supplementary materials


su2571 scheme

Acta Cryst. (2013). E69, o759    [ doi:10.1107/S160053681300980X ]

2-({1-[2-(Methylsulfanyl)phenyl]-1H-tetrazol-5-yl}sulfanyl)acetic acid

A. C. Mafud, Y. P. Mascarenhas and A. S. Nascimento

Abstract top

In the title compound, C10H10N4O2S2, the tetrazole and benzene rings are almost normal to one another, with a dihedral angle between their planes of 84.33 (9)°. In the crystal, molecules are linked via pairs of bifurcated O-H...(N,N) hydrogen bonds, forming inversion dimers with graph-set motif R44(12). The dimers are linked by significant [pi]-[pi] interactions involving inversion-related tetrazole rings and inversion-related benzene rings, with centroid-centroid distances of 3.7376 (14) and 3.8444 (15) Å, respectively.

Comment top

The title acid is a screening molecule available in the ZINC database (Irwin et al., 2012) among the 'drugs-now' subset. This molecule has been identified as a PPAR gamma ligand candidate in a virtual screening study. The peroxisome proliferator-activated receptors, isoform gamma, are a transcription factors whom regulating the genes expression (Nolte et al., 1998). The binding was further confirmed in experimental binding assays (Mafud et al., 2013). Since tetrazoles are already known to have glucose lowering effects in vivo (Kees et al., 1989), in this virtual screening we chose some different representative molecules to evaluate the affinities and the extent of receptor activation. We report herein on the crystal structure of the title compound.

The molecular structure of the title molecule is illustrated in Fig. 1. The tetrazole and phenyl rings are almost normal to one another with a dihedral angle of 84.33 (9)°.

In the crystal, molecules are linked via O—H···N hydrogen bonds forming inversion dimers with graph-set motif R44(12); see Fig. 2 and Table 1. The dimers is linked by significant ππ interactions involving inversion related tetrazole rings (Cg1 centroid of ring N1—N4/C3) and inversion related phenyl rings (Cg2 centroid of ring C4—C9): Cg1···Cg1i = 3.7376 (14) Å; Cg2···Cg2ii = 3.8444 (15) Å; symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1.

Related literature top

For details of the ZINC database, see: Irwin et al. (2012). For information on the biological properties of tetrazoles, see: Kees et al. (1989); Nolte et al. (1998); Mafud & Nascimento (2013).

Experimental top

A yellow prism-like crystal of the title compound was selected from the sample as supplied (ChemBridge Corporation) without recrystallization.

