organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 5| May 2013| Pages o624-o625

2-[(5′-Chloro-1,1′:3′,1′′-terphenyl-4′-yl)imino]­ace­naphthylen-1(2H)-one

aKey Laboratory of Eco-Environment-Related Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: clinton_du@126.com

(Received 23 February 2013; accepted 23 March 2013; online 5 April 2013)

The title compound, C30H18ClNO, is a product of the condensation reaction of acenaphthyl­ene-1,2-dione and 5′-chloro-1,1′:3′,1′′-terphenyl-4′-amine. The acenaphthyl­ene fragment and two terminal phenyl rings are rotated relative to the central benzene ring by 72.2 (3), 43.2 (3) and 41.2 (3)°, respectively. This mol­ecular conformation is supported by weak C—H⋯π inter­actions. In the crystal, mol­ecules form centrosymmetric dimers by the stacking inter­actions between two neighboring acenaphthyl­ene fragments, with an inter­planar distance of 3.365 (3) Å. The dimers are bound to each other by weak C—H⋯N and C—H⋯π inter­actions, forming a three-dimensional framework.

Related literature

For background to applications of Schiff bases, see: Lozier et al. (1975[Lozier, R., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955-962.]); Kargar et al. (2009[Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403-m404.]); Yeap et al. (2009[Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570-m571.]). For related structures, see: Higuchi et al. (2001[Higuchi, M., Shiki, S., Ariga, K. & Yamamoto, K. (2001). J. Am. Chem. Soc. 123, 4414-4420.]); Manseong et al. (2006[Manseong, J., Chul, J. H. & Sang, Y. K. (2006). Macromol. Res. 3, 306-311.]); Vitor et al. (2008[Vitor, R., Teresa, A., Gabriel, A., Berta, C. & Carlos, L. (2008). Inorg. Chem. 47, 7734-7744.]).

[Scheme 1]

Experimental

Crystal data
  • C30H18ClNO

  • Mr = 443.90

  • Monoclinic, P 21 /n

  • a = 12.4929 (6) Å

  • b = 10.8699 (7) Å

  • c = 16.0758 (8) Å

  • β = 91.864 (5)°

  • V = 2181.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.32 × 0.28 × 0.25 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Eos) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.866, Tmax = 1.000

  • 8827 measured reflections

  • 4461 independent reflections

  • 3151 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.121

  • S = 1.09

  • 4461 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C25–C30 and C19–C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24⋯N2i 0.93 2.59 3.338 (3) 138
C4—H4⋯Cg1ii 0.93 2.74 3.551 (3) 147
C6—H6⋯Cg2iii 0.93 2.92 3.647 (3) 136
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Schiff bases often exhibit various biological activities, for example, anti-inflammatory, antibacterial, anticancer and antitoxic properties (Lozier et al., 1975). They have also been used as versatile ligands in coordination chemistry (Kargar et al., 2009; Yeap et al., 2009). The present work describes the structure of a new Schiff base, C30H18ClNO, (I) obtained by the condensation reaction of acenaphthylene-1,2-dione and 5'-chloro-1,1':3',1''-terphenyl-4'-amine (Figure 1).

The geometrical parameters of I are in good accordance with those found in the related compounds (Higuchi et al., 2001; Manseong et al., 2006; Vitor et al., 2008). The acenaphthylene fragment and two terminal phenyl rings in I are rotated in relative to the central benzene ring by 72.2 (3), 43.2 (3) and 41.2 (3)°, respectively (Figure 2). The molecular conformation of I is supported by the weak intramolecular C20—H20···N2 (Table 1) and C2—H2···π(C13=C14) [H2···C13 2.76 Å, H2···C14 2.80 Å] hydrogen bonding interactions (Figure 2).

In the crystal, the molecules form centrosymmetric dimers by the stacking interactions between two neighboring acenaphthylene fragments, with the interplane distance of 3.365 (3) Å. The dimers are bound to each other by the weak C24—H24···N2i, C4—H4···Cg1ii (Cg1 is the centroid of the C25/C26/C27/C28/C29/C30 ring) and C6—H6···Cg2iii (Cg2 is the centroid of the C19/C20/C21/C22/C23/C24 ring) hydrogen bonding interactions (Table 1) into 3-dimensional framework. Symmetry codes: (i) –x+1/2, y+1/2, –z+1/2; (ii) x–1/2, –y+1/2, z–1/2; (iii) –x+1, –y+1, –z+1.

Related literature top

For background to applications of Schiff bases, see: Lozier et al. (1975); Kargar et al. (2009); Yeap et al. (2009). For related structures, see: Higuchi et al. (2001); Manseong et al. (2006); Vitor et al. (2008).

Experimental top

Formic acid (1 mL) was added to a stirred solution of acenaphthenequinone (1.2 mmol) and 2-chloro-4,6-diphenylaniline (1.2 mmol) in methanol (20 mL). The mixture was refluxed for 24 h, then cooled, and the precipitate was separated by filtration. The solid was recrystallized from dichloromethane/cyclohexane (v/v = 8:1), washed with cold ethanol and dried under vacuum to give the title compound I. Yield is 0.15 g (83%). Crystals of I suitable for X-ray structure determination were grown from a cyclohexane/dichloromethane (1:2, v/v) solution. Anal. Calcd. for C30H18ClNO: C, 81.17; H, 4.09; N,3.16. Found: C, 81.11; H, 4.19; N, 3.12.

Refinement top

All hydrogen atoms were placed in the calculated positions with C—H = 0.93 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A condensation reaction of acenaphthylene-1,2-dione and 5'-chloro-1,1':3',1''-terphenyl-4'-amine.
[Figure 2] Fig. 2. Molecular structure of I. Displacement ellipsoids are shown at the 40% probability level. H atoms are presented as small spheres of arbitrary radius. The dashed lines indicate the intramolecular C—H···N and C—H···π(C=C) hydrogen bonds.
2-[(5'-Chloro-1,1':3',1''-terphenyl-4'-yl)imino]acenaphthylen-1(2H)-one top
Crystal data top
C30H18ClNOF(000) = 920
Mr = 443.90Dx = 1.351 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
a = 12.4929 (6) ÅCell parameters from 2796 reflections
b = 10.8699 (7) Åθ = 3.1–28.4°
c = 16.0758 (8) ŵ = 0.20 mm1
β = 91.864 (5)°T = 100 K
V = 2181.9 (2) Å3Block, clear light-yellow
Z = 40.32 × 0.28 × 0.25 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Eos)
diffractometer
4461 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3151 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.041
Detector resolution: 16.0733 pixels mm-1θmax = 26.4°, θmin = 3.2°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1311
Tmin = 0.866, Tmax = 1.000l = 1920
8827 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.031P)2 + 0.7817P]
where P = (Fo2 + 2Fc2)/3
4461 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C30H18ClNOV = 2181.9 (2) Å3
Mr = 443.90Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.4929 (6) ŵ = 0.20 mm1
b = 10.8699 (7) ÅT = 100 K
c = 16.0758 (8) Å0.32 × 0.28 × 0.25 mm
β = 91.864 (5)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Eos)
diffractometer
4461 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3151 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 1.000Rint = 0.041
8827 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.09Δρmax = 0.50 e Å3
4461 reflectionsΔρmin = 0.28 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.04696 (5)0.31870 (6)0.48276 (4)0.02604 (18)
O10.41337 (15)0.16285 (19)0.45458 (12)0.0333 (5)
N20.23922 (15)0.29536 (19)0.37546 (11)0.0179 (5)
C10.29301 (19)0.4619 (3)0.47857 (15)0.0226 (6)
C20.2362 (2)0.5671 (3)0.46784 (16)0.0255 (6)
H20.18240.57370.42670.031*
C30.2617 (2)0.6671 (3)0.52178 (18)0.0335 (7)
H30.22490.74080.51430.040*
C40.3393 (2)0.6593 (3)0.58509 (17)0.0334 (7)
H40.35150.72620.62010.040*
C50.3989 (2)0.5525 (3)0.59681 (16)0.0276 (7)
C60.4832 (2)0.5294 (3)0.65685 (16)0.0330 (7)
H60.50190.59010.69540.040*
C70.5368 (2)0.4199 (3)0.65874 (16)0.0352 (8)
H70.59110.40870.69900.042*
C80.5140 (2)0.3233 (3)0.60276 (15)0.0317 (7)
H80.55270.25020.60450.038*
C90.4309 (2)0.3422 (3)0.54485 (15)0.0249 (6)
C100.3752 (2)0.4534 (3)0.54261 (15)0.0250 (6)
C110.3865 (2)0.2656 (3)0.47682 (15)0.0247 (6)
C120.29469 (18)0.3418 (2)0.43510 (14)0.0186 (6)
C130.15077 (18)0.3582 (2)0.33866 (14)0.0176 (5)
C140.05499 (19)0.3719 (2)0.38076 (14)0.0195 (6)
C150.03509 (19)0.4241 (2)0.34434 (15)0.0213 (6)
H150.09740.43060.37410.026*
C160.03305 (19)0.4674 (2)0.26273 (15)0.0208 (6)
C170.06207 (18)0.4559 (2)0.22035 (15)0.0195 (6)
H170.06450.48620.16630.023*
C180.15357 (18)0.4010 (2)0.25532 (14)0.0169 (5)
C190.25352 (18)0.3931 (2)0.20691 (14)0.0176 (5)
C200.31803 (19)0.2884 (2)0.20722 (14)0.0211 (6)
H200.29820.21930.23720.025*
C210.4119 (2)0.2865 (3)0.16287 (15)0.0250 (6)
H210.45420.21600.16320.030*
C220.4425 (2)0.3883 (3)0.11853 (15)0.0265 (6)
H220.50620.38740.09020.032*
C230.3783 (2)0.4918 (3)0.11635 (15)0.0247 (6)
H230.39840.56030.08590.030*
C240.28386 (19)0.4937 (2)0.15946 (14)0.0209 (6)
H240.24030.56310.15660.025*
C250.1326 (2)0.5199 (3)0.22308 (17)0.0258 (6)
C260.2001 (2)0.5956 (3)0.26780 (18)0.0335 (7)
H260.18070.61760.32210.040*
C270.2959 (2)0.6385 (3)0.2324 (2)0.0415 (8)
H270.33990.68970.26250.050*
C280.3251 (2)0.6047 (3)0.1522 (2)0.0447 (9)
H280.39000.63160.12870.054*
C290.2592 (2)0.5316 (3)0.1070 (2)0.0434 (9)
H290.27940.50960.05290.052*
C300.1619 (2)0.4899 (3)0.14165 (18)0.0338 (7)
H300.11670.44200.11010.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0262 (3)0.0333 (4)0.0187 (3)0.0013 (3)0.0026 (2)0.0074 (3)
O10.0344 (11)0.0298 (12)0.0354 (11)0.0085 (10)0.0043 (8)0.0040 (9)
N20.0197 (10)0.0197 (12)0.0139 (10)0.0025 (10)0.0030 (8)0.0026 (9)
C10.0201 (12)0.0284 (16)0.0193 (13)0.0087 (13)0.0024 (10)0.0033 (11)
C20.0239 (13)0.0242 (16)0.0285 (14)0.0040 (13)0.0047 (11)0.0062 (12)
C30.0247 (14)0.0299 (18)0.0461 (18)0.0004 (14)0.0070 (12)0.0112 (14)
C40.0246 (14)0.041 (2)0.0352 (16)0.0075 (15)0.0095 (12)0.0183 (14)
C50.0208 (13)0.0387 (19)0.0235 (14)0.0099 (14)0.0055 (11)0.0036 (13)
C60.0295 (15)0.050 (2)0.0195 (14)0.0194 (16)0.0031 (11)0.0103 (14)
C70.0259 (15)0.058 (2)0.0209 (14)0.0123 (16)0.0051 (11)0.0032 (14)
C80.0264 (14)0.048 (2)0.0201 (13)0.0138 (15)0.0022 (10)0.0100 (13)
C90.0231 (13)0.0350 (18)0.0165 (12)0.0062 (14)0.0005 (10)0.0046 (12)
C100.0212 (13)0.0396 (18)0.0145 (12)0.0137 (14)0.0059 (10)0.0023 (12)
C110.0251 (14)0.0293 (17)0.0197 (13)0.0020 (14)0.0009 (10)0.0075 (12)
C120.0188 (12)0.0219 (15)0.0150 (12)0.0035 (12)0.0013 (9)0.0020 (11)
C130.0212 (12)0.0141 (13)0.0170 (12)0.0008 (11)0.0048 (9)0.0020 (10)
C140.0250 (13)0.0184 (15)0.0150 (12)0.0048 (12)0.0005 (10)0.0031 (10)
C150.0174 (12)0.0217 (15)0.0248 (13)0.0032 (12)0.0014 (10)0.0031 (11)
