supplementary materials


xu5689 scheme

Acta Cryst. (2013). E69, m273-m274    [ doi:10.1107/S1600536813010246 ]

Poly[[diaqua([mu]4-benzene-1,2,4,5-tetracarboxylato)tetrakis(1H-imidazole-[kappa]N3)dicopper(II)] N,N-dimethylformamide monosolvate]

X.-F. Zhou, H.-P. Xiao, Y.-J. Zhao and X.-H. Li

Abstract top

The asymmetric unit of the polymeric title compound, {[Cu2(C10H2O8)(C3H4N2)4(H2O)2]·C3H7NO}n, contains two independent CuII ions, each coordinated by one water molecule, two imidazole N atoms and two carboxylate O atoms from benzene-1,2,4,5-tetracarboxylate anions in a distorted square-pyramidal geometry. The benzene-1,2,4,5-tetracarboxylate anion bridges four CuII ions, forming a polymeric sheet parallel to (010). In the crystal, extensive N-H...O and O-H...O hydrogen bonds link the polymeric sheets and dimethylformamide solvent molecules into a three-dimensional supramolecular structure.

Comment top

In recent years, many successful implementation of crystal engineering concepts has produced a great deal of coordination and supramolecular networks (Andruh et al., 2011), many of which exhibit unusual and fascinating architectures (Clarke et al., 2012). The benzene-1,2,4,5-teracarboxylate ligand as a multi-connecting ligand is also an excellent candidate for the structuring of coordination networks (Jiang et al., 2008), and comparatively few examples have been reported in relation to applying it to the building of coordination polymers (Aghabozorg et al., 2007; Chu et al., 2001; Liu & Ding, 2007; Wu et al., 2006). Here, the title complex, {[Cu2(idz)4(btc)(H2O)2].DMF}n (idz=imidazole, DMF=N,N-dimethylformamide, btc=benzene-1,2,4,5-tetracarboxylato), (I), represents as a novel example.

As shown in Figure 1, the asymmetric unit of (I) consists of two crystallographically independent CuII atoms. Both are five-coordinate in a slight distorted tetragonal pyramid geometry, and chemical environment of them are similar. Each CuII cation is surrounded by two O atoms from two btc tetraanions, two N atoms from two monodentate idz ligands, and one water molecule (O9 or O10) which occupies the axial position. All the bond lengths fall within the typical range of Cu—N bond and Cu—O bond lengths (Luo et al., 2007; Yang et al., 2004).

Cu1 and Cu2 are bridged by a btc tetraanion, which acts as µ4-bridge, forming a two-dimensional sheet along the a,c axis, as shown in Figure 2. The structure can be regarded as a grid sheets with (4,4) net topology which is constructed through CuII centers bridged by btc tetraanions. Adjacent two-dimensional sheets are parallel and are linked via hydrogen-bonding interactions (see Table 1) through uncoordinated DMF solvent molecules to form a sandwich structure(Zhan & Li, 2010).

Related literature top

For background to the benzene-1,2,4,5-teracarboxylate ligand in coordination polymers, see: Andruh et al. (2011); Clarke et al. (2012); Jiang et al. (2008); Aghabozorg et al. (2007); Chu et al. (2001); Liu & Ding (2007); Wu et al. (2006). For related structures, see: Zhan & Li (2010); Luo et al. (2007); Yang et al. (2004). For the synthesis, see: Zhao et al. (2010).

Experimental top

A dimethylformamide (DMF) solution (20 ml) of benzene-1,2,4,5-tetracarboxylic acid (0.1 mmol,0.0254 g) was added dropwise to an aqueous solution (10 ml) containing copper sulfate pentahydrate (0.2 mmol,0.0498 g), N,N-carbonyldiimidazole (0.3 mmol,0.0486 g) and NaOH (0.01 mmol, 0.0004 g) at room temperature (Zhao et al., 2010). The reaction mixture was filtered and the filtrate was left to stand for about three weeks until blue single crystals were obtained (yield 31%, based on Cu).

Refinement top

The nitrogen H atoms were refined subject to the restraint N—H = 0.86 Å. The water H atoms were refined subject to the restraint O—H = 0.85 Å. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of C—H = 0.93-0.96 Å. Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the (I) with the atom numbering, showing displacement ellipsoids at the 30% probability level. H atoms and DMF molecule have been omitted for clarity.
[Figure 2] Fig. 2. Perspective view of the 2-D sheet of (I).
Poly[[diaqua(µ4-benzene-1,2,4,5-tetracarboxylato)tetrakis(1H-imidazole-κN3)dicopper(II)] N,N-dimethylformamide monosolvate] top
Crystal data top
[Cu2(C10H2O8)(C3H4N2)4(H2O)2]·C3H7NOF(000) = 1552
Mr = 758.65Dx = 1.638 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4538 reflections
a = 8.999 (4) Åθ = 2.3–25.1°
b = 19.296 (8) ŵ = 1.46 mm1
c = 18.926 (7) ÅT = 298 K
β = 110.590 (18)°Block, blue
V = 3076 (2) Å30.23 × 0.21 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
5445 independent reflections
Radiation source: fine-focus sealed tube4149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 25.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 107
Tmin = 0.731, Tmax = 0.811k = 1123
17289 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.094P)2 + 0.3347P]
where P = (Fo2 + 2Fc2)/3
5445 reflections(Δ/σ)max = 0.001
426 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Cu2(C10H2O8)(C3H4N2)4(H2O)2]·C3H7NOV = 3076 (2) Å3
Mr = 758.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.999 (4) ŵ = 1.46 mm1
b = 19.296 (8) ÅT = 298 K
c = 18.926 (7) Å0.23 × 0.21 × 0.15 mm
β = 110.590 (18)°
Data collection top
Bruker APEXII area-detector
diffractometer
5445 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4149 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 0.811Rint = 0.038
17289 measured reflectionsθmax = 25.1°
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.153Δρmax = 0.51 e Å3
S = 1.11Δρmin = 0.60 e Å3
5445 reflectionsAbsolute structure: ?
426 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.49949 (5)0.66350 (3)0.40320 (2)0.02190 (17)
Cu20.01800 (5)0.90670 (3)0.40567 (2)0.02186 (17)
O30.0200 (3)0.83286 (14)0.32205 (15)0.0254 (6)
O40.1425 (4)0.90382 (15)0.26628 (17)0.0308 (7)
O20.3393 (3)0.77371 (15)0.32593 (16)0.0302 (7)
O10.3008 (3)0.65963 (14)0.31383 (15)0.0265 (7)
O50.3003 (3)0.82712 (14)0.00888 (15)0.0259 (7)
O60.3577 (3)0.71481 (15)0.01062 (16)0.0289 (7)
O80.0973 (4)0.58140 (16)0.04247 (18)0.0432 (9)
O70.0517 (3)0.66614 (14)0.02611 (14)0.0245 (6)
O100.0235 (3)0.98875 (15)0.34694 (16)0.0313 (7)
H10A0.01561.02620.36900.047*
H10B0.11660.98550.34540.047*
O90.5490 (4)0.54417 (17)0.41879 (19)0.0445 (8)
H9B0.59930.53560.46510.067*
H9C0.46120.52250.40440.067*
N10.6196 (4)0.67888 (18)0.33332 (19)0.0276 (8)
N70.2465 (4)0.91606 (18)0.34494 (19)0.0273 (8)
N30.3720 (4)0.67091 (19)0.4723 (2)0.0316 (9)
N50.2083 (4)0.91014 (18)0.47251 (19)0.0265 (8)
C70.2741 (4)0.7665 (2)0.0167 (2)0.0227 (9)
C20.1268 (4)0.7328 (2)0.2199 (2)0.0193 (8)
C40.0744 (4)0.8489 (2)0.2715 (2)0.0224 (9)
C10.2665 (4)0.7223 (2)0.2915 (2)0.0247 (9)
C100.0832 (4)0.6832 (2)0.1639 (2)0.0220 (9)
H100.13800.64140.17180.026*
N80.5031 (4)0.8996 (2)0.2980 (2)0.0443 (11)
H8N0.59590.88400.29280.053*
C30.0416 (4)0.7953 (2)0.20941 (19)0.0173 (8)
C60.1278 (4)0.7559 (2)0.0861 (2)0.0191 (8)
C80.0412 (4)0.6942 (2)0.09592 (19)0.0176 (8)
C50.0858 (4)0.8058 (2)0.1428 (2)0.0220 (9)
H50.14380.84670.13600.026*
C130.5758 (6)0.6644 (3)0.2580 (3)0.0410 (12)
H130.49160.63600.23080.049*
C170.3268 (5)0.8762 (2)0.4620 (3)0.0358 (11)
H170.31610.84770.42090.043*
C110.7426 (5)0.7202 (2)0.3478 (3)0.0310 (10)
H110.79810.73850.39530.037*
N60.4627 (4)0.8883 (2)0.5180 (2)0.0450 (11)
H6N0.55400.87150.52220.054*
C200.3691 (5)0.8842 (2)0.3536 (2)0.0336 (11)
H200.36220.85470.39350.040*
C90.0702 (4)0.6424 (2)0.0330 (2)0.0239 (9)
N20.7785 (5)0.7327 (2)0.2862 (2)0.0396 (10)
H2N0.85430.75840.28340.047*
C140.4166 (6)0.6577 (3)0.5468 (3)0.0455 (13)
H140.50650.63260.57450.055*
C190.2747 (5)0.9448 (3)0.5398 (3)0.0404 (12)
H190.22000.97270.56260.048*
C220.3115 (6)0.9542 (3)0.2796 (3)0.0466 (14)
H220.25480.98280.25860.056*
C210.4691 (6)0.9439 (3)0.2511 (3)0.0531 (15)
H210.54050.96350.20740.064*
C180.4314 (6)0.9319 (3)0.5673 (3)0.0496 (14)
H180.50460.94950.61160.060*
N40.2023 (5)0.7178 (3)0.5191 (3)0.0549 (12)
H4N0.12220.74050.52180.066*
C160.2400 (5)0.7077 (3)0.4577 (3)0.0441 (12)
H160.18060.72460.41010.053*
C150.3138 (7)0.6855 (4)0.5755 (4)0.0633 (17)
H150.31920.68280.62540.076*
C120.6730 (6)0.6973 (3)0.2298 (3)0.0525 (14)
H120.66830.69600.17990.063*
O111.2716 (4)0.4804 (2)0.4224 (2)0.0636 (12)
N91.0139 (5)0.5105 (2)0.3827 (3)0.0555 (12)
C240.9597 (8)0.4537 (4)0.4157 (4)0.073 (2)
H24A0.94360.41390.38340.110*
H24B0.86140.46600.42170.110*
H24C1.03760.44310.46410.110*
C231.1617 (7)0.5176 (3)0.3867 (3)0.0634 (17)
H231.18430.55420.36000.076*
C250.8863 (10)0.5547 (4)0.3310 (6)0.132 (4)
H25A0.93200.58770.30660.198*
H25B0.83270.57880.35950.198*
H25C0.81170.52610.29360.198*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0181 (3)0.0249 (3)0.0169 (3)0.00076 (19)0.00107 (19)0.0007 (2)
Cu20.0243 (3)0.0221 (3)0.0170 (3)0.00021 (19)0.0045 (2)0.00088 (19)
O30.0329 (15)0.0251 (17)0.0207 (14)0.0055 (12)0.0123 (12)0.0071 (12)
O40.0410 (17)0.0231 (18)0.0303 (16)0.0099 (13)0.0149 (13)0.0024 (13)
O20.0269 (15)0.0292 (18)0.0246 (15)0.0017 (13)0.0034 (12)0.0083 (13)
O10.0223 (13)0.0270 (18)0.0223 (15)0.0006 (12)0.0017 (11)0.0024 (13)
O50.0264 (14)0.0209 (17)0.0222 (15)0.0019 (12)0.0017 (11)0.0024 (12)
O60.0229 (14)0.0276 (18)0.0291 (16)0.0052 (12)0.0003 (12)0.0042 (13)
O80.074 (2)0.0191 (19)0.0305 (18)0.0097 (16)0.0105 (16)0.0003 (14)
O70.0304 (14)0.0242 (17)0.0184 (14)0.0015 (12)0.0081 (11)0.0029 (12)
O100.0335 (15)0.0196 (17)0.0401 (17)0.0000 (13)0.0120 (13)0.0002 (13)
O90.0472 (19)0.030 (2)0.053 (2)0.0015 (15)0.0126 (16)0.0056 (16)
N10.0276 (18)0.026 (2)0.0263 (19)0.0016 (15)0.0055 (14)0.0036 (15)
N70.0266 (18)0.029 (2)0.0240 (18)0.0003 (15)0.0060 (14)0.0036 (15)
N30.0258 (18)0.035 (2)0.032 (2)0.0033 (15)0.0071 (15)0.0034 (17)
N50.0288 (18)0.023 (2)0.0249 (18)0.0021 (15)0.0064 (14)0.0010 (15)
C70.0177 (18)0.029 (3)0.020 (2)0.0013 (17)0.0060 (15)0.0044 (18)
C20.0225 (18)0.022 (2)0.0096 (17)0.0001 (16)0.0008 (14)0.0012 (15)
C40.0200 (18)0.020 (2)0.022 (2)0.0035 (16)0.0009 (15)0.0021 (17)
C10.0188 (18)0.029 (3)0.024 (2)0.0015 (17)0.0045 (16)0.0004 (19)
C100.0226 (19)0.019 (2)0.023 (2)0.0034 (16)0.0061 (15)0.0001 (17)
N80.0246 (19)0.055 (3)0.046 (2)0.0078 (18)0.0035 (17)0.006 (2)
C30.0184 (17)0.019 (2)0.0125 (18)0.0038 (15)0.0034 (14)0.0031 (15)
C60.0233 (18)0.020 (2)0.0109 (17)0.0009 (16)0.0029 (14)0.0005 (15)
C80.0197 (17)0.021 (2)0.0102 (17)0.0042 (16)0.0028 (13)0.0008 (15)
C50.0210 (18)0.021 (2)0.022 (2)0.0009 (16)0.0042 (15)0.0005 (17)
C130.041 (3)0.057 (4)0.023 (2)0.012 (2)0.0088 (19)0.012 (2)
C170.038 (2)0.036 (3)0.031 (2)0.004 (2)0.0090 (19)0.006 (2)
C110.033 (2)0.023 (3)0.039 (3)0.0059 (19)0.0151 (19)0.0070 (19)
N60.029 (2)0.054 (3)0.042 (2)0.0132 (19)0.0003 (17)0.006 (2)
C200.035 (2)0.035 (3)0.027 (2)0.002 (2)0.0065 (18)0.004 (2)
C90.0205 (19)0.024 (2)0.021 (2)0.0015 (17)0.0008 (15)0.0011 (17)
N20.046 (2)0.044 (3)0.037 (2)0.0142 (19)0.0242 (18)0.0041 (19)
C140.047 (3)0.058 (4)0.033 (3)0.007 (2)0.014 (2)0.014 (2)
C190.039 (3)0.041 (3)0.030 (3)0.009 (2)0.0005 (19)0.016 (2)
C220.043 (3)0.065 (4)0.026 (2)0.006 (3)0.005 (2)0.023 (2)
C210.034 (3)0.081 (4)0.036 (3)0.001 (3)0.002 (2)0.031 (3)
C180.036 (3)0.057 (4)0.042 (3)0.005 (2)0.004 (2)0.023 (3)
N40.055 (3)0.064 (3)0.058 (3)0.011 (2)0.034 (2)0.005 (2)
C160.037 (3)0.051 (3)0.049 (3)0.008 (2)0.022 (2)0.006 (3)
C150.064 (4)0.084 (5)0.054 (4)0.000 (3)0.036 (3)0.000 (3)
C120.059 (3)0.069 (4)0.036 (3)0.011 (3)0.026 (2)0.008 (3)
O110.042 (2)0.055 (3)0.082 (3)0.0004 (18)0.0066 (19)0.027 (2)
N90.042 (2)0.043 (3)0.076 (3)0.006 (2)0.014 (2)0.014 (2)
C240.083 (4)0.071 (5)0.078 (5)0.021 (4)0.044 (4)0.027 (4)
C230.068 (4)0.048 (4)0.062 (4)0.014 (3)0.008 (3)0.002 (3)
C250.091 (6)0.083 (6)0.173 (10)0.048 (5)0.014 (6)0.025 (6)
Geometric parameters (Å, º) top
Cu1—N12.003 (4)C3—C51.389 (5)
Cu1—N32.025 (4)C6—C51.393 (5)
Cu1—O11.984 (3)C6—C81.398 (5)
Cu1—O5i1.985 (3)C8—C91.506 (5)
Cu1—O92.344 (3)C5—H50.9300
Cu2—N51.985 (3)C13—C121.335 (7)
Cu2—N71.980 (3)C13—H130.9300
Cu2—O32.243 (3)C17—N61.327 (6)
Cu2—O7ii2.003 (3)C17—H170.9300
Cu2—O102.043 (3)C11—N21.337 (6)
O3—C41.257 (5)C11—H110.9300
O4—C41.245 (5)N6—C181.358 (6)
O2—C11.240 (5)N6—H6N0.8600
O1—C11.282 (5)C20—H200.9300
O5—C71.256 (5)N2—C121.340 (6)
O5—Cu1iii1.985 (3)N2—H2N0.8600
O6—C71.247 (5)C14—C151.339 (8)
O8—C91.228 (5)C14—H140.9300
O7—C91.273 (5)C19—C181.344 (6)
O7—Cu2iv2.003 (3)C19—H190.9300
O10—H10A0.8500C22—C211.344 (7)
O10—H10B0.8500C22—H220.9300
O9—H9B0.8499C21—H210.9300
O9—H9C0.8500C18—H180.9300
N1—C111.312 (5)N4—C161.335 (7)
N1—C131.367 (6)N4—C151.335 (7)
N7—C201.323 (6)N4—H4N0.8600
N7—C221.380 (5)C16—H160.9300
N3—C161.327 (6)C15—H150.9300
N3—C141.348 (6)C12—H120.9300
N5—C171.325 (6)O11—C231.217 (7)
N5—C191.376 (5)N9—C231.313 (8)
C7—C61.512 (5)N9—C241.429 (8)
C2—C101.378 (5)N9—C251.487 (8)
C2—C31.406 (5)C24—H24A0.9600
C2—C11.503 (5)C24—H24B0.9600
C4—C31.514 (5)C24—H24C0.9600
C10—C81.393 (5)C23—H230.9300
C10—H100.9300C25—H25A0.9600
N8—C201.327 (6)C25—H25B0.9600
N8—C211.342 (6)C25—H25C0.9600
N8—H8N0.8600
O1—Cu1—O5i176.77 (12)C3—C5—C6120.8 (4)
O1—Cu1—N188.65 (13)C3—C5—H5119.6
O5i—Cu1—N189.92 (13)C6—C5—H5119.6
O1—Cu1—N390.46 (13)C12—C13—N1109.2 (4)
O5i—Cu1—N390.31 (13)C12—C13—H13125.4
N1—Cu1—N3167.36 (15)N1—C13—H13125.4
O1—Cu1—O998.32 (12)N5—C17—N6111.0 (4)
O5i—Cu1—O984.71 (12)N5—C17—H17124.5
N1—Cu1—O996.07 (13)N6—C17—H17124.5
N3—Cu1—O996.53 (14)N1—C11—N2111.8 (4)
N7—Cu2—N5172.01 (15)N1—C11—H11124.1
N7—Cu2—O7ii94.38 (13)N2—C11—H11124.1
N5—Cu2—O7ii88.09 (13)C17—N6—C18107.6 (4)
N7—Cu2—O1087.98 (13)C17—N6—H6N126.2
N5—Cu2—O1088.73 (13)C18—N6—H6N126.2
O7ii—Cu2—O10173.16 (12)N7—C20—N8111.2 (4)
N7—Cu2—O391.92 (13)N7—C20—H20124.4
N5—Cu2—O395.39 (13)N8—C20—H20124.4
O7ii—Cu2—O395.99 (11)O8—C9—O7124.6 (4)
O10—Cu2—O390.34 (12)O8—C9—C8120.6 (4)
C4—O3—Cu2125.3 (3)O7—C9—C8114.6 (4)
C1—O1—Cu1106.6 (2)C11—N2—C12106.3 (4)
C7—O5—Cu1iii113.6 (2)C11—N2—H2N126.8
C9—O7—Cu2iv114.2 (3)C12—N2—H2N126.8
Cu2—O10—H10A109.2C15—C14—N3110.8 (5)
Cu2—O10—H10B109.3C15—C14—H14124.6
H10A—O10—H10B109.5N3—C14—H14124.6
Cu1—O9—H9B109.2C18—C19—N5108.8 (4)
Cu1—O9—H9C109.3C18—C19—H19125.6
H9B—O9—H9C109.5N5—C19—H19125.6
C11—N1—C13104.8 (4)C21—C22—N7109.6 (4)
C11—N1—Cu1124.3 (3)C21—C22—H22125.2
C13—N1—Cu1129.3 (3)N7—C22—H22125.2
C20—N7—C22104.5 (4)N8—C21—C22106.4 (4)
C20—N7—Cu2128.8 (3)N8—C21—H21126.8
C22—N7—Cu2126.5 (3)C22—C21—H21126.8
C16—N3—C14103.6 (4)C19—C18—N6107.0 (4)
C16—N3—Cu1124.9 (3)C19—C18—H18126.5
C14—N3—Cu1129.4 (3)N6—C18—H18126.5
C17—N5—C19105.7 (4)C16—N4—C15106.2 (5)
C17—N5—Cu2126.0 (3)C16—N4—H4N126.9
C19—N5—Cu2128.3 (3)C15—N4—H4N126.9
O6—C7—O5125.6 (3)N3—C16—N4112.3 (5)
O6—C7—C6117.8 (4)N3—C16—H16123.9
O5—C7—C6116.7 (3)N4—C16—H16123.9
C10—C2—C3119.5 (3)N4—C15—C14107.1 (5)
C10—C2—C1121.4 (4)N4—C15—H15126.4
C3—C2—C1119.0 (3)C14—C15—H15126.4
O4—C4—O3127.1 (4)C13—C12—N2107.8 (5)
O4—C4—C3119.1 (4)C13—C12—H12126.1
O3—C4—C3113.6 (3)N2—C12—H12126.1
O2—C1—O1124.0 (3)C23—N9—C24123.4 (5)
O2—C1—C2119.0 (4)C23—N9—C25120.7 (7)
O1—C1—C2116.9 (3)C24—N9—C25115.0 (6)
C2—C10—C8121.6 (4)N9—C24—H24A109.5
C2—C10—H10119.2N9—C24—H24B109.5
C8—C10—H10119.2H24A—C24—H24B109.5
C20—N8—C21108.2 (4)N9—C24—H24C109.5
C20—N8—H8N125.9H24A—C24—H24C109.5
C21—N8—H8N125.9H24B—C24—H24C109.5
C5—C3—C2119.3 (3)O11—C23—N9125.4 (6)
C5—C3—C4118.6 (3)O11—C23—H23117.3
C2—C3—C4121.9 (3)N9—C23—H23117.3
C5—C6—C8119.9 (3)N9—C25—H25A109.5
C5—C6—C7119.6 (3)N9—C25—H25B109.5
C8—C6—C7120.4 (3)H25A—C25—H25B109.5
C10—C8—C6118.8 (3)N9—C25—H25C109.5
C10—C8—C9119.3 (3)H25A—C25—H25C109.5
C6—C8—C9121.7 (3)H25B—C25—H25C109.5
N7—Cu2—O3—C498.4 (3)C1—C2—C3—C47.1 (5)
N5—Cu2—O3—C478.3 (3)O4—C4—C3—C578.2 (5)
O7ii—Cu2—O3—C4167.0 (3)O3—C4—C3—C598.4 (4)
O10—Cu2—O3—C410.4 (3)O4—C4—C3—C2107.7 (4)
O5i—Cu1—O1—C113 (2)O3—C4—C3—C275.7 (5)
N1—Cu1—O1—C176.3 (3)O6—C7—C6—C5141.6 (4)
N3—Cu1—O1—C191.1 (3)O5—C7—C6—C538.7 (5)
O9—Cu1—O1—C1172.2 (3)O6—C7—C6—C833.9 (5)
O1—Cu1—N1—C11142.5 (4)O5—C7—C6—C8145.8 (4)
O5i—Cu1—N1—C1134.6 (3)C2—C10—C8—C63.0 (6)
N3—Cu1—N1—C1156.4 (7)C2—C10—C8—C9172.2 (4)
O9—Cu1—N1—C11119.3 (3)C5—C6—C8—C102.0 (6)
O1—Cu1—N1—C1320.6 (4)C7—C6—C8—C10173.5 (3)
O5i—Cu1—N1—C13162.3 (4)C5—C6—C8—C9173.0 (4)
N3—Cu1—N1—C13106.6 (7)C7—C6—C8—C911.5 (6)
O9—Cu1—N1—C1377.7 (4)C2—C3—C5—C61.3 (6)
N5—Cu2—N7—C20105.7 (10)C4—C3—C5—C6175.5 (4)
O7ii—Cu2—N7—C202.1 (4)C8—C6—C5—C30.1 (6)
O10—Cu2—N7—C20171.5 (4)C7—C6—C5—C3175.6 (3)
O3—Cu2—N7—C2098.3 (4)C11—N1—C13—C120.1 (6)
N5—Cu2—N7—C2279.8 (11)Cu1—N1—C13—C12165.4 (4)
O7ii—Cu2—N7—C22172.4 (4)C19—N5—C17—N60.8 (5)
O10—Cu2—N7—C2214.0 (4)Cu2—N5—C17—N6178.3 (3)
O3—Cu2—N7—C2276.2 (4)C13—N1—C11—N20.2 (5)
O1—Cu1—N3—C1639.4 (4)Cu1—N1—C11—N2166.3 (3)
O5i—Cu1—N3—C16137.5 (4)N5—C17—N6—C180.2 (6)
N1—Cu1—N3—C1646.5 (8)C22—N7—C20—N80.7 (5)
O9—Cu1—N3—C16137.8 (4)Cu2—N7—C20—N8174.8 (3)
O1—Cu1—N3—C14160.2 (4)C21—N8—C20—N70.7 (6)
O5i—Cu1—N3—C1423.0 (4)Cu2iv—O7—C9—O814.0 (5)
N1—Cu1—N3—C14114.0 (6)Cu2iv—O7—C9—C8160.5 (2)
O9—Cu1—N3—C1461.7 (4)C10—C8—C9—O858.3 (5)
N7—Cu2—N5—C17156.0 (9)C6—C8—C9—O8126.6 (4)
O7ii—Cu2—N5—C1795.8 (4)C10—C8—C9—O7116.4 (4)
O10—Cu2—N5—C1790.3 (4)C6—C8—C9—O758.6 (5)
O3—Cu2—N5—C170.1 (4)N1—C11—N2—C120.2 (6)
N7—Cu2—N5—C1927.0 (12)C16—N3—C14—C150.3 (6)
O7ii—Cu2—N5—C1981.2 (4)Cu1—N3—C14—C15163.9 (4)
O10—Cu2—N5—C1992.8 (4)C17—N5—C19—C181.1 (6)
O3—Cu2—N5—C19177.0 (4)Cu2—N5—C19—C18178.6 (4)
Cu1iii—O5—C7—O63.3 (5)C20—N7—C22—C210.4 (6)
Cu1iii—O5—C7—C6177.1 (2)Cu2—N7—C22—C21175.2 (4)
Cu2—O3—C4—O413.8 (5)C20—N8—C21—C220.4 (7)
Cu2—O3—C4—C3162.4 (2)N7—C22—C21—N80.0 (7)
Cu1—O1—C1—O26.3 (5)N5—C19—C18—N61.1 (7)
Cu1—O1—C1—C2175.1 (3)C17—N6—C18—C190.5 (6)
C10—C2—C1—O2152.4 (4)C14—N3—C16—N40.2 (6)
C3—C2—C1—O226.0 (6)Cu1—N3—C16—N4164.4 (3)
C10—C2—C1—O128.9 (6)C15—N4—C16—N30.6 (7)
C3—C2—C1—O1152.7 (4)C16—N4—C15—C140.8 (7)
C3—C2—C10—C81.8 (6)N3—C14—C15—N40.7 (7)
C1—C2—C10—C8176.7 (4)N1—C13—C12—N20.0 (7)
C10—C2—C3—C50.3 (6)C11—N2—C12—C130.1 (6)
C1—C2—C3—C5178.8 (3)C24—N9—C23—O115.1 (10)
C10—C2—C3—C4174.4 (4)C25—N9—C23—O11173.7 (6)
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x1, y+3/2, z1/2; (iv) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O3v0.862.012.807 (5)153
N4—H4N···O7ii0.862.353.099 (5)146
N6—H6N···O6i0.862.032.733 (5)138
N8—H8N···O2vi0.862.352.952 (5)127
N8—H8N···O4vi0.862.263.033 (6)149
O9—H9B···O11vii0.852.062.909 (5)177
O9—H9C···O11vi0.852.022.805 (6)153
O10—H10A···O8viii0.851.902.655 (4)147
O10—H10B···O40.852.242.703 (5)114
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2; (v) x+1, y, z; (vi) x1, y, z; (vii) x+2, y+1, z+1; (viii) x, y+1/2, z+1/2.
Selected bond lengths (Å) top
Cu1—N12.003 (4)Cu2—N51.985 (3)
Cu1—N32.025 (4)Cu2—N71.980 (3)
Cu1—O11.984 (3)Cu2—O32.243 (3)
Cu1—O5i1.985 (3)Cu2—O7ii2.003 (3)
Cu1—O92.344 (3)Cu2—O102.043 (3)
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O3iii0.862.012.807 (5)153
N4—H4N···O7ii0.862.353.099 (5)146
N6—H6N···O6i0.862.032.733 (5)138
N8—H8N···O2iv0.862.352.952 (5)127
N8—H8N···O4iv0.862.263.033 (6)149
O9—H9B···O11v0.852.062.909 (5)177
O9—H9C···O11iv0.852.022.805 (6)153
O10—H10A···O8vi0.851.902.655 (4)147
O10—H10B···O40.852.242.703 (5)114
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x+1, y, z; (iv) x1, y, z; (v) x+2, y+1, z+1; (vi) x, y+1/2, z+1/2.
Acknowledgements top

The work was supported by the National Natural Science Foundation of China (grant Nos. 21171133 and 21271143) and the Opening Foundation of Zhejiang Provincial Top Key Discipline (20121112).

references
References top

Aghabozorg, H., Bahrami, Z., Tabatabaie, M., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2022–m2023.

Andruh, M., Ruiz-Perez, C., Fokin, A. A., Gerbig, D. & Schreiner, P. R. (2011). J. Am. Chem. Soc. 133, 20036–20039.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chu, D.-Q., Xu, J.-Q., Duan, L.-M., Wang, T.-G., Tang, A.-Q. & Ye, L. (2001). Eur. J. Inorg. Chem. pp. 1135–1137.

Clarke, H. D., Hickey, M. B., Moulton, B., Perman, J. A., Peterson, M. L., Wojtas, L., Almarsson, O. & Zaworotko, M. J. (2012). Cryst. Growth Des. 12, 4194–4201.

Jiang, X.-D., Li, X.-B. & Sun, B.-W. (2008). Acta Cryst. E64, m922–m923.

Liu, Y.-H. & Ding, M.-T. (2007). Acta Cryst. E63, m1828–m1829.

Luo, J.-H., Huang, C.-C., Huang, X.-H. & Chen, X.-J. (2007). Acta Cryst. C63, m273–m276.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wu, J.-Y., Chang, C.-H., Tseng, T.-W. & Lu, K.-L. (2006). J. Mol. Struct. 796, 69–75.

Yang, E., Zhang, J., Wen, Y.-H., Chen, Y.-B., Kang, Y., Li, Z.-J. & Yao, Y.-G. (2004). Acta Cryst. C60, m280–m282.

Zhan, G. & Li, X.-H. (2010). Acta Cryst. C66, m29–m31.

Zhao, J., Shi, D., Cheng, H., Chen, L., Ma, P. & Niu, J. (2010). Inorg. Chem. Commun. 13, 822–827.