supplementary materials


ng5320 scheme

Acta Cryst. (2013). E69, m253    [ doi:10.1107/S1600536813009082 ]

Tetraacetonitrilelithium tetraisothiocyanatoborate

J. M. Breunig, U. Wietelmann, H.-W. Lerner and M. Bolte

Abstract top

The crystal structure of the title salt, [Li(CH3CN)4][B(NCS)4], is composed of discrete cations and anions. Both the Li and B atoms show a tetrahedral coordination by four equal ligands. The acetonitrile and isothiocyanate ligands are linear. The bond angles at the B atom are close to the ideal tetrahedral value [108.92 (18)-109.94 (16)°], but the bond angles at the Li atom show larger deviations [106.15 (17)-113.70 (17)°].

Comment top

Our group is interested in the synthesis of novel and improved electrolytes, namely, borates with alkinyl or catecholate ligands (Lerner et al., 2007, 2012; Röder et al., 2008). In the course of our investigations we synthesized the literature-reported borate Li[B(NCS)4] (Kleemann & Newman 1981) to compare its electrochemical properties with those of the borates which we have prepared. We were able to get crystals of this so far structurally uncharacterized borate Li(CH3CN)4[B(NCS)4]. The borate Li(CH3CN)4[B(NCS)4] was synthesized from BF3(OEt2) and Li[NCS], as shown in Figure 1.

The crystal structure of [Li(CH3CN)4]+[B(NCS)4]- is composed of discrete cations and anions (Fig. 2). Both the Li and B centre, show a tetrahedral coordination by four equal ligands. The acetonitrile and the isothiocyanate ligands are linear. Whereas the bond angles at the boron centre [108.92 (18)° - 109.94 (16)°] are very close to the ideal tetrahedral value, the bond angles around the Li centre [106.15 (17)° - 113.70 (17)°] show larger deviations from the ideal value.

Related literature top

Our group is interested in the synthesis of novel and improved electrolytes, namely borates with alkinyl or catecholate ligands, see: Lerner et al. (2007, 2012); Röder et al. (2008). For the preparation, see: Kleemann & Newman (1981).

Experimental top

Li(CH3CN)4[B(NCS)4]: The borate Li(CH3CN)4[B(NCS)4] was prepared according to a literature procedure (Kleemann & Newman 1981). X-ray quality crystals of Li(CH3CN)4[B(NCS)4] were grown from an acetonitrile solution at room temperature.

Refinement top

All H atoms were located in difference Fourier maps. Nevertheless, they were geometrically positioned and refined using a riding model with C—H = 0.98 Å and with Uiso(H) = 1.5Ueq(C). The methyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Synthesis of Li(CH3CN)4[B(NCS)4]. (i) -3LiF; in CH3CN.
[Figure 2] Fig. 2. A perspective view of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
Tetraacetonitrilelithium tetraisothiocyanatoborate top
Crystal data top
[Li(C2H3N)4](C4BN4S4)F(000) = 1696
Mr = 414.29Dx = 1.269 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 13942 reflections
a = 21.219 (3) Åθ = 3.6–26.8°
b = 9.4756 (14) ŵ = 0.45 mm1
c = 21.596 (4) ÅT = 173 K
β = 92.845 (10)°Block, colourless
V = 4336.8 (12) Å30.35 × 0.29 × 0.15 mm
Z = 8
Data collection top
Stoe IPDS II two-circle
diffractometer
3816 independent reflections
Radiation source: Genix 3D IµS microfocus X-ray source2681 reflections with I > 2σ(I)
Genix 3D multilayer optics monochromatorRint = 0.074
ω scansθmax = 25.0°, θmin = 3.6°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 2525
Tmin = 0.858, Tmax = 0.936k = 1111
24466 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0478P)2]
where P = (Fo2 + 2Fc2)/3
3816 reflections(Δ/σ)max = 0.032
239 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Li(C2H3N)4](C4BN4S4)V = 4336.8 (12) Å3
Mr = 414.29Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.219 (3) ŵ = 0.45 mm1
b = 9.4756 (14) ÅT = 173 K
c = 21.596 (4) Å0.35 × 0.29 × 0.15 mm
β = 92.845 (10)°
Data collection top
Stoe IPDS II two-circle
diffractometer
3816 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
2681 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 0.936Rint = 0.074
24466 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.18 e Å3
S = 0.97Δρmin = 0.25 e Å3
3816 reflectionsAbsolute structure: ?
239 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.60133 (11)0.2457 (2)0.70356 (11)0.0313 (4)
N10.61748 (7)0.15384 (18)0.65017 (8)0.0385 (4)
C10.62999 (8)0.0914 (2)0.60595 (10)0.0353 (4)
S10.64743 (3)0.00457 (7)0.54619 (3)0.06209 (19)
N20.65695 (7)0.33656 (17)0.72237 (8)0.0378 (4)
C20.69788 (9)0.4127 (2)0.73635 (9)0.0384 (5)
S20.75423 (3)0.51599 (7)0.75594 (3)0.0673 (2)
N30.54597 (7)0.33778 (16)0.68497 (7)0.0355 (4)
C30.50357 (8)0.4078 (2)0.66964 (8)0.0346 (4)
S30.44491 (3)0.50352 (7)0.64826 (3)0.06058 (19)
N40.58433 (7)0.15490 (16)0.75811 (8)0.0355 (4)
C40.57138 (8)0.0892 (2)0.80105 (9)0.0349 (4)
S40.55383 (3)0.00256 (7)0.85961 (3)0.06261 (19)
Li10.34824 (15)0.4840 (3)0.44482 (16)0.0416 (8)
N50.42234 (8)0.6002 (2)0.47394 (8)0.0461 (4)
C510.46315 (9)0.6718 (2)0.48727 (9)0.0389 (5)
C520.51502 (11)0.7646 (3)0.50381 (13)0.0613 (7)
H52A0.54800.75360.47400.092*
H52B0.53230.74090.54550.092*
H52C0.50010.86250.50330.092*
N60.27497 (8)0.61203 (19)0.42481 (8)0.0464 (4)
C610.23575 (9)0.6908 (2)0.41537 (9)0.0386 (5)
C620.18563 (11)0.7913 (3)0.40324 (13)0.0620 (7)
H62A0.18190.85240.43950.093*
H62B0.14580.74100.39480.093*
H62C0.19520.84900.36720.093*
N70.32273 (8)0.36138 (19)0.51545 (9)0.0461 (4)
C710.30814 (8)0.3053 (2)0.55915 (10)0.0364 (4)
C720.28959 (12)0.2348 (3)0.61477 (11)0.0542 (6)
H72A0.31920.25940.64940.081*
H72B0.29010.13240.60830.081*
H72C0.24690.26470.62430.081*
N80.37312 (8)0.36597 (19)0.37288 (9)0.0444 (4)
C810.38851 (9)0.3023 (2)0.33200 (11)0.0398 (5)
C820.40806 (13)0.2207 (3)0.27914 (13)0.0646 (7)
H82A0.37160.17040.26030.097*
H82B0.44050.15250.29300.097*
H82C0.42530.28440.24850.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0281 (9)0.0337 (10)0.0321 (11)0.0005 (8)0.0013 (8)0.0031 (9)
N10.0373 (8)0.0408 (9)0.0376 (10)0.0027 (7)0.0043 (7)0.0003 (8)
C10.0313 (9)0.0317 (10)0.0429 (12)0.0012 (7)0.0029 (8)0.0024 (9)
S10.0764 (4)0.0521 (4)0.0592 (4)0.0026 (3)0.0184 (3)0.0211 (3)
N20.0326 (8)0.0397 (9)0.0408 (10)0.0015 (7)0.0002 (7)0.0026 (7)
C20.0355 (10)0.0433 (11)0.0362 (11)0.0007 (9)0.0006 (8)0.0079 (9)
S20.0574 (4)0.0733 (4)0.0692 (4)0.0323 (3)0.0161 (3)0.0098 (3)
N30.0304 (8)0.0381 (9)0.0379 (9)0.0059 (7)0.0014 (7)0.0063 (7)
C30.0363 (10)0.0379 (10)0.0299 (10)0.0035 (8)0.0042 (8)0.0033 (8)
S30.0462 (3)0.0712 (4)0.0640 (4)0.0258 (3)0.0017 (3)0.0165 (3)
N40.0356 (8)0.0364 (8)0.0345 (9)0.0019 (7)0.0018 (7)0.0053 (8)
C40.0346 (9)0.0342 (10)0.0358 (11)0.0057 (8)0.0012 (8)0.0002 (9)
S40.0843 (4)0.0581 (4)0.0470 (4)0.0039 (3)0.0194 (3)0.0217 (3)
Li10.0411 (16)0.0402 (18)0.0440 (19)0.0036 (15)0.0058 (14)0.0016 (16)
N50.0415 (9)0.0511 (11)0.0457 (11)0.0003 (8)0.0024 (8)0.0040 (8)
C510.0370 (10)0.0427 (11)0.0369 (11)0.0075 (9)0.0026 (8)0.0065 (9)
C520.0456 (14)0.0583 (15)0.0791 (19)0.0065 (10)0.0060 (13)0.0049 (13)
N60.0430 (9)0.0462 (10)0.0503 (11)0.0022 (8)0.0063 (8)0.0010 (8)
C610.0400 (10)0.0378 (11)0.0382 (11)0.0022 (9)0.0047 (8)0.0038 (9)
C620.0579 (14)0.0531 (14)0.0741 (18)0.0181 (11)0.0067 (13)0.0046 (13)
N70.0463 (9)0.0457 (10)0.0464 (11)0.0019 (8)0.0051 (8)0.0002 (9)
C710.0320 (9)0.0353 (10)0.0415 (12)0.0019 (8)0.0015 (8)0.0067 (9)
C720.0594 (14)0.0597 (15)0.0436 (13)0.0108 (11)0.0026 (11)0.0079 (11)
N80.0460 (9)0.0428 (10)0.0445 (11)0.0013 (8)0.0043 (8)0.0028 (9)
C810.0384 (10)0.0357 (11)0.0454 (13)0.0015 (8)0.0028 (9)0.0067 (10)
C820.0736 (17)0.0627 (16)0.0587 (16)0.0072 (13)0.0154 (13)0.0113 (13)
Geometric parameters (Å, º) top
B1—N11.498 (3)C52—H52A0.9800
B1—N21.501 (3)C52—H52B0.9800
B1—N31.502 (2)C52—H52C0.9800
B1—N41.516 (3)N6—C611.129 (2)
N1—C11.165 (3)C61—C621.442 (3)
C1—S11.589 (2)C62—H62A0.9800
N2—C21.158 (2)C62—H62B0.9800
C2—S21.586 (2)C62—H62C0.9800
N3—C31.153 (2)N7—C711.139 (3)
C3—S31.5900 (19)C71—C721.446 (3)
N4—C41.161 (2)C72—H72A0.9800
C4—S41.594 (2)C72—H72B0.9800
Li1—N51.995 (4)C72—H72C0.9800
Li1—N62.002 (4)N8—C811.131 (3)
Li1—N82.006 (4)C81—C821.456 (4)
Li1—N72.013 (4)C82—H82A0.9800
N5—C511.126 (2)C82—H82B0.9800
C51—C521.440 (3)C82—H82C0.9800
N1—B1—N2109.56 (18)H52A—C52—H52C109.5
N1—B1—N3109.73 (15)H52B—C52—H52C109.5
N2—B1—N3109.44 (15)C61—N6—Li1175.7 (2)
N1—B1—N4109.94 (16)N6—C61—C62179.9 (3)
N2—B1—N4109.24 (16)C61—C62—H62A109.5
N3—B1—N4108.92 (18)C61—C62—H62B109.5
C1—N1—B1174.95 (19)H62A—C62—H62B109.5
N1—C1—S1179.26 (19)C61—C62—H62C109.5
C2—N2—B1176.46 (18)H62A—C62—H62C109.5
N2—C2—S2179.5 (2)H62B—C62—H62C109.5
C3—N3—B1178.8 (2)C71—N7—Li1172.5 (2)
N3—C3—S3179.6 (2)N7—C71—C72179.7 (3)
C4—N4—B1177.82 (19)C71—C72—H72A109.5
N4—C4—S4179.3 (2)C71—C72—H72B109.5
N5—Li1—N6108.97 (17)H72A—C72—H72B109.5
N5—Li1—N8108.54 (17)C71—C72—H72C109.5
N6—Li1—N8113.70 (17)H72A—C72—H72C109.5
N5—Li1—N7108.48 (17)H72B—C72—H72C109.5
N6—Li1—N7106.15 (17)C81—N8—Li1178.0 (2)
N8—Li1—N7110.86 (17)N8—C81—C82179.7 (3)
C51—N5—Li1175.4 (2)C81—C82—H82A109.5
N5—C51—C52179.3 (2)C81—C82—H82B109.5
C51—C52—H52A109.5H82A—C82—H82B109.5
C51—C52—H52B109.5C81—C82—H82C109.5
H52A—C52—H52B109.5H82A—C82—H82C109.5
C51—C52—H52C109.5H82B—C82—H82C109.5
Acknowledgements top

none

references
References top

Kleemann, L. P. & Newman, G. H. (1981). US Patent No. 4 279 976.

Lerner, H.-W., Röder, J., Vitze, H., Bolte, M., Wagner, M. & Wietelmann, U. (2007). Ger. Patent No. 10 2007 047 812 A1.

Lerner, H.-W., Röder, J., Vitze, H., Bolte, M., Wagner, M. & Wietelmann, U. (2012). US Patent No. 8 222 457.

Röder, J., Wietelmann, U., Vitze, H., Bolte, M., Lerner, H.-W. & Wagner, M. (2008). Ger. Patent No. 10 2008 041 812 A1.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.