C160.0165 (12)0.0186 (15)0.0268 (14)0.0040 (12)0.0043 (10)0.0020 (11)
C170.0235 (13)0.0180 (14)0.0167 (12)0.0036 (12)0.0039 (10)0.0014 (11)
C180.0201 (12)0.0135 (13)0.0168 (12)0.0033 (11)0.0028 (9)0.0026 (10)
C190.0186 (12)0.0204 (14)0.0134 (11)0.0007 (12)0.0050 (9)0.0044 (10)
C200.0266 (13)0.0191 (15)0.0174 (12)0.0025 (12)0.0036 (10)0.0020 (11)
C210.0273 (14)0.0236 (16)0.0239 (14)0.0030 (13)0.0003 (11)0.0086 (12)
C220.0242 (14)0.0339 (18)0.0218 (14)0.0070 (14)0.0071 (11)0.0105 (12)
C230.0313 (14)0.0247 (16)0.0183 (13)0.0079 (14)0.0039 (10)0.0023 (11)
C240.0269 (13)0.0205 (15)0.0151 (12)0.0011 (12)0.0037 (10)0.0019 (11)
C250.0197 (13)0.0257 (16)0.0318 (15)0.0054 (13)0.0030 (11)0.0104 (12)
C260.0249 (14)0.0405 (19)0.0354 (16)0.0011 (15)0.0070 (12)0.0145 (14)
C270.0211 (14)0.047 (2)0.058 (2)0.0073 (15)0.0114 (14)0.0223 (17)
C280.0195 (14)0.045 (2)0.069 (2)0.0037 (16)0.0114 (15)0.0275 (19)
C290.0426 (18)0.033 (2)0.052 (2)0.0058 (17)0.0250 (15)0.0092 (16)
C300.0345 (16)0.0253 (17)0.0405 (17)0.0008 (15)0.0146 (13)0.0026 (14)
Geometric parameters (Å, º) top
Cl1—C141.745 (2)C15—C161.395 (3)
O1—C111.223 (3)C16—C171.394 (3)
N2—C121.269 (3)C16—C251.492 (3)
N2—C131.412 (3)C17—H170.9300
C1—C21.354 (4)C17—C181.392 (3)
C1—C101.433 (3)C18—C191.495 (3)
C1—C121.481 (4)C19—C201.395 (3)
C2—H20.9300C19—C241.393 (3)
C2—C31.420 (4)C20—H200.9300
C3—H30.9300C20—C211.392 (3)
C3—C41.385 (4)C21—H210.9300
C4—H40.9300C21—C221.378 (4)
C4—C51.389 (4)C22—H220.9300
C5—C61.427 (4)C22—C231.381 (4)
C5—C101.411 (4)C23—H230.9300
C6—H60.9300C23—C241.388 (3)
C6—C71.366 (4)C24—H240.9300
C7—H70.9300C25—C261.394 (4)
C7—C81.407 (4)C25—C301.387 (4)
C8—H80.9300C26—H260.9300
C8—C91.387 (3)C26—C271.389 (4)
C9—C101.394 (4)C27—H270.9300
C9—C111.469 (4)C27—C281.378 (5)
C11—C121.550 (4)C28—H280.9300
C13—C141.402 (3)C28—C291.370 (5)
C13—C181.420 (3)C29—H290.9300
C14—C151.374 (3)C29—C301.396 (4)
C15—H150.9300C30—H300.9300
C12—N2—C13121.6 (2)C15—C16—C25119.4 (2)
C2—C1—C10120.5 (2)C17—C16—C15118.1 (2)
C2—C1—C12134.4 (2)C17—C16—C25122.5 (2)
C10—C1—C12105.1 (2)C16—C17—H17118.6
C1—C2—H2121.2C18—C17—C16122.9 (2)
C1—C2—C3117.5 (2)C18—C17—H17118.6
C3—C2—H2121.2C13—C18—C19121.3 (2)
C2—C3—H3118.7C17—C18—C13118.4 (2)
C4—C3—C2122.7 (3)C17—C18—C19120.2 (2)
C4—C3—H3118.7C20—C19—C18122.5 (2)
C3—C4—H4119.6C24—C19—C18119.1 (2)
C3—C4—C5120.7 (3)C24—C19—C20118.4 (2)
C5—C4—H4119.6C19—C20—H20119.8
C4—C5—C6128.3 (3)C21—C20—C19120.4 (2)
C4—C5—C10117.0 (2)C21—C20—H20119.8
C10—C5—C6114.8 (3)C20—C21—H21119.8
C5—C6—H6119.4C22—C21—C20120.4 (3)
C7—C6—C5121.3 (3)C22—C21—H21119.8
C7—C6—H6119.4C21—C22—H22120.1
C6—C7—H7118.4C21—C22—C23119.8 (2)
C6—C7—C8123.2 (3)C23—C22—H22120.1
C8—C7—H7118.4C22—C23—H23119.9
C7—C8—H8121.6C22—C23—C24120.2 (3)
C9—C8—C7116.8 (3)C24—C23—H23119.9
C9—C8—H8121.6C19—C24—H24119.6
C8—C9—C10120.5 (3)C23—C24—C19120.8 (3)
C8—C9—C11132.2 (3)C23—C24—H24119.6
C10—C9—C11107.2 (2)C26—C25—C16121.0 (2)
C5—C10—C1121.7 (3)C30—C25—C16120.3 (3)
C9—C10—C1114.8 (2)C30—C25—C26118.7 (3)
C9—C10—C5123.5 (2)C25—C26—H26119.5
O1—C11—C9129.4 (3)C27—C26—C25120.9 (3)
O1—C11—C12124.6 (2)C27—C26—H26119.5
C9—C11—C12106.0 (2)C26—C27—H27120.2
N2—C12—C1133.7 (2)C28—C27—C26119.5 (3)
N2—C12—C11119.5 (2)C28—C27—H27120.2
C1—C12—C11106.8 (2)C27—C28—H28119.8
N2—C13—C18120.7 (2)C29—C28—C27120.3 (3)
C14—C13—N2121.2 (2)C29—C28—H28119.8
C14—C13—C18117.9 (2)C28—C29—H29119.8
C13—C14—Cl1119.65 (18)C28—C29—C30120.5 (3)
C15—C14—Cl1117.78 (19)C30—C29—H29119.8
C15—C14—C13122.6 (2)C25—C30—C29120.0 (3)
C14—C15—H15120.0C25—C30—H30120.0
C14—C15—C16120.0 (2)C29—C30—H30120.0
C16—C15—H15120.0
Cl1—C14—C15—C16179.6 (2)C12—C1—C2—C3177.2 (3)
O1—C11—C12—N22.8 (4)C12—C1—C10—C5178.9 (2)
O1—C11—C12—C1177.2 (2)C12—C1—C10—C90.9 (3)
N2—C13—C14—Cl13.9 (3)C13—N2—C12—C13.7 (4)
N2—C13—C14—C15174.9 (2)C13—N2—C12—C11176.2 (2)
N2—C13—C18—C17176.2 (2)C13—C14—C15—C160.8 (4)
N2—C13—C18—C196.6 (4)C13—C18—C19—C2044.1 (3)
C1—C2—C3—C41.8 (4)C13—C18—C19—C24136.0 (2)
C2—C1—C10—C50.7 (4)C14—C13—C18—C171.0 (4)
C2—C1—C10—C9177.3 (2)C14—C13—C18—C19178.2 (2)
C2—C1—C12—N24.2 (5)C14—C15—C16—C170.0 (4)
C2—C1—C12—C11175.8 (3)C14—C15—C16—C25177.9 (2)
C2—C3—C4—C52.3 (4)C15—C16—C17—C181.4 (4)
C3—C4—C5—C6178.2 (3)C15—C16—C25—C2640.5 (4)
C3—C4—C5—C101.2 (4)C15—C16—C25—C30136.8 (3)
C4—C5—C6—C7177.9 (3)C16—C17—C18—C131.9 (4)
C4—C5—C10—C10.3 (4)C16—C17—C18—C19179.1 (2)
C4—C5—C10—C9177.6 (2)C16—C25—C26—C27176.2 (3)
C5—C6—C7—C80.1 (4)C16—C25—C30—C29175.0 (3)
C6—C5—C10—C1179.7 (2)C17—C16—C25—C26141.7 (3)
C6—C5—C10—C91.9 (4)C17—C16—C25—C3041.0 (4)
C6—C7—C8—C91.4 (4)C17—C18—C19—C20138.7 (2)
C7—C8—C9—C101.1 (4)C17—C18—C19—C2441.2 (3)
C7—C8—C9—C11178.4 (3)C18—C13—C14—Cl1179.04 (18)
C8—C9—C10—C1178.6 (2)C18—C13—C14—C150.3 (4)
C8—C9—C10—C50.6 (4)C18—C19—C20—C21178.3 (2)
C8—C9—C11—O10.2 (5)C18—C19—C24—C23177.4 (2)
C8—C9—C11—C12179.5 (3)C19—C20—C21—C220.4 (4)
C9—C11—C12—N2177.5 (2)C20—C19—C24—C232.7 (3)
C9—C11—C12—C12.4 (2)C20—C21—C22—C231.7 (4)
C10—C1—C2—C30.3 (4)C21—C22—C23—C240.8 (4)
C10—C1—C12—N2178.0 (3)C22—C23—C24—C191.4 (4)
C10—C1—C12—C112.0 (2)C24—C19—C20—C211.8 (3)
C10—C5—C6—C71.5 (4)C25—C16—C17—C18176.4 (2)
C10—C9—C11—O1177.7 (3)C25—C26—C27—C280.7 (4)
C10—C9—C11—C121.9 (3)C26—C25—C30—C292.3 (4)
C11—C9—C10—C10.7 (3)C26—C27—C28—C291.5 (5)
C11—C9—C10—C5177.3 (2)C27—C28—C29—C300.4 (5)
C12—N2—C13—C1472.0 (3)C28—C29—C30—C251.6 (5)
C12—N2—C13—C18112.9 (3)C30—C25—C26—C271.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C25–C30 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20···N20.932.502.909 (3)107
C24—H24···N2i0.932.593.338 (3)138
C4—H4···Cg1ii0.932.743.551 (3)147
C6—H6···Cg2iii0.932.923.647 (3)136
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC30H18ClNO
Mr443.90
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.4929 (6), 10.8699 (7), 16.0758 (8)
β (°) 91.864 (5)
V3)2181.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.32 × 0.28 × 0.25
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Eos)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.866, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8827, 4461, 3151
Rint0.041
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.121, 1.09
No. of reflections4461
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.28

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C25–C30 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20···N20.932.502.909 (3)107
C24—H24···N2i0.932.593.338 (3)138
C4—H4···Cg1ii0.932.743.551 (3)147
C6—H6···Cg2iii0.932.923.647 (3)136
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge the Natural Science Foundation of China (20702042, 21262028), the Program for Changjiang Scholars and Innovative Research Teams in Universities of the Ministry of Education of China (IRT1177), the Natural Science Foundation of Gansu Province (1208RJZA140) and the NWNU Young Teachers Reseach Improving Program (NWNU-LKQN-10–11) for financial support.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationHiguchi, M., Shiki, S., Ariga, K. & Yamamoto, K. (2001). J. Am. Chem. Soc. 123, 4414–4420.  Web of Science CSD CrossRef PubMed CAS
First citationKargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403–m404.  Web of Science CSD CrossRef CAS IUCr Journals
First citationLozier, R., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS
First citationManseong, J., Chul, J. H. & Sang, Y. K. (2006). Macromol. Res. 3, 306–311.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationVitor, R., Teresa, A., Gabriel, A., Berta, C. & Carlos, L. (2008). Inorg. Chem. 47, 7734–7744.  Web of Science PubMed
First citationYeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570–m571.  Web of Science CSD CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 5| May 2013| Pages o624-o625
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds