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.6346P]
where P = (Fo2 + 2Fc2)/3
3212 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H15N3V = 1496.95 (12) Å3
Mr = 297.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0727 (6) ŵ = 0.08 mm1
b = 7.5934 (3) ÅT = 123 K
c = 16.8355 (8) Å0.43 × 0.35 × 0.30 mm
β = 104.087 (5)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
3212 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2354 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.977Rint = 0.032
6773 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.24 e Å3
3212 reflectionsΔρmin = 0.25 e Å3
213 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.02985 (12)1.03390 (19)0.21043 (9)0.0239 (4)
N20.00637 (13)1.1004 (2)0.13198 (9)0.0282 (5)
N100.20532 (12)0.85847 (19)0.37045 (9)0.0218 (5)
C30.08613 (15)1.1075 (2)0.10345 (11)0.0279 (6)
C3A0.18491 (15)1.0494 (2)0.16110 (10)0.0226 (5)
C40.30269 (15)1.0405 (3)0.16171 (11)0.0276 (6)
C50.37898 (16)0.9927 (3)0.23251 (11)0.0296 (6)
C5A0.33861 (14)0.9308 (2)0.30042 (11)0.0229 (5)
C5B0.39645 (14)0.8572 (2)0.37826 (10)0.0216 (5)
C60.51173 (15)0.8333 (2)0.41785 (11)0.0244 (5)
C70.54120 (15)0.7615 (2)0.49534 (11)0.0255 (5)
C80.45442 (16)0.7109 (2)0.53306 (11)0.0270 (6)
C90.33971 (15)0.7336 (2)0.49600 (11)0.0255 (6)
C9A0.31196 (14)0.8101 (2)0.41843 (10)0.0217 (5)
C10A0.22194 (14)0.9297 (2)0.29845 (10)0.0210 (5)
C10B0.14522 (14)1.0011 (2)0.22935 (10)0.0199 (5)
C110.04799 (14)1.0332 (2)0.26172 (11)0.0229 (5)
C120.01450 (16)1.0956 (2)0.34141 (11)0.0263 (5)
C130.09314 (17)1.0990 (3)0.38894 (12)0.0322 (6)
C140.20453 (17)1.0443 (3)0.35701 (13)0.0360 (7)
C150.23685 (17)0.9846 (3)0.27740 (13)0.0350 (7)
C160.15914 (15)0.9769 (2)0.22938 (12)0.0290 (6)
C170.66497 (15)0.7377 (3)0.54049 (12)0.0315 (6)
H30.086261.147320.049980.0334*
H40.327881.067290.113840.0331*
H50.458691.000540.236530.0355*
H60.569550.866510.391300.0292*
H80.475220.659130.585980.0324*
H90.282150.698470.522420.0306*
H100.1399 (17)0.809 (3)0.3743 (12)0.034 (6)*
H120.061461.135460.363040.0316*
H130.070561.139240.443950.0387*
H140.258361.047950.389800.0431*
H150.313470.948260.255320.0420*
H160.181510.933550.174870.0348*
H17A0.684180.612090.543270.0473*
H17B0.676870.785020.596090.0473*
H17C0.714010.800580.511360.0473*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0196 (7)0.0276 (8)0.0234 (8)0.0030 (7)0.0032 (6)0.0019 (6)
N20.0261 (8)0.0322 (9)0.0243 (8)0.0044 (7)0.0025 (7)0.0044 (7)
N100.0192 (8)0.0238 (8)0.0222 (8)0.0024 (7)0.0046 (7)0.0009 (6)
C30.0307 (10)0.0284 (10)0.0246 (10)0.0024 (9)0.0068 (8)0.0013 (8)
C3A0.0254 (9)0.0205 (9)0.0212 (9)0.0002 (8)0.0042 (8)0.0021 (7)
C40.0277 (10)0.0350 (11)0.0216 (9)0.0024 (9)0.0092 (8)0.0000 (8)
C50.0225 (9)0.0362 (11)0.0324 (11)0.0012 (9)0.0113 (9)0.0046 (9)
C5A0.0204 (9)0.0216 (9)0.0260 (10)0.0005 (8)0.0046 (8)0.0014 (7)
C5B0.0217 (9)0.0186 (8)0.0241 (9)0.0005 (8)0.0050 (8)0.0030 (7)
C60.0210 (9)0.0213 (9)0.0302 (10)0.0004 (8)0.0051 (8)0.0028 (8)
