supplementary materials


zq2200 scheme

Acta Cryst. (2013). E69, o774    [ doi:10.1107/S1600536813010179 ]

2,2'-(Carbonothioyldisulfanediyl)bis(2-methylpropanoic acid)

R. Moreno-Fuquen, C. Grande, R. C. Advincula, J. C. Tenorio and J. Ellena

Abstract top

The molecular structure of the title compound, C9H14O4S3, exhibits intramolecular C-H...S hydrogen bonds. In the crystal, pairs of O-H...O hydrogen bonds lead to the formation of centrosymmetric dimers, which are in turn connected by weak C-H...O interactions. The combination of these interactions generates edge-fused R22(8) and R22(20) rings running along [211].

Comment top

The title compound, C9H14O4S3, belongs to a series of organic trithiocarbonates that have received special attention due to their applications as pharmaceuticals (Dehmel et al., 2007) or as intermediates in organic synthesis (Metzner et al., 1996). Trithiocarbonates can be used to control the behavior of polymerization reactions (Harrisson & Wooley, 2005; Bilalis et al., 2006; Millard et al., 2006) or they are also used in radical polymerization with RAFT (reversible addition-fragmentation chain transfer) reactions (Moad et al., 2005). A perspective view of the title compound (I), showing the atomic numbering scheme, is given in Fig. 1. The central trithio moiety in (I) is close to symmetric behavior. This behavior is different in an analogous structure (El-khateeb & Roller, 2007), where C1—S2 and C1—S3 bond lengths take values of 1.7733 (16) and 1.7232 (16) Å, respectively. This difference in the bond lengths is probably linked to the different ligand groups to which the trithio central group is connected. The title system shows intramolecular C—H···S interactions. The molecules of (I) are linked by O—H···O hydrogen bonds in their carboxyl terminals, forming centrosymmetric dimers. The O1 and O3 atoms at (x,y,z) act as hydrogen bond donors to O4 and O2 atoms of the carboxyl groups at (-x,-y + 1,-z). These dimers are connected to each other, through the weak C6—H6···O4, allowing them to grow along [211] (see Table 1, Nardelli, 1995). The C6 atom at (x,y,z) acts as hydrogen bond donor to O4 of the carboxy group at (x + 1,-y + 3/2,+z + 1/2). These intermolecular contacts are explained in terms of the substructure shown in Fig. 2. The combination of these interactions generate edge-fused R22(8) and R22(20) rings (Etter, 1990).

Related literature top

For pharmaceutical properties of trithiocarbonates, see: Dehmel et al. (2007). For trithiocarbonates as intermediates in organic synthesis, see: Metzner et al. (1996). For the control of polymerization reactions of trithiocarbonates, see: Harrisson & Wooley (2005); Bilalis et al. (2006); Millard et al. (2006). For radical polymerization with RAFT reactions, see: Moad et al. (2005). For related structures, see: El-khateeb & Roller (2007). For hydrogen bonding, see: Nardelli (1995). For graph-set motifs, see: Etter (1990). For the synthesis, see: Lai et al. (2002).

Experimental top

The compound (I) was synthesized according to a procedure reported in the literature (Lai et al., 2002). Carbon disulfide (27.4 g, 0.361 mol), chloroform (107.5 g, 0.904 mol), acetone (52.3 g, 0.934 mol), and tetrabutylammonium hydrogen sulfate (2.41 g, 7.11 mmol) were mixed with 120 ml of mineral spirits in a 1 L round bottom flask under nitrogen. Sodium hydroxide (50%) was added dropwise over 90 min to maintain the temperature below 25°. The reaction was stirred overnight. 900 ml of water was added followed by 120 ml of concentrated HCl to acidify the aqueous layer. The mixture was filtered and rinsed with water. It was obtained a yellow cristalline solid which was purified with acetone. Mp. 447 (1) K. 2,2'-(thiocarbonylbis(sulfanediyl))bis(2-methylpropanoic acid), 1H-NMR (DMSO-d6, TMS): 1.58(s, 12H), 12.89(s, 2H). 13C-NMR(MeOD4): 25.74, 57.23, 176.23, 220.53. F T—IR (KBr): 3200–2800 (–COOH), 1711 (C=O), 1062 (–C=S), cm-1.

Refinement top

All H-atoms were placed in calculated positions [O—H = 0.82 Å and C—H = 0.96 Å for methyl group] and refined using a riding model approximation with Uiso(H) constrained to 1.5 (O—H and methyl) times Ueq of the respective parent atom.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 2012) plot of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing the formation of chains of molecules running along [211]. Symmetry code: (i) -x,-y + 1,-z. (ii) x + 1,-y + 3/2,+z + 1/2.
2,2'-(Carbonothioyldisulfanediyl)bis(2-methylpropanoic acid) top
Crystal data top
C9H14O4S3F(000) = 592
Mr = 282.41Dx = 1.404 Mg m3
Monoclinic, P21/cMelting point < 447(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.4044 (2) ÅCell parameters from 4448 reflections
b = 10.4947 (2) Åθ = 2.9–26.4°
c = 13.7744 (3) ŵ = 0.55 mm1
β = 117.363 (1)°T = 295 K
V = 1335.76 (5) Å3Block, colourless
Z = 40.34 × 0.29 × 0.23 mm
Data collection top
Nonius KappaCCD
diffractometer
2273 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 26.7°, θmin = 2.9°
CCD rotation images, thick slices scansh = 1313
5423 measured reflectionsk = 1213
2825 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.040P)2 + 0.2778P]
where P = (Fo2 + 2Fc2)/3
2825 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C9H14O4S3V = 1335.76 (5) Å3
Mr = 282.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4044 (2) ŵ = 0.55 mm1
b = 10.4947 (2) ÅT = 295 K
c = 13.7744 (3) Å0.34 × 0.29 × 0.23 mm
β = 117.363 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2273 reflections with I > 2σ(I)
5423 measured reflectionsRint = 0.022
2825 independent reflectionsθmax = 26.7°
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.24 e Å3
S = 1.05Δρmin = 0.24 e Å3
2825 reflectionsAbsolute structure: ?
151 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10424 (5)0.69853 (5)0.04522 (4)0.05515 (16)
S20.12916 (4)0.78396 (4)0.26245 (3)0.04274 (14)
S30.37515 (4)0.67719 (5)0.26019 (3)0.04675 (14)
O10.33615 (14)0.42986 (12)0.13674 (9)0.0503 (3)
H10.30780.36960.09410.075*
O20.34295 (12)0.52637 (11)0.00505 (9)0.0455 (3)
O30.14354 (12)0.62947 (11)0.14151 (9)0.0445 (3)
H30.20660.58240.09790.067*
O40.23775 (13)0.76463 (12)0.00151 (9)0.0483 (3)
C10.19482 (17)0.71974 (15)0.17693 (13)0.0381 (4)
C20.45203 (17)0.63284 (17)0.16830 (13)0.0419 (4)
C30.05423 (17)0.84249 (15)0.17297 (12)0.0366 (3)
C40.36796 (16)0.52512 (16)0.09110 (13)0.0383 (4)
C50.4659 (2)0.74751 (19)0.10631 (17)0.0558 (5)
H5A0.37140.78110.05980.084*
H5B0.51150.72200.06270.084*
H5C0.52340.81180.15740.084*
C60.60223 (18)0.5785 (2)0.24740 (15)0.0561 (5)
H6A0.64950.54810.20630.084*
H6B0.59060.50950.28840.084*
H6C0.65980.64430.29660.084*
C70.15123 (16)0.74014 (15)0.09617 (13)0.0361 (3)
C80.0491 (2)0.96101 (17)0.11115 (16)0.0554 (5)
H8A0.14530.99390.06950.083*
H8B0.00930.93940.06270.083*
H8C0.01051.02440.16220.083*
C90.11435 (18)0.87531 (18)0.25362 (14)0.0477 (4)
H9A0.11480.80010.29310.072*
H9B0.21130.90720.21380.072*
H9C0.05440.93900.30410.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0460 (3)0.0823 (4)0.0357 (2)0.0060 (2)0.0175 (2)0.0126 (2)
S20.0379 (2)0.0577 (3)0.0339 (2)0.00402 (18)0.01772 (18)0.01094 (18)
S30.0382 (2)0.0629 (3)0.0380 (2)0.00095 (19)0.01655 (19)0.0126 (2)
O10.0637 (8)0.0455 (7)0.0407 (6)0.0137 (6)0.0231 (6)0.0044 (5)
O20.0509 (7)0.0515 (7)0.0396 (6)0.0110 (6)0.0254 (5)0.0085 (5)
O30.0501 (7)0.0375 (7)0.0386 (6)0.0082 (5)0.0140 (5)0.0010 (5)
O40.0501 (7)0.0431 (7)0.0375 (7)0.0021 (5)0.0079 (6)0.0026 (5)
C10.0384 (8)0.0397 (9)0.0386 (7)0.0071 (7)0.0197 (7)0.0083 (7)
C20.0368 (8)0.0488 (10)0.0438 (9)0.0072 (7)0.0217 (7)0.0121 (8)
C30.0413 (8)0.0358 (9)0.0351 (8)0.0033 (7)0.0195 (7)0.0046 (6)
C40.0327 (8)0.0432 (9)0.0411 (9)0.0018 (7)0.0186 (7)0.0047 (7)
C50.0592 (12)0.0519 (11)0.0653 (12)0.0185 (9)0.0363 (10)0.0126 (9)
C60.0375 (9)0.0708 (13)0.0572 (11)0.0017 (9)0.0192 (8)0.0141 (10)
C70.0369 (8)0.0361 (9)0.0369 (9)0.0004 (7)0.0183 (7)0.0014 (7)
C80.0770 (13)0.0376 (10)0.0559 (11)0.0077 (9)0.0342 (10)0.0017 (8)
C90.0470 (10)0.0541 (11)0.0478 (10)0.0012 (8)0.0268 (8)0.0115 (8)
Geometric parameters (Å, º) top
S1—C11.6301 (16)C3—C81.522 (2)
S2—C11.7460 (16)C3—C91.544 (2)
S2—C31.8372 (16)C5—H5A0.9600
S3—C11.7484 (17)C5—H5B0.9600
S3—C21.8410 (16)C5—H5C0.9600
O1—C41.302 (2)C6—H6A0.9600
O1—H10.8200C6—H6B0.9600
O2—C41.2268 (18)C6—H6C0.9600
O3—C71.3037 (19)C8—H8A0.9600
O3—H30.8200C8—H8B0.9600
O4—C71.2238 (18)C8—H8C0.9600
C2—C51.520 (3)C9—H9A0.9600
C2—C41.523 (2)C9—H9B0.9600
C2—C61.546 (2)C9—H9C0.9600
C3—C71.520 (2)
C1—S2—C3106.51 (7)C2—C5—H5C109.5
C1—S3—C2106.73 (7)H5A—C5—H5C109.5
C4—O1—H1109.5H5B—C5—H5C109.5
C7—O3—H3109.5C2—C6—H6A109.5
S1—C1—S2126.75 (10)C2—C6—H6B109.5
S1—C1—S3126.32 (9)H6A—C6—H6B109.5
S2—C1—S3106.90 (9)C2—C6—H6C109.5
C5—C2—C4111.58 (14)H6A—C6—H6C109.5
C5—C2—C6111.21 (15)H6B—C6—H6C109.5
C4—C2—C6106.77 (14)O4—C7—O3123.42 (15)
C5—C2—S3111.67 (12)O4—C7—C3121.41 (15)
C4—C2—S3112.10 (11)O3—C7—C3114.91 (13)
C6—C2—S3103.10 (11)C3—C8—H8A109.5
C7—C3—C8111.77 (14)C3—C8—H8B109.5
C7—C3—C9107.43 (13)H8A—C8—H8B109.5
C8—C3—C9110.50 (14)C3—C8—H8C109.5
C7—C3—S2112.54 (11)H8A—C8—H8C109.5
C8—C3—S2110.85 (12)H8B—C8—H8C109.5
C9—C3—S2103.37 (11)C3—C9—H9A109.5
O2—C4—O1123.69 (15)C3—C9—H9B109.5
O2—C4—C2120.97 (15)H9A—C9—H9B109.5
O1—C4—C2115.13 (13)C3—C9—H9C109.5
C2—C5—H5A109.5H9A—C9—H9C109.5
C2—C5—H5B109.5H9B—C9—H9C109.5
H5A—C5—H5B109.5
S1—S1—C1—S20.00 (2)C1—S2—C3—C9170.36 (11)
S1—S1—C1—S30.00 (5)C5—C2—C4—O213.2 (2)
C3—S2—C1—S17.38 (14)C6—C2—C4—O2108.50 (17)
C3—S2—C1—S17.38 (14)S3—C2—C4—O2139.30 (13)
C3—S2—C1—S3174.63 (8)C5—C2—C4—O1171.90 (14)
C2—S3—C1—S110.52 (14)C6—C2—C4—O166.40 (17)
C2—S3—C1—S110.52 (14)S3—C2—C4—O145.80 (17)
C2—S3—C1—S2171.47 (8)C8—C3—C7—O415.6 (2)
C1—S3—C2—C568.46 (14)C9—C3—C7—O4105.74 (17)
C1—S3—C2—C457.59 (14)S2—C3—C7—O4141.14 (13)
C1—S3—C2—C6172.07 (12)C8—C3—C7—O3170.06 (14)
C1—S2—C3—C754.77 (13)C9—C3—C7—O368.56 (18)
C1—S2—C3—C871.23 (13)S2—C3—C7—O344.56 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···S10.962.853.506 (2)127
C5—H5A···S10.962.833.4955 (19)127
O1—H1···O4i0.821.842.6549 (17)178
O3—H3···O2i0.821.812.6321 (15)178
C6—H6C···O4ii0.962.693.518 (2)144
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···S10.962.853.506 (2)126.6
C5—H5A···S10.962.833.4955 (19)127.3
O1—H1···O4i0.821.842.6549 (17)177.9
O3—H3···O2i0.821.812.6321 (15)177.9
C6—H6C···O4ii0.962.693.518 (2)144.4
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+3/2, z+1/2.
Acknowledgements top

RMF thanks the Universidad del Valle, Colombia, and CG thanks the Universidad San Buenaventura, Cali, Colombia, for partial financial support.

references
References top

Bilalis, P., Pitsikalis, M. & Hadjichristidis, N. (2006). J. Polym. Sci. Part A Polym. Chem. 44, 659–665.

Dehmel, F., Ciossek, T., Maier, T., Weinbrenner, S., Schmidt, B., Zoche, M. & Beckers, T. (2007). Bioorg. Med. Chem. Lett. 17, 4746–4752.

El-khateeb, M. & Roller, A. (2007). Polyhedron, 26, 3920–3924.

Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Harrisson, S. & Wooley, K. L. (2005). Chem. Commun. pp. 3259–3261.

Lai, J. T., Filla, D. & Shea, R. (2002). Macromolecules, 35, 6754–6756.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Metzner, P. (1996). Pure & Appl. Chem. 68, 863–868.

Millard, P. E., Barner, L., Stenzel, M. H., Davis, T. P., Barner-Kowollik, C. & Muller, A. H. E. (2006). Macromol. Rapid Commun. 27, 821–828.

Moad, G., Chong, Y. K., Postma, A., Rizzardo, E. & Thang, S. H. (2005). Polymer, 46, 8458–8468.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.