supplementary materials


fj2625 scheme

Acta Cryst. (2013). E69, o681    [ doi:10.1107/S1600536813008957 ]

3,4-Dimethoxy-4'-methylbiphenyl

M. Lahtinen and S. Nummelin

Abstract top

In the title compound, C15H16O2, the dihedral angle between the planes of the aromatic rings is 30.5 (2)°. In the crystal, molecules are linked via C-H...O hydrogen bonds and C-H...[pi] interactions, forming a two-dimensional network lying parallel to (100).

Comment top

Percec-type biphenyl dendrons (Percec et al. 2006, 2007) are synthesized in a multi-step reaction sequence wherein the key synthetic step is the formation of sp2sp2 carbon–carbon bonds. This is achieved using various cross-coupling reactions (Corbet & Mignani 2006). The title compound is synthesized in a gram-scale using the Suzuki-Miyaura cross-coupling reaction (Miyaura & Suzuki 1995), catalyzed by either palladium (Miyaura et al. 1981; Wolfe et al. 1999) or nickel (Percec et al. 2004, 2006). Biphenyl derivatives expand the scope and limitations of aryl ethers and esters (Nummelin et al. 2000) that serve as tectons for the construction of amphiphilic dendrons. Percec-type dendrons self-assemble into hollow and non-hollow cylindrical and spherical supramolecular dendrimers that further self-organize into hexagonal and cubic lattices (Percec et al. 2006, 2007, 2008; Peterca et al. 2006). As a contribution to a structural study of biphenyl derivatives (Lahtinen et al. 2013a,b,c; Li et al. 2012a,b) we report here the title compound 3,4-dimethoxy-4'-methyl biphenyl (I).

The compound (I) crystallizes in monoclinic P21/c (No. 14) spacegroup having a single molecule in an asymmetric unit (Figure 1). The intramolecular dihedral angle between the phenyl rings is 30.5 (2)° [C(4)–C(5)–C(8)–C(9)] thereby being analogous to those found in similar biphenyls reported earlier (Lahtinen et al. 2013a,b,c). The methoxy groups at 3- and 4-positions are co-planar in relation to the phenyl ring [C8>C13] with dihedral angles of -5.0 (2)° and 1.4 (2)°, respectively. Molecules are packed in head-to-head (methoxy-phenyl part) and tail-to-tail (methyl-phenyl part) formation (Figure 2) in zigzagged rows running parallel to (201) plane. By this, a columnar packing is formed in which methoxy and methyl layers alternate along a-axis (Figures 3 and 4). Network of C–H···π interactions occur between methoxy H atoms and phenyl groups with distance of 4.218 (2) Å. Infinite network of edge-to-face ππ interactions occur between phenyl rings (Figure 5) troughout the lattice along with (011) plane with distance of 5.047 (1) Å. Also weak C–H···O hydrogen bond network exist between the adjacent methoxy groups with D···A distances varying from 3.356 (2) to 3.694 (2) Å.

Related literature top

For structural studies of related biphenyl derivatives, see Lahtinen et al. (2013a,b,c); Li et al. (2012a,b). For details of the synthesis, see: Percec et al. (2004, 2006); Wolfe et al. (1999). For details of various cross-coupling reactions, see: Corbet & Mignani (2006); Miyaura et al. (1981); Miyaura & Suzuki (1995); Percec et al. (2004); Wolfe et al. (1999). For self-assembling supramolecular dendrons based on 3,4-branched biphenyls, see: Percec et al. (2006, 2007). For hollow supramolecular dendrimers, see Peterca et al. (2006); Percec et al. (2008). For dendritic polyaryl esters, see Nummelin et al. (2000).

Experimental top

A dry Schlenk-tube was charged with 4-methylphenylboronic acid (6.0 g, 44.1 mmol), potassium fluoride (5.1 g, 88.3 mmol), 1-bromo-3,4-dimethoxybenzene (6.4 g, 29.4 mmol), Pd(OAc)2 (66 mg, 0.29 mmol, 1.0 mol%) and 2-(di-tert-butylphosphino)biphenyl (176 mg, 0.59 mmol, 2.0 mol%). The flask was sealed with a teflon screwcap, evacuated/backfilled with argon five times. Dry, degassed THF (40 ml) was added via syringe. The reaction mixture was stirred at ambient temperature until the aryl chloride had been completely consumed as judged by TLC analysis. The mixture was diluted with ether, filtered, and washed with 1M NaOH. The aqueous layer was extracted with ether, the combined organic layer was washed with brine and dried with Na2SO4. The crude product was purified by flash column chromatography: silica gel/CH2Cl2. Yield: 6.2 g (92%) of a white crystalline solid. Crystals suitable for a single-crystal structure determination were obtained from a slow evaporation of ethanol.

Refinement top

Hydrogen atoms were placed to their ideal positions as riding atoms (C host) using isotropic displacement parameters that were fixed to be 1.2 or 1.5 times larger than those of the attached non-hydrogen atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure and atomic labeling of the title compound showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. In zigzag formation packed molecule rows along (201)-plane. Hydrogen atoms are omitted for clarity.
[Figure 3] Fig. 3. Packing of molecules along b-axis. Hydrogen atoms are omitted for clarity.
[Figure 4] Fig. 4. Packing of molecules along c axis. Hydrogen atoms are omitted for clarity.
[Figure 5] Fig. 5. Weak hydrogen bond C–H···O (blue dashed lines), C–H···π and edge-to-face ππ contacts shown between the molecules.
3,4-Dimethoxy-4'-methylbiphenyl top
Crystal data top
C15H16O2F(000) = 488
Mr = 228.28Dx = 1.229 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
a = 17.7430 (9) ÅCell parameters from 1622 reflections
b = 8.7581 (3) Åθ = 5.1–76.7°
c = 8.1135 (3) ŵ = 0.64 mm1
β = 101.795 (5)°T = 123 K
V = 1234.17 (9) Å3Plate, colourless
Z = 40.36 × 0.26 × 0.04 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2282 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1844 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.3953 pixels mm-1θmax = 69.0°, θmin = 5.1°
ω scansh = 1821
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2010)
k = 107
Tmin = 0.880, Tmax = 0.977l = 99
4273 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0735P)2 + 0.0799P]
where P = (Fo2 + 2Fc2)/3
2282 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.31 e Å3
0 constraints
Crystal data top
C15H16O2V = 1234.17 (9) Å3
Mr = 228.28Z = 4
Monoclinic, P21/cCu Kα radiation
a = 17.7430 (9) ŵ = 0.64 mm1
b = 8.7581 (3) ÅT = 123 K
c = 8.1135 (3) Å0.36 × 0.26 × 0.04 mm
β = 101.795 (5)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2282 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2010)
1844 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.977Rint = 0.038
4273 measured reflectionsθmax = 69.0°
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.143Δρmax = 0.23 e Å3
S = 1.07Δρmin = 0.31 e Å3
2282 reflectionsAbsolute structure: ?
157 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O160.89457 (7)0.46978 (13)0.00350 (15)0.0335 (3)
O140.94276 (7)0.60539 (14)0.28726 (15)0.0353 (3)
C90.82177 (9)0.56204 (18)0.37788 (19)0.0282 (3)
H90.84000.61110.48290.034*
C110.84258 (10)0.47747 (17)0.10680 (19)0.0283 (4)
C100.86951 (10)0.55131 (17)0.2626 (2)0.0284 (3)
C80.74672 (9)0.50130 (17)0.34160 (19)0.0278 (3)
C120.76904 (10)0.41966 (19)0.0695 (2)0.0317 (4)
H120.75060.37130.03580.038*
C130.72128 (10)0.43187 (19)0.1867 (2)0.0310 (4)
H130.67050.39180.15940.037*
C40.70104 (10)0.63163 (19)0.58078 (19)0.0312 (4)
H40.73790.71010.57990.037*
C30.65286 (10)0.6385 (2)0.6963 (2)0.0344 (4)
H30.65770.72120.77340.041*
C60.64005 (10)0.39913 (18)0.4706 (2)0.0317 (4)
H60.63490.31610.39370.038*
C70.59199 (10)0.40748 (19)0.5854 (2)0.0340 (4)
H70.55430.33030.58510.041*
C50.69597 (9)0.51097 (18)0.46610 (19)0.0281 (4)
C20.59771 (10)0.5262 (2)0.7009 (2)0.0331 (4)
C10.54666 (11)0.5331 (2)0.8280 (2)0.0418 (4)
H1A0.56960.60140.92030.063*
H1B0.54130.43050.87260.063*
H1C0.49580.57170.77370.063*
C170.86955 (12)0.3987 (2)0.1569 (2)0.0401 (4)
H17A0.82500.45400.22080.060*
H17B0.85510.29260.14090.060*
H17C0.91140.40090.21910.060*
C150.97056 (11)0.6901 (2)0.4385 (2)0.0429 (5)
H15A1.02280.72670.43910.064*
H15B0.97130.62410.53630.064*
H15C0.93660.77750.44350.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O160.0440 (7)0.0297 (6)0.0324 (6)0.0001 (5)0.0209 (5)0.0024 (4)
O140.0392 (7)0.0340 (6)0.0368 (6)0.0065 (5)0.0173 (5)0.0074 (5)
C90.0380 (8)0.0238 (7)0.0255 (7)0.0008 (6)0.0128 (6)0.0006 (5)
C110.0389 (8)0.0230 (7)0.0268 (7)0.0044 (6)0.0159 (6)0.0036 (5)
C100.0362 (8)0.0208 (7)0.0307 (8)0.0001 (6)0.0129 (6)0.0023 (6)
C80.0351 (8)0.0235 (7)0.0273 (7)0.0017 (6)0.0122 (6)0.0024 (6)
C120.0406 (9)0.0304 (8)0.0256 (7)0.0018 (6)0.0101 (6)0.0017 (6)
C130.0351 (8)0.0311 (8)0.0285 (8)0.0003 (6)0.0108 (6)0.0009 (6)
C40.0396 (9)0.0286 (8)0.0278 (7)0.0017 (6)0.0124 (6)0.0003 (6)
C30.0448 (10)0.0336 (9)0.0278 (8)0.0034 (7)0.0146 (7)0.0020 (6)
C60.0391 (9)0.0266 (8)0.0318 (8)0.0004 (6)0.0131 (6)0.0003 (6)
C70.0360 (9)0.0315 (8)0.0382 (9)0.0005 (6)0.0166 (7)0.0048 (6)
C50.0344 (8)0.0263 (8)0.0252 (7)0.0030 (6)0.0101 (6)0.0036 (6)
C20.0365 (8)0.0370 (9)0.0285 (8)0.0065 (7)0.0130 (6)0.0059 (6)
C10.0417 (10)0.0537 (11)0.0347 (9)0.0078 (8)0.0186 (7)0.0044 (8)
C170.0522 (11)0.0454 (10)0.0264 (8)0.0081 (8)0.0165 (7)0.0011 (7)
C150.0435 (10)0.0394 (9)0.0497 (10)0.0106 (7)0.0188 (8)0.0172 (8)
Geometric parameters (Å, º) top
O16—C111.3689 (19)C3—H30.9500
O16—C171.429 (2)C3—C21.393 (3)
O14—C101.359 (2)C6—H60.9500
O14—C151.432 (2)C6—C71.388 (2)
C9—H90.9500C6—C51.400 (2)
C9—C101.388 (2)C7—H70.9500
C9—C81.408 (2)C7—C21.389 (3)
C11—C101.413 (2)C2—C11.507 (2)
C11—C121.375 (3)C1—H1A0.9800
C8—C131.386 (2)C1—H1B0.9800
C8—C51.487 (2)C1—H1C0.9800
C12—H120.9500C17—H17A0.9800
C12—C131.401 (2)C17—H17B0.9800
C13—H130.9500C17—H17C0.9800
C4—H40.9500C15—H15A0.9800
C4—C31.393 (2)C15—H15B0.9800
C4—C51.399 (2)C15—H15C0.9800
C11—O16—C17117.15 (14)C5—C6—H6119.5
C10—O14—C15117.27 (13)C6—C7—H7119.3
C10—C9—H9119.5C6—C7—C2121.46 (16)
C10—C9—C8121.00 (15)C2—C7—H7119.3
C8—C9—H9119.5C4—C5—C8121.97 (15)
O16—C11—C10115.04 (14)C4—C5—C6117.45 (15)
O16—C11—C12125.13 (15)C6—C5—C8120.57 (14)
C12—C11—C10119.83 (14)C3—C2—C1120.94 (16)
O14—C10—C9125.05 (15)C7—C2—C3117.72 (15)
O14—C10—C11115.43 (14)C7—C2—C1121.33 (17)
C9—C10—C11119.51 (15)C2—C1—H1A109.5
C9—C8—C5120.98 (14)C2—C1—H1B109.5
C13—C8—C9118.30 (14)C2—C1—H1C109.5
C13—C8—C5120.72 (15)H1A—C1—H1B109.5
C11—C12—H12120.0H1A—C1—H1C109.5
C11—C12—C13120.10 (15)H1B—C1—H1C109.5
C13—C12—H12120.0O16—C17—H17A109.5
C8—C13—C12121.24 (15)O16—C17—H17B109.5
C8—C13—H13119.4O16—C17—H17C109.5
C12—C13—H13119.4H17A—C17—H17B109.5
C3—C4—H4119.5H17A—C17—H17C109.5
C3—C4—C5121.00 (16)H17B—C17—H17C109.5
C5—C4—H4119.5O14—C15—H15A109.5
C4—C3—H3119.4O14—C15—H15B109.5
C4—C3—C2121.26 (15)O14—C15—H15C109.5
C2—C3—H3119.4H15A—C15—H15B109.5
C7—C6—H6119.5H15A—C15—H15C109.5
C7—C6—C5121.10 (15)H15B—C15—H15C109.5
O16—C11—C10—O140.6 (2)C4—C3—C2—C70.4 (3)
O16—C11—C10—C9178.57 (13)C4—C3—C2—C1179.02 (16)
O16—C11—C12—C13178.85 (14)C3—C4—C5—C8179.95 (14)
C9—C8—C13—C121.1 (2)C3—C4—C5—C60.9 (2)
C9—C8—C5—C430.5 (2)C6—C7—C2—C30.8 (3)
C9—C8—C5—C6150.44 (16)C6—C7—C2—C1178.60 (16)
C11—C12—C13—C80.2 (2)C7—C6—C5—C8179.55 (15)
C10—C9—C8—C130.7 (2)C7—C6—C5—C40.5 (2)
C10—C9—C8—C5179.17 (14)C5—C8—C13—C12178.85 (15)
C10—C11—C12—C130.9 (2)C5—C4—C3—C20.4 (3)
C8—C9—C10—O14179.46 (15)C5—C6—C7—C20.4 (3)
C8—C9—C10—C110.4 (2)C17—O16—C11—C10178.82 (14)
C12—C11—C10—O14179.61 (14)C17—O16—C11—C121.4 (2)
C12—C11—C10—C91.2 (2)C15—O14—C10—C95.0 (2)
C13—C8—C5—C4149.58 (16)C15—O14—C10—C11175.86 (15)
C13—C8—C5—C629.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15A···O16i0.982.573.389 (2)141
C15—H15C···O16ii0.982.423.356 (2)160
C4—H4···Cg2ii0.952.963.7807 (18)145
C17—H17B···Cg2iii0.982.833.7119 (19)150
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15A···O16i0.982.573.389 (2)141
C15—H15C···O16ii0.982.423.356 (2)160
C4—H4···Cg2ii0.952.963.7807 (18)145
C17—H17B···Cg2iii0.982.833.7119 (19)150
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z1/2.
Acknowledgements top

SN acknowledges the Academy of Finland for financial support (No. 138850).

references
References top

Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.

Corbet, J.-P. & Mignani, G. (2006). Chem. Rev. 106, 2651–2710.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Lahtinen, M., Nättinen, K. & Nummelin, S. (2013a). Acta Cryst. E69, o383.

Lahtinen, M., Nättinen, K. & Nummelin, S. (2013b). Acta Cryst. E69, o460.

Lahtinen, M., Nättinen, K. & Nummelin, S. (2013c). Acta Cryst. E69, o510–o511.

Li, X.-M., Hou, Y.-J., Chu, W.-Y. & Sun, Z.-Z. (2012b). Acta Cryst. E68, o1292.

Li, X.-M., Hou, Y.-J., Mei, P., Chu, W.-Y. & Sun, Z.-Z. (2012a). Acta Cryst. E68, o1137.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457–2483.

Miyaura, N., Yanagi, T. & Suzuki, A. (1981). Synth. Commun. 11, 513–519.

Nummelin, S., Skrifvars, M. & Rissanen, K. (2000). Top. Curr. Chem. 210, 1–67.

Percec, V., Golding, G. M., Smidrkal, J. & Weichold, O. (2004). J. Org. Chem. 69, 3447–3452.

Percec, V., Holerca, M. N., Nummelin, S., Morrison, J. J., Glodde, M., Smidrkal, J., Peterca, M., Uchida, S., Balagurusamy, V. S. K., Sienkowska, M. J. & Heiney, P. A. (2006). Chem. Eur. J. 12, 6216–6241.

Percec, V., Peterca, M., Dulcey, A. E., Imam, M. R., Hudson, S. D., Nummelin, S., Adelman, P. & Heiney, P. A. (2008). J. Am. Chem. Soc. 130, 13079–13094.

Percec, V., Smidrkal, J., Peterca, M., Mitchell, C. M., Nummelin, S., Dulcey, A. E., Sienkowska, M. J. & Heiney, P. A. (2007). Chem. Eur. J. 13, 3989–4007.

Peterca, M., Percec, V., Dulcey, A. E., Nummelin, S., Korey, S., Ilies, M. & Heiney, P. A. (2006). J. Am. Chem. Soc. 128, 6713–6720.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wolfe, J. P., Singer, R. A., Yang, B. H. & Buchwald, S. L. (1999). J. Am. Chem. Soc. 121, 9550–9561.