C70.0269 (9)0.0175 (9)0.0282 (10)0.0025 (8)0.0007 (8)0.0056 (7)
C80.0334 (10)0.0212 (9)0.0230 (10)0.0021 (8)0.0005 (8)0.0000 (8)
C90.0288 (10)0.0223 (9)0.0255 (10)0.0016 (8)0.0069 (8)0.0028 (8)
C9A0.0226 (9)0.0187 (9)0.0224 (9)0.0008 (8)0.0029 (8)0.0033 (7)
C10A0.0220 (9)0.0199 (9)0.0211 (9)0.0006 (7)0.0052 (8)0.0017 (7)
C10B0.0170 (9)0.0196 (9)0.0223 (9)0.0000 (7)0.0031 (7)0.0032 (7)
C110.0215 (9)0.0197 (9)0.0279 (10)0.0037 (8)0.0069 (8)0.0032 (8)
C120.0244 (9)0.0232 (9)0.0311 (10)0.0003 (8)0.0062 (8)0.0014 (8)
C130.0381 (11)0.0279 (10)0.0342 (11)0.0022 (9)0.0155 (9)0.0014 (9)
C140.0351 (11)0.0308 (11)0.0488 (13)0.0008 (9)0.0234 (10)0.0013 (10)
C150.0230 (10)0.0297 (10)0.0532 (14)0.0016 (9)0.0109 (10)0.0030 (10)
C160.0233 (10)0.0268 (10)0.0348 (11)0.0008 (8)0.0030 (8)0.0007 (8)
C170.0282 (10)0.0279 (10)0.0324 (11)0.0064 (9)0.0044 (9)0.0059 (8)
Geometric parameters (Å, º) top
N1—N21.382 (2)C10A—C10B1.407 (2)
N1—C10B1.374 (2)C11—C161.387 (3)
N1—C111.423 (2)C11—C121.387 (2)
N2—C31.320 (2)C12—C131.383 (3)
N10—C9A1.392 (2)C13—C141.385 (3)
N10—C10A1.386 (2)C14—C151.378 (3)
N10—H100.89 (2)C15—C161.381 (3)
C3—C3A1.413 (2)C3—H30.9500
C3A—C41.421 (3)C4—H40.9500
C3A—C10B1.397 (2)C5—H50.9500
C4—C51.366 (3)C6—H60.9500
C5—C5A1.427 (3)C8—H80.9500
C5A—C5B1.439 (2)C9—H90.9500
C5A—C10A1.401 (2)C12—H120.9500
C5B—C9A1.401 (2)C13—H130.9500
C5B—C61.401 (3)C14—H140.9500
C6—C71.378 (2)C15—H150.9500
C7—C81.404 (3)C16—H160.9500
C7—C171.513 (3)C17—H17A0.9800
C8—C91.384 (3)C17—H17B0.9800
C9—C9A1.394 (2)C17—H17C0.9800
N2—N1—C10B110.79 (14)C12—C11—C16120.75 (17)
N2—N1—C11118.65 (14)N1—C11—C16118.80 (16)
C10B—N1—C11129.85 (15)C11—C12—C13119.11 (18)
N1—N2—C3105.30 (15)C12—C13—C14120.56 (18)
C9A—N10—C10A107.47 (14)C13—C14—C15119.63 (19)
C9A—N10—H10123.9 (14)C14—C15—C16120.76 (19)
C10A—N10—H10123.2 (13)C11—C16—C15119.17 (18)
N2—C3—C3A112.63 (16)N2—C3—H3124.00
C4—C3A—C10B121.63 (16)C3A—C3—H3124.00
C3—C3A—C4134.09 (16)C3A—C4—H4121.00
C3—C3A—C10B104.23 (16)C5—C4—H4121.00
C3A—C4—C5118.68 (17)C4—C5—H5120.00
C4—C5—C5A119.82 (18)C5A—C5—H5120.00
C5B—C5A—C10A106.35 (15)C5B—C6—H6120.00
C5—C5A—C10A121.36 (16)C7—C6—H6120.00
C5—C5A—C5B132.27 (17)C7—C8—H8119.00
C5A—C5B—C6133.56 (16)C9—C8—H8119.00
C5A—C5B—C9A106.85 (15)C8—C9—H9121.00
C6—C5B—C9A119.55 (15)C9A—C9—H9121.00
C5B—C6—C7119.95 (17)C11—C12—H12120.00
C8—C7—C17119.62 (16)C13—C12—H12120.00
C6—C7—C8119.15 (17)C12—C13—H13120.00
C6—C7—C17121.23 (17)C14—C13—H13120.00
C7—C8—C9122.46 (16)C13—C14—H14120.00
C8—C9—C9A117.40 (16)C15—C14—H14120.00
N10—C9A—C9129.13 (16)C14—C15—H15120.00
N10—C9A—C5B109.38 (14)C16—C15—H15120.00
C5B—C9A—C9121.45 (16)C11—C16—H16120.00
C5A—C10A—C10B118.22 (15)C15—C16—H16120.00
N10—C10A—C10B131.84 (16)C7—C17—H17A109.00
N10—C10A—C5A109.90 (15)C7—C17—H17B109.00
N1—C10B—C3A107.04 (14)C7—C17—H17C109.00
N1—C10B—C10A133.44 (16)H17A—C17—H17B109.00
C3A—C10B—C10A119.50 (16)H17A—C17—H17C109.00
N1—C11—C12120.38 (16)H17B—C17—H17C109.00
C10B—N1—N2—C30.15 (18)C5—C5A—C10A—N10178.07 (16)
C11—N1—N2—C3171.43 (14)C5—C5A—C10A—C10B3.7 (2)
N2—N1—C10B—C3A0.50 (18)C5B—C5A—C10A—N100.41 (18)
N2—N1—C10B—C10A177.71 (17)C5B—C5A—C10A—C10B177.85 (14)
C11—N1—C10B—C3A169.53 (15)C5A—C5B—C6—C7178.06 (17)
C11—N1—C10B—C10A12.3 (3)C9A—C5B—C6—C70.9 (2)
N2—N1—C11—C12132.06 (16)C5A—C5B—C9A—N102.61 (18)
N2—N1—C11—C1644.9 (2)C5A—C5B—C9A—C9179.74 (14)
C10B—N1—C11—C1237.3 (2)C6—C5B—C9A—N10175.22 (14)
C10B—N1—C11—C16145.69 (17)C6—C5B—C9A—C92.4 (2)
N1—N2—C3—C3A0.76 (18)C5B—C6—C7—C80.9 (2)
C10A—N10—C9A—C5B2.37 (18)C5B—C6—C7—C17178.63 (16)
C10A—N10—C9A—C9179.78 (16)C6—C7—C8—C91.3 (2)
C9A—N10—C10A—C5A1.18 (18)C17—C7—C8—C9178.20 (16)
C9A—N10—C10A—C10B179.12 (16)C7—C8—C9—C9A0.1 (2)
N2—C3—C3A—C4176.18 (19)C8—C9—C9A—N10175.15 (16)
N2—C3—C3A—C10B1.05 (18)C8—C9—C9A—C5B2.0 (2)
C3—C3A—C4—C5173.19 (19)N10—C10A—C10B—N14.0 (3)
C10B—C3A—C4—C53.7 (3)N10—C10A—C10B—C3A174.02 (16)
C3—C3A—C10B—N10.89 (17)C5A—C10A—C10B—N1173.79 (17)
C3—C3A—C10B—C10A177.62 (14)C5A—C10A—C10B—C3A8.2 (2)
C4—C3A—C10B—N1176.78 (16)N1—C11—C12—C13177.78 (16)
C4—C3A—C10B—C10A4.7 (2)C16—C11—C12—C130.8 (2)
C3A—C4—C5—C5A8.2 (3)N1—C11—C16—C15176.60 (16)
C4—C5—C5A—C5B173.34 (19)C12—C11—C16—C150.4 (2)
C4—C5—C5A—C10A4.7 (3)C11—C12—C13—C141.3 (3)
C5—C5A—C5B—C66.2 (3)C12—C13—C14—C150.6 (3)
C5—C5A—C5B—C9A176.42 (19)C13—C14—C15—C160.7 (3)
C10A—C5A—C5B—C6175.56 (17)C14—C15—C16—C111.2 (3)
C10A—C5A—C5B—C9A1.83 (17)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N10/C10A/C5A/C5B/C9A pyrrole ring.
D—H···AD—HH···AD···AD—H···A
N10—H10···N2i0.89 (2)2.24 (2)3.092 (2)159 (2)
C17—H17B···Cg2ii0.982.703.401 (2)129
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC20H15N3
Mr297.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)12.0727 (6), 7.5934 (3), 16.8355 (8)
β (°) 104.087 (5)
V3)1496.95 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.43 × 0.35 × 0.30
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.967, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
6773, 3212, 2354
Rint0.032
(sin θ/λ)max1)0.677
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.115, 1.03
No. of reflections3212
No. of parameters213
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N10/C10A/C5A/C5B/C9A pyrrole ring.
D—H···AD—HH···AD···AD—H···A
N10—H10···N2i0.89 (2)2.24 (2)3.092 (2)159 (2)
C17—H17B···Cg2ii0.982.703.401 (2)129
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+2, z+1.
 

Acknowledgements

RJB acknowledges the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. SKG wishes to acknowledge the USIEF for the award of a Fulbright–Nehru Senior Research Fellowship.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
First citationArchana, R., Prabakaran, K., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o3146.  Web of Science CSD CrossRef IUCr Journals
First citationArchana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2011). Acta Cryst. E67, o1799.  Web of Science CSD CrossRef IUCr Journals
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds