organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3,5-bis­­[(3-chloro­pyrazin-2-yl)­­oxy]benzoate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 16 March 2013; accepted 17 April 2013; online 20 April 2013)

In the title compound, C16H10Cl2N4O4, the pyrazine rings make dihedral angles of 67.82 (9) and 75.91 (9)° with the benzene ring, while the dihedral angle between the pyrazine rings is 44.69 (10)°. The meth­oxy­carbonyl group makes a dihedral angle of 16.82 (8)° with the benzene ring to which it is attached. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules, forming chains running along the ab plane.

Related literature

For applications of the pyrazine ring system in drug development, see: Du et al. (2009[Du, X. H., Gustin, D. J., Chen, X. Q., Duquette, J., McGee, L. R., Wang, Z. L., Ebsworth, K., Henne, K., Lemon, B., Ma, J., Miao, S. C., Sabalan, E., Sullivan, T. J., Tonn, G., Collins, T. L. & Medina, J. C. (2009). Bioorg. Med. Chem. Lett. 19, 5200-5204.]); Dubinina et al. (2006[Dubinina, G. G., Platonov, M. O., Golovach, S. M., Borysko, P. O., Tolmachov, A. O. & Volovenko, Y. M. (2006). Eur. J. Med. Chem. 41, 727-737.]); Ellsworth et al. (2007[Ellsworth, B. A., Wang, Y., Zhu, Y. H., Pendri, A., Gerritz, S. W., Sun, C. Q., Carlson, K. E., Kang, L. Y., Baska, R. A., Yang, Y. F., Huang, Q., Burford, N. T., Cullen, M. J., Johnghar, S., Behnia, K., Pelleymounter, M. A., Washburn, W. N. & Ewing, W. R. (2007). Bioorg. Med. Chem. Lett. 17, 3978-3982.]); Mukaiyama et al. (2007[Mukaiyama, H., Nishimura, T., Kobayashi, S., Ozawa, T., Kamada, N., Komatsu, Y., Kikuchi, S., Oonota, H. & Kusama, H. (2007). Bioorg. Med. Chem. Lett. 15, 868-885.]). For a related structure, see: Nasir et al. (2010[Nasir, S. B., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2187.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10Cl2N4O4

  • Mr = 393.18

  • Triclinic, [P \overline 1]

  • a = 8.5437 (15) Å

  • b = 9.2984 (18) Å

  • c = 11.545 (2) Å

  • α = 88.592 (10)°

  • β = 74.974 (9)°

  • γ = 73.231 (9)°

  • V = 846.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.886, Tmax = 0.922

  • 12425 measured reflections

  • 3453 independent reflections

  • 3076 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.124

  • S = 1.04

  • 3453 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.47 3.192 (3) 135
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The pyrazine ring is a useful structural unit in medicinal chemistry and has found broad applications in drug development and can be used as antiproliferative agent (Dubinina et al., 2006), potent CXCR3 antagonist (Du et al., 2009), CB1 antagonist (Ellsworth et al., 2007) and c-Src inhibitor (Mukaiyama et al., 2007). In view of different applications of this class of compounds, we have undertaken the single-crystal structure determination of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in a closely related compound (Nasir et al., 2010). In the title compound, the pyrazine ring (N1/N2/C1-C4) makes a dihedral angle of 67.82 (9)° with the benzene ring (C5-C10). The other pyrazine ring (N3/N4/C11-C14) makes a dihedral angle of 75.91 (9)° with the bezene ring. The dihedral angle between the two pyrazine rings is 44.69 (10)°. Moreover, the acteyl group (C15/03/04/C16) attached with the benzene ring makes a dihedral angle of 16.82 (8)° with the aryl ring. The chlorine atoms Cl1 and Cl2 attached with the pyrazine rings deviate by 0.0136 (6)Å and 0.0590 (7)Å. The crystal packing is stabilised by intermolecular C4–H4···O2 hydrogen bonds (Tab. 1 & Fig. 2).

Related literature top

For applications of the pyrazine ring system in drug development, see: Du et al. (2009); Dubinina et al. (2006); Ellsworth et al. (2007); Mukaiyama et al. (2007). For a related structure, see: Nasir et al. (2010).

Experimental top

To a stirred solution of Cs2CO3/K2CO3 (22 mmol) in CH3CN (50 mL), methyl-3,5-dihydroxybenzoate (10 mmol) was added and stirred for 5 min. 2,3-Dichloropyrazine (20 mmol) in CH3CN (100 mL) was added dropwise to the above reaction mixture and allowed for stirring at refluxing condition for 12 h. After the reaction was complete, the reaction mixture was allowed to attain room temperature and then evaporated to dryness. The residue obtained was extracted with CH2Cl2 (3 x 100 mL), washed with water (3 x 100 mL), brine and then dried over Na2SO4. Evaporation of the organic layer gave a residue, which on purification using column chromatography with hexane/CHCl3 (1:1) as an eluent gave the title compound. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in hexane at room temperature.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.93 and 0.96 Å, for aryl and methyl type H-atoms, respectively, and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C) for aryl H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down a axis. H-atoms not involved in H-bonds have been excluded for clarity.
Methyl 3,5-bis[(3-chloropyrazin-2-yl)oxy]benzoate top
Crystal data top
C16H10Cl2N4O4Z = 2
Mr = 393.18F(000) = 400
Triclinic, P1Dx = 1.542 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5437 (15) ÅCell parameters from 3453 reflections
b = 9.2984 (18) Åθ = 1.8–26.6°
c = 11.545 (2) ŵ = 0.41 mm1
α = 88.592 (10)°T = 293 K
β = 74.974 (9)°Block, colourless
γ = 73.231 (9)°0.30 × 0.25 × 0.20 mm
V = 846.9 (3) Å3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3453 independent reflections
Radiation source: fine-focus sealed tube3076 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 26.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.886, Tmax = 0.922k = 1111
12425 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.3652P]
where P = (Fo2 + 2Fc2)/3
3453 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C16H10Cl2N4O4γ = 73.231 (9)°
Mr = 393.18V = 846.9 (3) Å3
Triclinic, P1Z = 2
a = 8.5437 (15) ÅMo Kα radiation
b = 9.2984 (18) ŵ = 0.41 mm1
c = 11.545 (2) ÅT = 293 K
α = 88.592 (10)°0.30 × 0.25 × 0.20 mm
β = 74.974 (9)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3453 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3076 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.922Rint = 0.024
12425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
3453 reflectionsΔρmin = 0.46 e Å3
236 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2164 (2)0.13661 (19)0.56898 (15)0.0357 (4)
C21.3326 (2)0.2435 (2)0.48010 (16)0.0392 (4)
C31.2200 (3)0.4217 (2)0.5674 (2)0.0512 (5)
H31.21820.52120.57140.061*
C41.1050 (3)0.3171 (2)0.65286 (19)0.0486 (4)
H41.02650.34760.71250.058*
C51.1396 (2)0.10665 (18)0.66279 (15)0.0364 (4)
C61.1808 (2)0.07829 (19)0.77108 (16)0.0377 (4)
H61.25380.01360.78230.045*
C71.1100 (2)0.19087 (19)0.86279 (16)0.0376 (4)
C80.9977 (2)0.32842 (19)0.84678 (16)0.0394 (4)
H80.95320.40460.90730.047*
C90.9551 (2)0.34790 (19)0.73925 (17)0.0376 (4)
C101.0255 (2)0.23987 (19)0.64574 (16)0.0383 (4)
H100.99700.25620.57310.046*
C110.6780 (2)0.5146 (2)0.76707 (15)0.0376 (4)
C120.5715 (2)0.6516 (2)0.74204 (17)0.0443 (4)
C130.3460 (3)0.5899 (3)0.8520 (2)0.0683 (7)
H130.22940.61210.88380.082*
C140.4482 (3)0.4569 (3)0.8760 (2)0.0594 (6)
H140.39930.39080.92350.071*
C151.1546 (2)0.1705 (2)0.98024 (17)0.0458 (4)
C161.2714 (4)0.0079 (3)1.1083 (2)0.0749 (8)
H16A1.35820.03661.11280.112*
H16B1.31250.11501.11230.112*
H16C1.17330.03181.17420.112*
N11.3349 (2)0.38465 (18)0.47831 (15)0.0479 (4)
N21.10203 (19)0.17218 (18)0.65331 (14)0.0427 (3)
N30.4081 (2)0.6891 (2)0.78443 (18)0.0618 (5)
N40.6181 (2)0.41812 (19)0.83301 (15)0.0462 (4)
O11.22265 (18)0.00741 (14)0.56204 (11)0.0460 (3)
O20.84699 (15)0.48570 (14)0.71782 (13)0.0445 (3)
O31.1276 (3)0.27208 (19)1.05207 (15)0.0702 (5)
O41.2263 (2)0.02685 (17)0.99597 (13)0.0623 (4)
Cl11.47807 (7)0.18931 (7)0.36871 (5)0.06146 (19)
Cl20.65455 (7)0.77453 (6)0.65015 (6)0.06183 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0370 (8)0.0322 (8)0.0376 (8)0.0068 (6)0.0133 (7)0.0005 (7)
C20.0381 (8)0.0391 (9)0.0390 (9)0.0076 (7)0.0117 (7)0.0023 (7)
C30.0665 (13)0.0348 (10)0.0563 (12)0.0176 (9)0.0197 (10)0.0023 (8)
C40.0532 (11)0.0477 (11)0.0505 (11)0.0232 (9)0.0137 (9)0.0039 (9)
C50.0381 (8)0.0292 (8)0.0387 (9)0.0092 (6)0.0052 (7)0.0010 (7)
C60.0351 (8)0.0289 (8)0.0434 (9)0.0028 (6)0.0078 (7)0.0018 (7)
C70.0357 (8)0.0336 (8)0.0402 (9)0.0070 (7)0.0082 (7)0.0030 (7)
C80.0371 (8)0.0315 (8)0.0433 (9)0.0049 (7)0.0050 (7)0.0018 (7)
C90.0310 (8)0.0283 (8)0.0498 (10)0.0052 (6)0.0087 (7)0.0068 (7)
C100.0391 (9)0.0361 (9)0.0410 (9)0.0112 (7)0.0128 (7)0.0059 (7)
C110.0367 (8)0.0358 (9)0.0377 (9)0.0049 (7)0.0113 (7)0.0021 (7)
C120.0453 (10)0.0402 (10)0.0426 (9)0.0009 (8)0.0161 (8)0.0015 (8)
C130.0368 (10)0.0936 (19)0.0598 (13)0.0022 (11)0.0063 (9)0.0058 (13)
C140.0465 (11)0.0787 (16)0.0515 (12)0.0204 (11)0.0089 (9)0.0103 (11)
C150.0447 (10)0.0449 (10)0.0424 (10)0.0061 (8)0.0100 (8)0.0018 (8)
C160.0865 (18)0.0765 (17)0.0503 (13)0.0020 (14)0.0283 (12)0.0137 (12)
N10.0530 (9)0.0366 (8)0.0518 (9)0.0062 (7)0.0168 (7)0.0036 (7)
N20.0406 (8)0.0419 (8)0.0449 (8)0.0126 (6)0.0093 (6)0.0002 (6)
N30.0438 (9)0.0655 (12)0.0591 (11)0.0096 (8)0.0132 (8)0.0027 (9)
N40.0418 (8)0.0467 (9)0.0483 (9)0.0107 (7)0.0114 (7)0.0056 (7)
O10.0592 (8)0.0332 (6)0.0397 (7)0.0130 (6)0.0035 (6)0.0006 (5)
O20.0352 (6)0.0316 (6)0.0607 (8)0.0030 (5)0.0107 (6)0.0111 (6)
O30.1037 (14)0.0530 (9)0.0501 (9)0.0085 (9)0.0293 (9)0.0063 (7)
O40.0801 (11)0.0483 (8)0.0498 (8)0.0040 (7)0.0279 (8)0.0045 (7)
Cl10.0616 (3)0.0610 (3)0.0520 (3)0.0218 (3)0.0069 (2)0.0066 (2)
Cl20.0665 (3)0.0411 (3)0.0743 (4)0.0066 (2)0.0239 (3)0.0175 (2)
Geometric parameters (Å, º) top
C1—N21.300 (2)C9—C101.380 (3)
C1—O11.355 (2)C9—O21.4057 (19)
C1—C21.407 (2)C10—H100.9300
C2—N11.308 (2)C11—N41.294 (2)
C2—Cl11.7185 (19)C11—O21.356 (2)
C3—N11.340 (3)C11—C121.409 (2)
C3—C41.370 (3)C12—N31.297 (3)
C3—H30.9300C12—Cl21.718 (2)
C4—N21.340 (3)C13—N31.332 (3)
C4—H40.9300C13—C141.362 (4)
C5—C61.384 (2)C13—H130.9300
C5—C101.383 (2)C14—N41.348 (3)
C5—O11.398 (2)C14—H140.9300
C6—C71.393 (2)C15—O31.203 (3)
C6—H60.9300C15—O41.329 (2)
C7—C81.401 (2)C16—O41.450 (3)
C7—C151.495 (3)C16—H16A0.9600
C8—C91.375 (3)C16—H16B0.9600
C8—H80.9300C16—H16C0.9600
N2—C1—O1120.32 (16)C5—C10—H10120.8
N2—C1—C2121.66 (16)N4—C11—O2120.75 (16)
O1—C1—C2117.98 (15)N4—C11—C12121.81 (17)
N1—C2—C1122.44 (17)O2—C11—C12117.44 (16)
N1—C2—Cl1117.86 (14)N3—C12—C11122.06 (19)
C1—C2—Cl1119.69 (14)N3—C12—Cl2117.28 (15)
N1—C3—C4121.89 (18)C11—C12—Cl2120.64 (15)
N1—C3—H3119.1N3—C13—C14121.9 (2)
C4—C3—H3119.1N3—C13—H13119.0
N2—C4—C3122.12 (18)C14—C13—H13119.0
N2—C4—H4118.9N4—C14—C13122.0 (2)
C3—C4—H4118.9N4—C14—H14119.0
C6—C5—C10121.86 (16)C13—C14—H14119.0
C6—C5—O1121.32 (15)O3—C15—O4124.21 (19)
C10—C5—O1116.59 (15)O3—C15—C7123.90 (18)
C5—C6—C7118.28 (15)O4—C15—C7111.88 (17)
C5—C6—H6120.9O4—C16—H16A109.5
C7—C6—H6120.9O4—C16—H16B109.5
C6—C7—C8120.99 (16)H16A—C16—H16B109.5
C6—C7—C15121.16 (15)O4—C16—H16C109.5
C8—C7—C15117.83 (16)H16A—C16—H16C109.5
C9—C8—C7118.26 (16)H16B—C16—H16C109.5
C9—C8—H8120.9C2—N1—C3115.66 (17)
C7—C8—H8120.9C1—N2—C4116.18 (17)
C8—C9—C10122.16 (15)C12—N3—C13116.28 (19)
C8—C9—O2120.22 (16)C11—N4—C14115.96 (18)
C10—C9—O2117.42 (16)C1—O1—C5118.77 (13)
C9—C10—C5118.35 (16)C11—O2—C9118.32 (13)
C9—C10—H10120.8C15—O4—C16117.08 (18)
N2—C1—C2—N11.4 (3)C6—C7—C15—O417.0 (3)
O1—C1—C2—N1179.07 (16)C8—C7—C15—O4164.56 (17)
N2—C1—C2—Cl1178.52 (14)C1—C2—N1—C30.5 (3)
O1—C1—C2—Cl10.9 (2)Cl1—C2—N1—C3179.52 (14)
N1—C3—C4—N20.9 (3)C4—C3—N1—C21.6 (3)
C10—C5—C6—C72.9 (3)O1—C1—N2—C4179.72 (16)
O1—C5—C6—C7171.39 (15)C2—C1—N2—C42.1 (3)
C5—C6—C7—C81.1 (3)C3—C4—N2—C11.0 (3)
C5—C6—C7—C15177.37 (16)C11—C12—N3—C130.8 (3)
C6—C7—C8—C91.9 (3)Cl2—C12—N3—C13177.75 (19)
C15—C7—C8—C9179.61 (16)C14—C13—N3—C120.4 (4)
C7—C8—C9—C103.3 (3)O2—C11—N4—C14179.00 (18)
C7—C8—C9—O2178.05 (15)C12—C11—N4—C140.0 (3)
C8—C9—C10—C51.5 (3)C13—C14—N4—C110.4 (3)
O2—C9—C10—C5176.47 (15)N2—C1—O1—C517.9 (2)
C6—C5—C10—C91.6 (3)C2—C1—O1—C5164.46 (15)
O1—C5—C10—C9172.90 (15)C6—C5—O1—C159.1 (2)
N4—C11—C12—N30.6 (3)C10—C5—O1—C1126.30 (17)
O2—C11—C12—N3179.63 (18)N4—C11—O2—C90.6 (3)
N4—C11—C12—Cl2177.87 (15)C12—C11—O2—C9178.44 (16)
O2—C11—C12—Cl21.2 (2)C8—C9—O2—C1178.8 (2)
N3—C13—C14—N40.2 (4)C10—C9—O2—C11106.15 (18)
C6—C7—C15—O3163.5 (2)O3—C15—O4—C161.1 (3)
C8—C7—C15—O315.0 (3)C7—C15—O4—C16178.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.473.192 (3)135
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H10Cl2N4O4
Mr393.18
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.5437 (15), 9.2984 (18), 11.545 (2)
α, β, γ (°)88.592 (10), 74.974 (9), 73.231 (9)
V3)846.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.886, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
12425, 3453, 3076
Rint0.024
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.124, 1.04
No. of reflections3453
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.46

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.473.192 (3)135
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. TS thanks the DST for an Inspire fellowship. The UGC (SAP–CAS) is acknowleged for departmental facilities.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationDu, X. H., Gustin, D. J., Chen, X. Q., Duquette, J., McGee, L. R., Wang, Z. L., Ebsworth, K., Henne, K., Lemon, B., Ma, J., Miao, S. C., Sabalan, E., Sullivan, T. J., Tonn, G., Collins, T. L. & Medina, J. C. (2009). Bioorg. Med. Chem. Lett. 19, 5200–5204.  Web of Science CrossRef PubMed CAS
First citationDubinina, G. G., Platonov, M. O., Golovach, S. M., Borysko, P. O., Tolmachov, A. O. & Volovenko, Y. M. (2006). Eur. J. Med. Chem. 41, 727–737.  Web of Science CrossRef PubMed CAS
First citationEllsworth, B. A., Wang, Y., Zhu, Y. H., Pendri, A., Gerritz, S. W., Sun, C. Q., Carlson, K. E., Kang, L. Y., Baska, R. A., Yang, Y. F., Huang, Q., Burford, N. T., Cullen, M. J., Johnghar, S., Behnia, K., Pelleymounter, M. A., Washburn, W. N. & Ewing, W. R. (2007). Bioorg. Med. Chem. Lett. 17, 3978–3982.  Web of Science CrossRef PubMed CAS
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationMukaiyama, H., Nishimura, T., Kobayashi, S., Ozawa, T., Kamada, N., Komatsu, Y., Kikuchi, S., Oonota, H. & Kusama, H. (2007). Bioorg. Med. Chem. Lett. 15, 868–885.  CrossRef CAS
First citationNasir, S. B., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2187.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds