supplementary materials


is5267 scheme

Acta Cryst. (2013). E69, o817    [ doi:10.1107/S1600536813011392 ]

2,5-Dimethyl-3-(4-methylphenylsulfonyl)-1-benzofuran

H. D. Choi, P. J. Seo and U. Lee

Abstract top

In the title compound, C17H16O3S, the dihedral angle between the 4-methylphenyl ring and the mean plane [r.m.s. deviation = 0.011 (1) Å] of the benzofuran ring system is 71.47 (5)°. In the crystal, molecules are linked by weak C-H...O hydrogen bonds, and by slipped [pi]-[pi] interactions between the benzofuran ring systems of neighbouring molecules [centroid-centroid distances = 3.638 (2) and 3.766 (2) Å, interplanar distances = 3.564 (2) and 3.454 (2) Å, and slippages = 0.730 (2) and 1.501 (2) Å], forming a three-dimensional network.

Comment top

As a part of our continuing study of 2,5-dimethyl-1-benzofuran derivatives containing 4-chlorophenylsulfonyl (Choi et al., 2010) and 4-methylphenylsulfinyl (Choi et al., 2012) substituents in 3-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.011 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 4-methylphenyl ring and the mean plane of the benzofuran fragment is 71.47 (5)°. In the crystal structure (Fig. 2), molecules are connected by weak C—H···O hydrogen bonds (Table 1), and by slipped ππ interactions between the furan and benzene rings of neighbouring molecules, with Cg1···Cg2iii and Cg1···Cg2iv distances of 3.638 (2) Å & 3.766 (2) Å, and interplanar distances of 3.564 (2) Å & 3.454 (2) Å resulting in slippages of 0.730 (2) Å & 1.501 (2) Å (Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively).

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2010, 2012).

Experimental top

3-Chloroperoxybenzoic acid (77%, 560 mg, 2.5 mmol) was added in small portions to a stirred solution of 2,5-dimethyl-3-(4-methylphenylsulfanyl)-1-benzofuran (322 mg, 1.2 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 8h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 73%, m.p. 406–407 K; Rf = 0.48 (hexane–ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms, and with Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O and ππ interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y, -z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 2, -y + 1, -z + 1.]
2,5-Dimethyl-3-(4-methylphenylsulfonyl)-1-benzofuran top
Crystal data top
C17H16O3SZ = 2
Mr = 300.36F(000) = 316
Triclinic, P1Dx = 1.389 Mg m3
Hall symbol: -P 1Melting point = 406–407 K
a = 7.3481 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2285 (4) ÅCell parameters from 5770 reflections
c = 11.0625 (4) Åθ = 2.3–28.3°
α = 114.134 (2)°µ = 0.23 mm1
β = 91.056 (2)°T = 173 K
γ = 106.624 (2)°Block, colourless
V = 718.30 (5) Å30.31 × 0.25 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3545 independent reflections
Radiation source: rotating anode2977 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.029
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 2.0°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1313
Tmin = 0.684, Tmax = 0.746l = 1314
13104 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.108H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.046P)2 + 0.3774P]
where P = (Fo2 + 2Fc2)/3
3545 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C17H16O3Sγ = 106.624 (2)°
Mr = 300.36V = 718.30 (5) Å3
Triclinic, P1Z = 2
a = 7.3481 (3) ÅMo Kα radiation
b = 10.2285 (4) ŵ = 0.23 mm1
c = 11.0625 (4) ÅT = 173 K
α = 114.134 (2)°0.31 × 0.25 × 0.12 mm
β = 91.056 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3545 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2977 reflections with I > 2σ(I)
Tmin = 0.684, Tmax = 0.746Rint = 0.029
13104 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.108Δρmax = 0.39 e Å3
S = 1.04Δρmin = 0.47 e Å3
3545 reflectionsAbsolute structure: ?
193 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50135 (6)0.10427 (4)0.27607 (4)0.02799 (12)
O10.81392 (17)0.52143 (13)0.36169 (13)0.0350 (3)
O20.38652 (17)0.08356 (13)0.37433 (12)0.0334 (3)
O30.40868 (17)0.05919 (14)0.14334 (12)0.0371 (3)
C10.6363 (2)0.29425 (18)0.34342 (16)0.0279 (3)
C20.6791 (2)0.39740 (18)0.48433 (16)0.0278 (3)
C30.6357 (2)0.38832 (19)0.60305 (16)0.0306 (3)
H30.56220.29480.60210.037*
C40.7017 (2)0.5182 (2)0.72308 (17)0.0353 (4)
C50.8078 (3)0.6558 (2)0.72172 (19)0.0400 (4)
H50.84980.74430.80430.048*
C60.8531 (3)0.6672 (2)0.60581 (19)0.0383 (4)
H60.92570.76070.60630.046*
C70.7877 (2)0.53589 (19)0.48886 (18)0.0315 (4)
C80.7209 (2)0.37347 (19)0.27511 (18)0.0321 (4)
C90.6603 (3)0.5108 (2)0.85310 (19)0.0485 (5)
H9A0.54860.42190.83550.073*
H9B0.63320.60250.91260.073*
H9C0.77220.50300.89600.073*
C100.7368 (3)0.3328 (2)0.13212 (19)0.0423 (4)
H10A0.70520.40590.10670.064*
H10B0.64730.23120.07700.064*
H10C0.86850.33440.11780.064*
C110.6690 (2)0.00704 (17)0.26085 (15)0.0276 (3)
C120.7065 (3)0.0350 (2)0.36046 (17)0.0337 (4)
H120.64570.00890.43800.040*
C130.8334 (3)0.1156 (2)0.34560 (19)0.0376 (4)
H130.85700.14650.41280.045*
C140.9267 (2)0.15207 (18)0.23464 (18)0.0337 (4)
C150.8911 (3)0.1045 (2)0.13838 (17)0.0361 (4)
H150.95760.12550.06340.043*
C160.7616 (3)0.02729 (19)0.14912 (16)0.0337 (4)
H160.73610.00200.08110.040*
C171.0609 (3)0.2432 (2)0.2168 (2)0.0441 (4)
H17A1.11350.22980.30470.066*
H17B1.16610.20890.17260.066*
H17C0.99030.35050.16160.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0275 (2)0.0299 (2)0.0247 (2)0.00481 (15)0.00166 (15)0.01299 (16)
O10.0319 (6)0.0332 (6)0.0455 (7)0.0079 (5)0.0067 (5)0.0241 (6)
O20.0318 (6)0.0342 (6)0.0320 (6)0.0048 (5)0.0081 (5)0.0160 (5)
O30.0362 (7)0.0431 (7)0.0286 (6)0.0086 (5)0.0019 (5)0.0155 (5)
C10.0249 (7)0.0302 (8)0.0310 (8)0.0082 (6)0.0034 (6)0.0159 (6)
C20.0234 (7)0.0286 (8)0.0334 (8)0.0098 (6)0.0036 (6)0.0142 (6)
C30.0289 (8)0.0304 (8)0.0324 (8)0.0097 (6)0.0042 (6)0.0134 (7)
C40.0335 (9)0.0373 (9)0.0333 (9)0.0161 (7)0.0040 (7)0.0105 (7)
C50.0375 (9)0.0315 (9)0.0428 (10)0.0139 (7)0.0023 (8)0.0068 (8)
C60.0315 (9)0.0283 (8)0.0526 (11)0.0088 (7)0.0002 (8)0.0159 (8)
C70.0259 (8)0.0316 (8)0.0421 (9)0.0108 (6)0.0048 (7)0.0198 (7)
C80.0275 (8)0.0348 (8)0.0393 (9)0.0101 (7)0.0046 (7)0.0211 (7)
C90.0560 (12)0.0507 (12)0.0327 (10)0.0198 (10)0.0069 (9)0.0103 (9)
C100.0434 (10)0.0529 (11)0.0418 (10)0.0139 (9)0.0111 (8)0.0319 (9)
C110.0290 (8)0.0259 (7)0.0245 (7)0.0040 (6)0.0005 (6)0.0109 (6)
C120.0381 (9)0.0368 (9)0.0286 (8)0.0088 (7)0.0073 (7)0.0184 (7)
C130.0413 (10)0.0395 (9)0.0393 (9)0.0111 (8)0.0041 (8)0.0254 (8)
C140.0318 (8)0.0249 (8)0.0391 (9)0.0034 (6)0.0024 (7)0.0128 (7)
C150.0407 (9)0.0352 (9)0.0290 (8)0.0114 (7)0.0083 (7)0.0110 (7)
C160.0413 (9)0.0356 (9)0.0237 (8)0.0104 (7)0.0034 (7)0.0138 (7)
C170.0402 (10)0.0351 (9)0.0599 (12)0.0123 (8)0.0089 (9)0.0230 (9)
Geometric parameters (Å, º) top
S1—O21.4347 (12)C9—H9B0.9800
S1—O31.4360 (12)C9—H9C0.9800
S1—C11.7323 (16)C10—H10A0.9800
S1—C111.7628 (16)C10—H10B0.9800
O1—C81.369 (2)C10—H10C0.9800
O1—C71.376 (2)C11—C121.386 (2)
C1—C81.358 (2)C11—C161.388 (2)
C1—C21.445 (2)C12—C131.382 (2)
C2—C31.390 (2)C12—H120.9500
C2—C71.393 (2)C13—C141.386 (3)
C3—C41.389 (2)C13—H130.9500
C3—H30.9500C14—C151.388 (2)
C4—C51.407 (3)C14—C171.504 (2)
C4—C91.503 (3)C15—C161.378 (2)
C5—C61.373 (3)C15—H150.9500
C5—H50.9500C16—H160.9500
C6—C71.377 (2)C17—H17A0.9800
C6—H60.9500C17—H17B0.9800
C8—C101.478 (2)C17—H17C0.9800
C9—H9A0.9800
O2—S1—O3119.29 (7)C4—C9—H9C109.5
O2—S1—C1106.76 (7)H9A—C9—H9C109.5
O3—S1—C1109.07 (8)H9B—C9—H9C109.5
O2—S1—C11107.90 (7)C8—C10—H10A109.5
O3—S1—C11107.52 (7)C8—C10—H10B109.5
C1—S1—C11105.50 (7)H10A—C10—H10B109.5
C8—O1—C7107.01 (12)C8—C10—H10C109.5
C8—C1—C2107.56 (14)H10A—C10—H10C109.5
C8—C1—S1126.87 (13)H10B—C10—H10C109.5
C2—C1—S1125.57 (12)C12—C11—C16120.60 (16)
C3—C2—C7119.29 (15)C12—C11—S1119.59 (13)
C3—C2—C1136.09 (15)C16—C11—S1119.81 (12)
C7—C2—C1104.60 (15)C13—C12—C11119.20 (16)
C4—C3—C2118.91 (16)C13—C12—H12120.4
C4—C3—H3120.5C11—C12—H12120.4
C2—C3—H3120.5C12—C13—C14121.31 (16)
C3—C4—C5119.47 (17)C12—C13—H13119.3
C3—C4—C9119.97 (17)C14—C13—H13119.3
C5—C4—C9120.56 (17)C13—C14—C15118.30 (16)
C6—C5—C4122.60 (17)C13—C14—C17121.26 (16)
C6—C5—H5118.7C15—C14—C17120.44 (17)
C4—C5—H5118.7C16—C15—C14121.53 (16)
C5—C6—C7116.39 (17)C16—C15—H15119.2
C5—C6—H6121.8C14—C15—H15119.2
C7—C6—H6121.8C15—C16—C11119.01 (15)
O1—C7—C6126.27 (16)C15—C16—H16120.5
O1—C7—C2110.39 (14)C11—C16—H16120.5
C6—C7—C2123.32 (17)C14—C17—H17A109.5
C1—C8—O1110.43 (15)C14—C17—H17B109.5
C1—C8—C10133.95 (17)H17A—C17—H17B109.5
O1—C8—C10115.60 (15)C14—C17—H17C109.5
C4—C9—H9A109.5H17A—C17—H17C109.5
C4—C9—H9B109.5H17B—C17—H17C109.5
H9A—C9—H9B109.5
O2—S1—C1—C8159.43 (14)C1—C2—C7—C6177.78 (15)
O3—S1—C1—C829.29 (17)C2—C1—C8—O10.70 (18)
C11—S1—C1—C885.95 (16)S1—C1—C8—O1179.36 (11)
O2—S1—C1—C220.64 (15)C2—C1—C8—C10177.32 (18)
O3—S1—C1—C2150.78 (13)S1—C1—C8—C102.6 (3)
C11—S1—C1—C293.98 (14)C7—O1—C8—C10.23 (17)
C8—C1—C2—C3179.54 (18)C7—O1—C8—C10178.19 (14)
S1—C1—C2—C30.5 (3)O2—S1—C11—C1217.41 (15)
C8—C1—C2—C70.87 (17)O3—S1—C11—C12147.28 (13)
S1—C1—C2—C7179.19 (12)C1—S1—C11—C1296.42 (14)
C7—C2—C3—C40.2 (2)O2—S1—C11—C16162.29 (13)
C1—C2—C3—C4178.31 (17)O3—S1—C11—C1632.42 (15)
C2—C3—C4—C51.0 (2)C1—S1—C11—C1683.88 (14)
C2—C3—C4—C9178.75 (16)C16—C11—C12—C131.8 (3)
C3—C4—C5—C61.4 (3)S1—C11—C12—C13177.88 (13)
C9—C4—C5—C6178.35 (17)C11—C12—C13—C141.4 (3)
C4—C5—C6—C70.5 (3)C12—C13—C14—C150.6 (3)
C8—O1—C7—C6178.12 (16)C12—C13—C14—C17178.38 (16)
C8—O1—C7—C20.35 (17)C13—C14—C15—C162.2 (3)
C5—C6—C7—O1179.09 (15)C17—C14—C15—C16176.74 (16)
C5—C6—C7—C20.8 (3)C14—C15—C16—C111.8 (3)
C3—C2—C7—O1179.69 (13)C12—C11—C16—C150.2 (2)
C1—C2—C7—O10.75 (17)S1—C11—C16—C15179.48 (13)
C3—C2—C7—C61.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.952.483.224 (2)135
C16—H16···O3ii0.952.443.301 (2)151
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.952.483.224 (2)135
C16—H16···O3ii0.952.443.301 (2)151
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
Acknowledgements top

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

references
References top

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o1410.

Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o3065.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.