Refinement top

The hydroxyl H atom was located in a difference Fourier map and refined with Uiso(H) = 1.5Ueq(O). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å, for CH, CH3 and CH2 H atoms, respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound, illustrating the O—H···N hydrogen bonds (dashed lines; see Table 1 for details) and the π-π interactions (red ball = ring centroid).
2-({1-[2-(Methylsulfanyl)phenyl]-1H-tetrazol-5-yl}sulfanyl)acetic acid top
Crystal data top
C10H10N4O2S2Z = 2
Mr = 282.34F(000) = 292
Triclinic, P1none
Hall symbol: -P 1Dx = 1.489 Mg m3
a = 7.1500 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3770 (3) ÅCell parameters from 2086 reflections
c = 11.0890 (5) Åθ = 10.4–19.8°
α = 74.7480 (14)°µ = 0.42 mm1
β = 79.3090 (14)°T = 290 K
γ = 86.286 (3)°Prism, yellow
V = 629.58 (4) Å30.1 × 0.05 × 0.05 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2335 independent reflections
Radiation source: Fine-focus1879 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
CCD scansθmax = 25.7°, θmin = 3.8°
Absorption correction: for a cylinder mounted on the φ axis
(Dwiggins, 1975)
h = 88
Tmin = 0.861, Tmax = 0.862k = 1010
15888 measured reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0968P)2 + 0.1021P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.15(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.50 e Å3
2335 reflectionsΔρmin = 0.30 e Å3
167 parameters
Crystal data top
C10H10N4O2S2γ = 86.286 (3)°
Mr = 282.34V = 629.58 (4) Å3
Triclinic, P1Z = 2
a = 7.1500 (3) ÅMo Kα radiation
b = 8.3770 (3) ŵ = 0.42 mm1
c = 11.0890 (5) ÅT = 290 K
α = 74.7480 (14)°0.1 × 0.05 × 0.05 mm
β = 79.3090 (14)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2335 independent reflections
Absorption correction: for a cylinder mounted on the φ axis
(Dwiggins, 1975)
1879 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.862Rint = 0.079
15888 measured reflectionsθmax = 25.7°
Refinement top
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.15Δρmax = 0.50 e Å3
S = 1.04Δρmin = 0.30 e Å3
2335 reflectionsAbsolute structure: ?
167 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individuallno in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are onlno used when theno are defined bno crnostal snommetrno. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12427 (8)0.32835 (9)0.14822 (6)0.0644 (3)
S20.31586 (12)0.16473 (8)0.46904 (6)0.0744 (3)
O10.3263 (3)0.0525 (3)0.07328 (19)0.0753 (6)
H10.367 (6)0.039 (5)0.072 (4)0.113*
O20.1581 (4)0.0338 (3)0.1185 (2)0.0973 (8)
N10.5089 (3)0.2791 (3)0.0763 (2)0.0593 (5)
N20.6701 (3)0.3173 (3)0.1112 (2)0.0621 (5)
N30.6313 (3)0.3917 (3)0.2004 (2)0.0593 (5)
N40.4384 (2)0.4047 (2)0.22640 (17)0.0490 (4)
C10.2079 (3)0.0747 (3)0.0282 (2)0.0576 (6)
C20.1398 (3)0.2518 (3)0.0096 (2)0.0546 (5)
H2A0.01530.26150.01480.066*
H2B0.22610.32070.05970.066*
C30.3657 (3)0.3352 (3)0.1496 (2)0.0507 (5)
C40.3483 (3)0.4803 (3)0.3259 (2)0.0497 (5)
C50.3341 (4)0.6503 (3)0.2979 (2)0.0597 (6)
H50.37230.71380.21530.072*
C60.2621 (4)0.7248 (4)0.3944 (3)0.0721 (7)
H60.24890.83940.37740.087*
C70.2099 (4)0.6277 (4)0.5165 (3)0.0736 (8)
H70.16450.67820.58170.088*
C80.2235 (4)0.4586 (4)0.5438 (2)0.0637 (6)
H80.18660.3960.62670.076*
C90.2925 (3)0.3800 (3)0.4476 (2)0.0539 (5)
C100.2427 (5)0.0824 (4)0.6350 (3)0.0923 (10)
H10A0.32740.11850.680.138*
H10B0.24560.03630.65440.138*
H10C0.11560.12040.66040.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0435 (4)0.0871 (5)0.0716 (5)0.0001 (3)0.0027 (3)0.0413 (4)
S20.0991 (6)0.0597 (4)0.0580 (4)0.0016 (3)0.0056 (3)0.0094 (3)
O10.0897 (14)0.0694 (12)0.0682 (12)0.0092 (10)0.0035 (10)0.0296 (10)
O20.1136 (18)0.0716 (13)0.0805 (14)0.0116 (12)0.0131 (12)0.0020 (11)
N10.0483 (10)0.0683 (12)0.0648 (12)0.0004 (9)0.0007 (8)0.0307 (10)
N20.0473 (10)0.0726 (13)0.0670 (13)0.0032 (9)0.0015 (9)0.0260 (11)
N30.0434 (10)0.0711 (13)0.0628 (12)0.0002 (8)0.0052 (8)0.0192 (10)
N40.0425 (9)0.0543 (10)0.0501 (10)0.0014 (7)0.0045 (7)0.0163 (8)
C10.0544 (12)0.0648 (14)0.0558 (14)0.0015 (10)0.0109 (10)0.0186 (11)
C20.0496 (12)0.0600 (13)0.0571 (13)0.0012 (10)0.0111 (10)0.0188 (11)
C30.0475 (11)0.0545 (12)0.0522 (12)0.0008 (9)0.0048 (9)0.0205 (10)
C40.0460 (11)0.0569 (12)0.0506 (12)0.0024 (9)0.0103 (9)0.0206 (10)
C50.0611 (14)0.0563 (14)0.0640 (14)0.0032 (10)0.0140 (11)0.0184 (11)
C60.0711 (16)0.0646 (16)0.094 (2)0.0088 (12)0.0231 (14)0.0392 (15)
C70.0624 (15)0.095 (2)0.0812 (19)0.0070 (14)0.0154 (13)0.0530 (17)
C80.0594 (14)0.0837 (18)0.0538 (13)0.0016 (12)0.0090 (10)0.0289 (12)
C90.0481 (11)0.0649 (14)0.0514 (12)0.0001 (10)0.0096 (9)0.0193 (10)
C100.096 (2)0.093 (2)0.0671 (18)0.0006 (17)0.0007 (15)0.0068 (16)
Geometric parameters (Å, º) top
S1—C31.734 (2)C2—H2B0.97
S1—C21.798 (2)C4—C51.376 (3)
S2—C91.757 (3)C4—C91.391 (3)
S2—C101.778 (3)C5—C61.381 (4)
O1—C11.324 (3)C5—H50.93
O1—H10.80 (4)C6—C71.380 (4)
O2—C11.177 (3)C6—H60.93
N1—C31.327 (3)C7—C81.369 (4)
N1—N21.364 (3)C7—H70.93
N2—N31.282 (3)C8—C91.395 (3)
N3—N41.359 (3)C8—H80.93
N4—C31.341 (3)C10—H10A0.96
N4—C41.444 (3)C10—H10B0.96
C1—C21.504 (3)C10—H10C0.96
C2—H2A0.97
C3—S1—C298.45 (10)C9—C4—N4118.91 (19)
C9—S2—C10104.17 (14)C4—C5—C6118.8 (2)
C1—O1—H1118 (3)C4—C5—H5120.6
C3—N1—N2105.52 (19)C6—C5—H5120.6
N3—N2—N1111.51 (18)C7—C6—C5119.3 (3)
N2—N3—N4106.22 (18)C7—C6—H6120.3
C3—N4—N3108.48 (17)C5—C6—H6120.3
C3—N4—C4131.62 (18)C8—C7—C6121.6 (2)
N3—N4—C4119.88 (18)C8—C7—H7119.2
O2—C1—O1123.2 (2)C6—C7—H7119.2
O2—C1—C2125.3 (2)C7—C8—C9120.2 (2)
O1—C1—C2111.4 (2)C7—C8—H8119.9
C1—C2—S1113.73 (17)C9—C8—H8119.9
C1—C2—H2A108.8C4—C9—C8117.2 (2)
S1—C2—H2A108.8C4—C9—S2117.76 (17)
C1—C2—H2B108.8C8—C9—S2125.01 (19)
S1—C2—H2B108.8S2—C10—H10A109.5
H2A—C2—H2B107.7S2—C10—H10B109.5
N1—C3—N4108.27 (19)H10A—C10—H10B109.5
N1—C3—S1127.70 (17)S2—C10—H10C109.5
N4—C3—S1124.01 (16)H10A—C10—H10C109.5
C5—C4—C9122.8 (2)H10B—C10—H10C109.5
C5—C4—N4118.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.81 (4)2.15 (4)2.952 (4)176 (4)
O1—H1···N2i0.81 (4)2.51 (4)3.232 (4)149 (4)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.81 (4)2.15 (4)2.952 (4)176 (4)
O1—H1···N2i0.81 (4)2.51 (4)3.232 (4)149 (4)
Symmetry code: (i) x+1, y, z.
Acknowledgements top

We are grateful to the CAPES National Council for the Improvement of Higher Education and FAPESP São Paulo Research Foundation for supporting this study.

references
References top

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Dwiggins, C. W. (1975). Acta Cryst. A31, 146–148.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Irwin, J. J., Sterling, T., Mnosinger, M. M., Bolstad, E. S. & Coleman, R. G. (2012). J. Chem. Inf. Model. 52, 1757–1768.

Kees, K. L., Cheeseman, R. S., Prozialeck, D. H. & Steiner, K. E. (1989). J. Med. Chem. 32, 11–13.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Mafud, A. C. & Nascimento, A. S. (2013). In preparation.

Nolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H., Kurokawa, R., Rosenfeldk, M. G., Willson, T. M., Glass, C. K. & Milburn, M. V. (1998). Nature, 395, 137–143.

Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.