metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages m314-m315

[Di­aqua­sesqui(nitrato-κO)hemi(perchlorato-κO)copper(II)]-μ-{bis­­[5-methyl-3-(pyridin-2-yl)-1H-pyrazol-4-yl] selenide}-[tri­aqua­(perchlorato-κO)copper(II)] nitrate monohydrate

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine, and bFaculty of Chemistry, University of Wroclaw, 14, F. Joliot-Curie Str., 50383, Wroclaw, Poland
*Correspondence e-mail: pavlenko_vadim@univ.kiev.ua

(Received 22 March 2013; accepted 3 May 2013; online 15 May 2013)

In the binuclear title complex, [Cu2(ClO4)1.5(NO3)1.5(C18H16N6Se)(H2O)5]NO3·H2O, both CuII ions are hexa­coordinated by O and N atoms, thus forming axially elongated CuO4N2 octa­hedra. The equatorial plane of each octa­hedron is formed by one chelating pyrazole–pyridine fragment of the organic ligand and two water mol­ecules. The axial positions in one octa­hedron are occupied by a water mol­ecule and a monodentately coordinated perchlorate anion, while those in the other are occupied by a nitrate anion and a disordered perchlorate/nitrate anion with equal site occupancy. The pyrazole–pyridine units of the organic selenide are trans-oriented to each other with a C—Se—C angle of 96.01 (14)°. In the crystal, uncoordinated nitrate anions and the coordinating water mol­ecules are involved in O—H⋯O and N—H⋯O hydrogen bonds, forming a bridge between the pyrazole group and the coordinating water mol­ecules. Further O—H⋯O hydrogen bonds between the complex mol­ecules and a ππ stacking inter­action with a centroid–centroid distance of 3.834 (4) Å are also observed.

Related literature

For structural studies of related pyrazolylselenides, see: Seredyuk et al. (2010[Seredyuk, M., Fritsky, I. O., Krämer, R., Kozlowski, H., Haukka, M. & Gütlich, P. (2010). Tetrahedron, 66, 8772-8777.]) and for structural studies of d-metal complexes of bis­(3,5-dimethyl-1H-pyrazol-4-yl)selenide, see: Seredyuk et al. (2007[Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.]). For related structures, see: Fritsky et al. (2004[Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746-3752.]); Kanderal et al. (2005[Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428-1437.]); Moroz et al. (2010[Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750-4752.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(ClO4)1.5(NO3)1.5(C18H16N6Se)(H2O)5]NO3·H2O

  • Mr = 934.72

  • Triclinic, [P \overline 1]

  • a = 9.7233 (6) Å

  • b = 13.1987 (7) Å

  • c = 13.3217 (8) Å

  • α = 93.510 (4)°

  • β = 108.858 (5)°

  • γ = 93.494 (4)°

  • V = 1608.93 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.67 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker-Nonius BV, Delft, The Netherlands.]) Tmin = 0.468, Tmax = 0.728

  • 11167 measured reflections

  • 7085 independent reflections

  • 5817 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.113

  • S = 1.02

  • 7085 reflections

  • 498 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.95 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H2O1⋯O10 0.83 (2) 1.93 (2) 2.737 (3) 164 (4)
O1—H1O1⋯O18i 0.81 (2) 2.00 (2) 2.801 (6) 174 (5)
O1—H1O1⋯O20i 0.81 (2) 1.99 (3) 2.747 (6) 155 (4)
O2—H1O2⋯O13ii 0.83 (2) 1.85 (2) 2.660 (3) 163 (4)
O2—H2O2⋯O3iii 0.83 (2) 1.99 (2) 2.805 (4) 167 (4)
O3—H1O3⋯O11i 0.83 (2) 2.03 (2) 2.842 (4) 166 (4)
O3—H1O3⋯O12i 0.83 (2) 2.47 (3) 3.130 (4) 137 (4)
O4—H1O4⋯O10iv 0.83 (2) 1.94 (2) 2.762 (3) 174 (4)
O4—H2O4⋯O1Wv 0.84 (2) 1.88 (2) 2.717 (4) 174 (5)
O5—H1O5⋯O13 0.82 (2) 1.87 (3) 2.617 (4) 150 (4)
O5—H2O5⋯O16 0.84 (2) 1.97 (3) 2.719 (11) 148 (4)
O5—H2O5⋯O16 0.84 (2) 1.97 (3) 2.719 (11) 148 (4)
O5—H2O5⋯O22 0.84 (2) 2.07 (3) 2.784 (10) 142 (4)
O1W—H2W1⋯O6iv 0.83 (2) 2.10 (3) 2.800 (4) 142 (4)
O1W—H1W1⋯O16vi 0.84 (2) 2.12 (3) 2.833 (9) 144 (4)
O1W—H1W1⋯O22vi 0.84 (2) 2.23 (3) 2.977 (11) 149 (4)
N2—H1N2⋯O11 0.86 1.98 2.829 (4) 168
N5—H1N5⋯O1W 0.86 1.94 2.762 (4) 160
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y+1, z; (iii) -x, -y+1, -z+1; (iv) x, y-1, z; (v) -x+1, -y, -z+1; (vi) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker-Nonius BV, Delft, The Netherlands.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrazole-derived ligands are widely used in molecular magnetism, bioinorganic modelling and supramolecular chemistry due to their bridging nature and possibility for easy functionalization. As a part of our synthetic and structural study of pyrazolylselenides (Seredyuk et al., 2010), and their complexes with d-metals (Seredyuk et al., 2007), we report here the molecular and crystal structures of the title compound (Fig. 1).

The title compound, [Cu2(H2O)5(NO3)1.5(ClO4)1.5(C18H16N6Se)]+.NO3-.H2O, is a binuclear complex formed by bis(3-methyl-5-(pyridin-2-yl)-1H-pyrazol-4-yl)selenide (Seredyuk et al., 2010), where both CuII ions are surrounded by fuor O and two N donor atoms which form coordination polyhedra best described as axially elongated octahedra. In both, the equatorial planes are formed by the chelating pyrazole-pyridine fragment of the organic ligand [Cu—N 1.942 (3)–2.023 (3) Å] and two water molecules [Cu—O 1.948 (3)–1.972 (3) Å], whereas the axial positions are occupied by the water molecule [Cu—O 2.419 (3) Å] and the monodentately coordinated perchlorate anion [Cu1—O 2.489 (3) Å] or the perchlorate/nitrate anion [Cu2—O 2.643 (11)/2.688 (11) Å] and the nitrate anion [Cu2—O 2.445 (3) Å]. The organic selenide is trans-oriented with the angle C—Se—C equal to 96.01 (14)°. The C—N and C—C bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Fritsky et al., 2004; Kanderal et al., 2005; Moroz et al., 2010).

An additional nitrate anion balancing the charge of the complex molecule serves a bridge being involved in intermolecular hydrogen bonds between the NH group of a pyrazole moiety [N···O = 2.829 (4) Å] and the water molecule coordinated to the Cu1 ion [O···O = 2.737 (3) Å]. The second NH group of the ligand molecule is bonded with the water molecule [N···O = 2.762 (3) Å]. Also, numerous intermolecular hydrogen bonds are observed between water molecules and perchlorate and nitrate anions with O···O distances in the range of 2.660 (3)–3.022 (5) Å. The distances centroid-centroid between the closest coplanar pyridine fragments of the neighboring molecules are equal to 3.834 (4) and 4.010 (4) Å (Fig. 2).

Related literature top

For structural studies of related pyrazolylselenides, see: Seredyuk et al. (2010) and for structural studies of d-metal complexes of bis(3,5-dimethyl-1H-pyrazol-4-yl)selenide, see: Seredyuk et al. (2007). For related structures, see: Fritsky et al. (2004); Kanderal et al. (2005); Moroz et al. (2010).

Experimental top

In a solution of Cu(NO3)2.6H2O (0.144 g, 0.468 mmol) and NaClO4 (0.122 g, 1 mmol) in 5 ml of water a batch of bis(3-methyl-5-(pyridin-2-yl)-1H-pyrazol-4-yl)selenide.MeOH (0.1 g, 0.234 mmol) (Seredyuk et al., 2010) was dissolved. After several weeks well formed green crystals were formed and isolated. Analysis, calculated for C18H28Cl1.5Cu2N8.5O19.5Se: C 23.13, H 3.02, N 12.74%; found: C 23.17, H 3.04, N 12.01%.

Refinement top

The NH and water H atoms were located in a difference Fourier map. The positions of water H atoms were refined with distance restraint of O—H = 0.84 (2) Å, and with Uiso(H) = 1.5Ueq(O), but H atoms of the NH groups were constrained to ride on their parent atom, with N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93(CH), 0.96(CH3), and with Uiso(H) = 1.2 or 1.5Ueq(C) for CH and CH3, respectively. It was found that one of the coordinated perchlorate ions occupy almost the same location with the nitrate ion, both ions were modelled as disordered over two positions with site occupancies of 0.5. For the disordered perchlorate/nitrate anion, each set of four/three oxygen atoms was restrained to have the same anisotropic displacement parameters.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the labeling scheme and 90% probability displacement ellipsoids. Hydrogen bonds are indicated by dashed lines. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Projection of a fragment of the crystal packing along the a axis showing ππ stacking intractions between the pyridine groups (dashed lines).
[Diaquasesqui(nitrato-κO)hemi(perchlorato-κO)copper(II)]-µ-{bis[5-methyl-3-(pyridin-2-yl)-1H-pyrazol-4-yl] selenide}-[triaqua(perchlorato-κO)copper(II)] nitrate monohydrate top
Crystal data top
[Cu2(ClO4)1.5(NO3)1.5(C18H16N6Se)(H2O)5]NO3·H2OZ = 2
Mr = 934.72F(000) = 938
Triclinic, P1Dx = 1.929 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7233 (6) ÅCell parameters from 6705 reflections
b = 13.1987 (7) Åθ = 2.6–30.3°
c = 13.3217 (8) ŵ = 2.67 mm1
α = 93.510 (4)°T = 100 K
β = 108.858 (5)°Block, green
γ = 93.494 (4)°0.30 × 0.25 × 0.12 mm
V = 1608.93 (16) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
7085 independent reflections
Radiation source: fine-focus sealed tube5817 reflections with I > 2σ(I)
Flat graphite crystal monochromatorRint = 0.073
Detector resolution: 16 pixels mm-1θmax = 28.4°, θmin = 3.5°
ϕ and ω scansh = 1012
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1717
Tmin = 0.468, Tmax = 0.728l = 1716
11167 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0615P)2]
where P = (Fo2 + 2Fc2)/3
7085 reflections(Δ/σ)max = 0.001
498 parametersΔρmax = 1.00 e Å3
12 restraintsΔρmin = 0.95 e Å3
Crystal data top
[Cu2(ClO4)1.5(NO3)1.5(C18H16N6Se)(H2O)5]NO3·H2Oγ = 93.494 (4)°
Mr = 934.72V = 1608.93 (16) Å3
Triclinic, P1Z = 2
a = 9.7233 (6) ÅMo Kα radiation
b = 13.1987 (7) ŵ = 2.67 mm1
c = 13.3217 (8) ÅT = 100 K
α = 93.510 (4)°0.30 × 0.25 × 0.12 mm
β = 108.858 (5)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
7085 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5817 reflections with I > 2σ(I)
Tmin = 0.468, Tmax = 0.728Rint = 0.073
11167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04112 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.00 e Å3
7085 reflectionsΔρmin = 0.95 e Å3
498 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Se0.30579 (4)0.28810 (2)0.04893 (3)0.01672 (10)
Cu10.07983 (4)0.55346 (3)0.31262 (3)0.01379 (10)
Cu20.60531 (4)0.03338 (3)0.28618 (3)0.01818 (11)
Cl10.08419 (9)0.80696 (6)0.22351 (8)0.02334 (19)
O10.2168 (3)0.63956 (19)0.4340 (2)0.0209 (5)
H2O10.284 (4)0.669 (3)0.419 (4)0.031*
H1O10.173 (4)0.680 (3)0.457 (3)0.031*
O20.0895 (2)0.57907 (18)0.35723 (19)0.0166 (5)
H1O20.137 (4)0.626 (2)0.329 (3)0.025*
H2O20.079 (4)0.577 (3)0.4215 (17)0.025*
O1W0.2383 (3)0.01642 (19)0.4205 (2)0.0228 (5)
H1W10.181 (4)0.059 (3)0.428 (4)0.034*
H2W10.216 (5)0.0443 (17)0.397 (4)0.034*
O30.1043 (3)0.42346 (18)0.4361 (2)0.0192 (5)
H1O30.189 (3)0.406 (3)0.457 (3)0.029*
H2O30.056 (4)0.370 (2)0.410 (3)0.029*
O40.5283 (3)0.06721 (19)0.4011 (2)0.0214 (5)
H1O40.505 (5)0.1278 (17)0.405 (4)0.032*
H2O40.596 (4)0.049 (3)0.458 (2)0.032*
O50.7923 (3)0.08153 (19)0.3647 (2)0.0245 (6)
H1O50.802 (5)0.139 (2)0.341 (4)0.037*
H2O50.865 (3)0.045 (3)0.362 (4)0.037*
O60.0385 (3)0.8548 (2)0.3056 (3)0.0499 (10)
O70.0311 (3)0.8566 (2)0.1280 (3)0.0410 (8)
O80.2401 (3)0.8125 (2)0.2577 (2)0.0368 (7)
O90.0257 (3)0.70178 (18)0.2037 (2)0.0287 (6)
O100.4717 (3)0.72896 (18)0.4218 (2)0.0255 (6)
O110.5918 (3)0.59929 (17)0.4819 (2)0.0218 (5)
O120.6898 (3)0.75338 (19)0.5375 (2)0.0299 (6)
O130.7312 (3)0.2750 (2)0.2985 (3)0.0379 (7)
O140.5604 (3)0.36909 (19)0.1776 (2)0.0290 (6)
O150.5431 (3)0.20641 (19)0.1993 (2)0.0249 (5)
N10.2334 (3)0.4991 (2)0.2624 (2)0.0149 (5)
N20.3773 (3)0.4906 (2)0.3050 (2)0.0159 (5)
H1N20.43250.52420.36280.019*
N30.0450 (3)0.47889 (19)0.1744 (2)0.0145 (5)
N40.4412 (3)0.0459 (2)0.2249 (2)0.0169 (6)
N50.3236 (3)0.0687 (2)0.2505 (2)0.0179 (6)
H1N50.29360.03810.29580.021*
N60.6606 (3)0.0214 (2)0.1646 (2)0.0191 (6)
N70.5859 (3)0.6952 (2)0.4812 (2)0.0188 (6)
N80.6108 (3)0.2844 (2)0.2239 (2)0.0188 (6)
C10.5770 (3)0.3955 (3)0.2785 (3)0.0219 (7)
H1A0.64150.45340.31630.033*
H1B0.60080.37440.21630.033*
H1C0.58770.34070.32390.033*
C20.4246 (4)0.4232 (2)0.2463 (3)0.0161 (6)
C30.3034 (3)0.3858 (2)0.1598 (3)0.0143 (6)
C40.1865 (3)0.4339 (2)0.1747 (3)0.0140 (6)
C50.0275 (3)0.4270 (2)0.1190 (3)0.0140 (6)
C60.0450 (4)0.3737 (2)0.0211 (3)0.0171 (6)
H60.00630.33760.01520.021*
C70.1951 (4)0.3752 (2)0.0219 (3)0.0187 (7)
H70.24580.33910.08690.022*
C80.2691 (4)0.4306 (3)0.0323 (3)0.0188 (7)
H80.36950.43360.00380.023*
C90.1901 (3)0.4817 (2)0.1305 (3)0.0177 (7)
H90.23950.51920.16720.021*
C100.1243 (4)0.1828 (3)0.2098 (3)0.0210 (7)
H10A0.07560.13120.23700.031*
H10B0.06070.19900.14200.031*
H10C0.14980.24280.25860.031*
C110.2582 (3)0.1449 (2)0.1969 (3)0.0170 (6)
C120.3424 (3)0.1760 (2)0.1345 (3)0.0151 (6)
C130.4547 (4)0.1103 (2)0.1543 (3)0.0161 (6)
C140.5762 (3)0.0938 (2)0.1147 (3)0.0169 (6)
C150.6019 (4)0.1410 (2)0.0314 (3)0.0180 (7)
H150.54420.19140.00080.022*
C160.7149 (4)0.1119 (3)0.0031 (3)0.0205 (7)
H160.73330.14190.05940.025*
C170.8007 (4)0.0369 (3)0.0477 (3)0.0228 (7)
H170.87680.01590.02570.027*
C180.7700 (4)0.0058 (3)0.1317 (3)0.0219 (7)
H180.82780.05500.16620.026*
Cl20.8810 (3)0.1792 (2)0.3891 (2)0.0147 (5)0.50
O160.9609 (11)0.0934 (7)0.3751 (9)0.0270 (7)0.50
O170.8847 (5)0.2502 (4)0.3146 (5)0.0270 (7)0.50
O180.9531 (6)0.2249 (4)0.4990 (5)0.0270 (7)0.50
O190.7361 (11)0.1453 (8)0.3799 (7)0.0270 (7)0.50
N90.8701 (15)0.1712 (11)0.4062 (11)0.0188 (6)0.50
O200.9164 (6)0.2618 (4)0.4398 (6)0.0363 (11)0.50
O210.7413 (12)0.1391 (8)0.4031 (8)0.0363 (11)0.50
O220.9545 (12)0.1050 (7)0.3892 (10)0.0363 (11)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se0.02294 (18)0.01469 (16)0.01541 (17)0.00675 (12)0.00905 (13)0.00297 (12)
Cu10.01339 (19)0.01215 (19)0.0161 (2)0.00040 (14)0.00579 (15)0.00181 (15)
Cu20.0180 (2)0.0160 (2)0.0223 (2)0.00449 (15)0.00766 (17)0.00644 (17)
Cl10.0206 (4)0.0162 (4)0.0349 (5)0.0012 (3)0.0124 (4)0.0028 (3)
O10.0184 (12)0.0196 (12)0.0252 (13)0.0029 (10)0.0102 (10)0.0060 (10)
O20.0161 (11)0.0188 (11)0.0161 (12)0.0067 (9)0.0059 (9)0.0029 (10)
O1W0.0244 (13)0.0199 (12)0.0251 (14)0.0013 (10)0.0110 (11)0.0021 (11)
O30.0206 (12)0.0156 (11)0.0223 (13)0.0012 (9)0.0080 (10)0.0033 (10)
O40.0241 (13)0.0173 (12)0.0221 (13)0.0002 (10)0.0065 (10)0.0041 (10)
O50.0217 (13)0.0182 (12)0.0334 (15)0.0038 (10)0.0080 (11)0.0050 (11)
O60.0407 (18)0.0424 (18)0.072 (2)0.0143 (14)0.0361 (17)0.0361 (18)
O70.0314 (16)0.0275 (14)0.064 (2)0.0057 (12)0.0119 (15)0.0213 (15)
O80.0202 (14)0.0473 (18)0.0435 (18)0.0056 (12)0.0102 (12)0.0067 (14)
O90.0479 (17)0.0127 (12)0.0239 (14)0.0045 (11)0.0119 (12)0.0032 (10)
O100.0159 (12)0.0209 (12)0.0356 (16)0.0022 (10)0.0013 (11)0.0113 (11)
O110.0239 (13)0.0132 (11)0.0247 (13)0.0002 (9)0.0030 (10)0.0025 (10)
O120.0255 (14)0.0192 (12)0.0347 (16)0.0033 (10)0.0023 (11)0.0044 (11)
O130.0268 (15)0.0255 (14)0.0448 (18)0.0119 (12)0.0116 (13)0.0029 (13)
O140.0273 (14)0.0223 (13)0.0324 (15)0.0000 (11)0.0039 (11)0.0017 (12)
O150.0233 (13)0.0240 (13)0.0262 (14)0.0090 (10)0.0041 (10)0.0082 (11)
N10.0136 (13)0.0120 (12)0.0200 (14)0.0001 (10)0.0065 (11)0.0019 (11)
N20.0143 (13)0.0152 (13)0.0174 (14)0.0002 (10)0.0049 (11)0.0002 (11)
N30.0151 (13)0.0113 (12)0.0180 (14)0.0006 (10)0.0076 (11)0.0014 (11)
N40.0208 (14)0.0136 (13)0.0194 (15)0.0049 (11)0.0094 (11)0.0055 (11)
N50.0164 (13)0.0190 (14)0.0212 (15)0.0012 (11)0.0092 (11)0.0067 (12)
N60.0207 (14)0.0165 (13)0.0205 (15)0.0020 (11)0.0071 (12)0.0027 (12)
N70.0177 (14)0.0167 (13)0.0227 (15)0.0008 (11)0.0073 (12)0.0036 (12)
N80.0166 (13)0.0199 (14)0.0211 (15)0.0055 (11)0.0067 (11)0.0057 (11)
C10.0149 (16)0.0207 (16)0.031 (2)0.0023 (13)0.0085 (14)0.0022 (15)
C20.0193 (16)0.0127 (14)0.0189 (16)0.0009 (12)0.0094 (13)0.0047 (13)
C30.0168 (15)0.0129 (14)0.0156 (15)0.0032 (12)0.0082 (12)0.0011 (12)
C40.0180 (15)0.0105 (14)0.0139 (15)0.0005 (12)0.0060 (12)0.0021 (12)
C50.0149 (15)0.0123 (14)0.0158 (16)0.0012 (11)0.0059 (12)0.0028 (12)
C60.0209 (16)0.0139 (15)0.0168 (16)0.0014 (12)0.0072 (13)0.0030 (13)
C70.0225 (17)0.0141 (15)0.0161 (16)0.0009 (13)0.0022 (13)0.0007 (13)
C80.0157 (15)0.0194 (16)0.0186 (17)0.0006 (13)0.0025 (13)0.0011 (13)
C90.0171 (16)0.0185 (16)0.0174 (17)0.0007 (13)0.0064 (13)0.0002 (13)
C100.0188 (16)0.0198 (16)0.0272 (19)0.0021 (13)0.0106 (14)0.0051 (14)
C110.0155 (15)0.0162 (15)0.0179 (16)0.0015 (12)0.0043 (13)0.0007 (13)
C120.0180 (15)0.0111 (14)0.0146 (16)0.0002 (12)0.0035 (12)0.0009 (12)
C130.0201 (16)0.0120 (14)0.0161 (16)0.0001 (12)0.0057 (13)0.0018 (12)
C140.0172 (15)0.0104 (14)0.0215 (17)0.0004 (12)0.0048 (13)0.0021 (13)
C150.0203 (16)0.0126 (14)0.0209 (17)0.0006 (12)0.0069 (13)0.0000 (13)
C160.0266 (18)0.0179 (16)0.0193 (17)0.0003 (13)0.0111 (14)0.0015 (14)
C170.0197 (17)0.0241 (18)0.0263 (19)0.0003 (14)0.0115 (14)0.0037 (15)
C180.0218 (17)0.0196 (16)0.0250 (19)0.0065 (14)0.0079 (14)0.0023 (14)
Cl20.0151 (9)0.0085 (8)0.0224 (13)0.0033 (6)0.0107 (7)0.0058 (8)
O160.0208 (15)0.0273 (16)0.0354 (19)0.0073 (12)0.0117 (13)0.0038 (14)
O170.0208 (15)0.0273 (16)0.0354 (19)0.0073 (12)0.0117 (13)0.0038 (14)
O180.0208 (15)0.0273 (16)0.0354 (19)0.0073 (12)0.0117 (13)0.0038 (14)
O190.0208 (15)0.0273 (16)0.0354 (19)0.0073 (12)0.0117 (13)0.0038 (14)
N90.0166 (13)0.0199 (14)0.0211 (15)0.0055 (11)0.0067 (11)0.0057 (11)
O200.034 (2)0.0206 (19)0.061 (3)0.0118 (16)0.030 (2)0.0110 (19)
O210.034 (2)0.0206 (19)0.061 (3)0.0118 (16)0.030 (2)0.0110 (19)
O220.034 (2)0.0206 (19)0.061 (3)0.0118 (16)0.030 (2)0.0110 (19)
Geometric parameters (Å, º) top
Se—C121.904 (3)N4—N51.340 (4)
Se—C31.907 (3)N5—C111.341 (4)
Cu1—O21.963 (2)N5—H1N50.8600
Cu1—O11.969 (3)N6—C181.334 (4)
Cu1—N11.978 (3)N6—C141.360 (4)
Cu1—N32.005 (3)C1—C21.479 (4)
Cu1—O32.419 (3)C1—H1A0.9600
Cu1—O92.489 (3)C1—H1B0.9600
Cu2—N41.942 (3)C1—H1C0.9600
Cu2—O51.948 (3)C2—C31.394 (5)
Cu2—O41.972 (3)C3—C41.398 (4)
Cu2—N62.023 (3)C4—C51.477 (4)
Cu2—O152.445 (3)C5—C61.388 (4)
Cu2—O192.643 (11)C6—C71.387 (5)
Cl1—O71.426 (3)C6—H60.9300
Cl1—O81.431 (3)C7—C81.382 (5)
Cl1—O61.434 (3)C7—H70.9300
Cl1—O91.443 (3)C8—C91.391 (5)
O1—H2O10.826 (19)C8—H80.9300
O1—H1O10.805 (19)C9—H90.9300
O2—H1O20.834 (19)C10—C111.479 (4)
O2—H2O20.831 (19)C10—H10A0.9600
O1W—H1W10.836 (19)C10—H10B0.9600
O1W—H2W10.832 (19)C10—H10C0.9600
O3—H1O30.831 (19)C11—C121.403 (5)
O3—H2O30.818 (19)C12—C131.404 (5)
O4—H1O40.829 (19)C13—C141.464 (5)
O4—H2O40.836 (19)C14—C151.388 (5)
O5—H1O50.823 (19)C15—C161.386 (5)
O5—H2O50.842 (19)C15—H150.9300
O10—N71.262 (4)C16—C171.397 (5)
O11—N71.271 (3)C16—H160.9300
O12—N71.232 (4)C17—C181.389 (5)
O13—N81.260 (4)C17—H170.9300
O14—N81.234 (4)C18—H180.9300
O15—N81.259 (4)Cl2—O171.413 (6)
N1—C41.340 (4)Cl2—O191.415 (11)
N1—N21.344 (4)Cl2—O161.447 (8)
N2—C21.346 (4)Cl2—O181.475 (7)
N2—H1N20.8600N9—O201.255 (15)
N3—C91.346 (4)N9—O211.285 (17)
N3—C51.357 (4)N9—O221.293 (15)
N4—C131.337 (4)
C12—Se—C396.01 (14)O10—N7—O11118.5 (3)
O2—Cu1—O193.43 (10)O14—N8—O15121.3 (3)
O2—Cu1—N1168.52 (10)O14—N8—O13120.1 (3)
O1—Cu1—N194.85 (11)O15—N8—O13118.6 (3)
O2—Cu1—N392.57 (11)C2—C1—H1A109.5
O1—Cu1—N3170.62 (11)C2—C1—H1B109.5
N1—Cu1—N380.28 (11)H1A—C1—H1B109.5
O2—Cu1—O381.67 (9)C2—C1—H1C109.5
O1—Cu1—O385.52 (10)H1A—C1—H1C109.5
N1—Cu1—O391.06 (10)H1B—C1—H1C109.5
N3—Cu1—O3102.50 (10)N2—C2—C3106.6 (3)
O2—Cu1—O988.12 (10)N2—C2—C1122.8 (3)
O1—Cu1—O991.62 (10)C3—C2—C1130.5 (3)
N1—Cu1—O999.57 (11)C2—C3—C4105.2 (3)
N3—Cu1—O981.37 (10)C2—C3—Se125.1 (2)
O3—Cu1—O9169.20 (9)C4—C3—Se129.7 (2)
N4—Cu2—O5166.31 (12)N1—C4—C3110.2 (3)
N4—Cu2—O490.67 (11)N1—C4—C5114.8 (3)
O5—Cu2—O490.21 (11)C3—C4—C5135.0 (3)
N4—Cu2—N679.71 (12)N3—C5—C6121.7 (3)
O5—Cu2—N698.40 (12)N3—C5—C4112.7 (3)
O4—Cu2—N6169.88 (11)C6—C5—C4125.6 (3)
N4—Cu2—O15107.91 (11)C7—C6—C5119.0 (3)
O5—Cu2—O1585.70 (10)C7—C6—H6120.5
O4—Cu2—O1592.59 (10)C5—C6—H6120.5
N6—Cu2—O1593.36 (11)C8—C7—C6119.7 (3)
N4—Cu2—O1983.5 (2)C8—C7—H7120.2
O5—Cu2—O1982.9 (2)C6—C7—H7120.2
O4—Cu2—O1995.1 (2)C7—C8—C9118.5 (3)
N6—Cu2—O1980.7 (2)C7—C8—H8120.7
O15—Cu2—O19166.2 (2)C9—C8—H8120.7
O7—Cl1—O8109.63 (18)N3—C9—C8122.4 (3)
O7—Cl1—O6110.2 (2)N3—C9—H9118.8
O8—Cl1—O6109.33 (19)C8—C9—H9118.8
O7—Cl1—O9109.16 (18)C11—C10—H10A109.5
O8—Cl1—O9109.82 (18)C11—C10—H10B109.5
O6—Cl1—O9108.64 (17)H10A—C10—H10B109.5
Cu1—O1—H2O1113 (3)C11—C10—H10C109.5
Cu1—O1—H1O1110 (3)H10A—C10—H10C109.5
H2O1—O1—H1O1110 (4)H10B—C10—H10C109.5
Cu1—O2—H1O2115 (3)N5—C11—C12106.6 (3)
Cu1—O2—H2O2117 (3)N5—C11—C10122.1 (3)
H1O2—O2—H2O2114 (4)C12—C11—C10131.3 (3)
H1W1—O1W—H2W1127 (4)C11—C12—C13104.9 (3)
Cu1—O3—H1O3111 (3)C11—C12—Se124.4 (2)
Cu1—O3—H2O3114 (3)C13—C12—Se130.6 (3)
H1O3—O3—H2O3103 (4)N4—C13—C12109.7 (3)
Cu2—O4—H1O4118 (3)N4—C13—C14114.3 (3)
Cu2—O4—H2O4105 (3)C12—C13—C14136.0 (3)
H1O4—O4—H2O4106 (4)N6—C14—C15121.8 (3)
Cu2—O5—H1O5112 (3)N6—C14—C13112.7 (3)
Cu2—O5—H2O5114 (3)C15—C14—C13125.3 (3)
H1O5—O5—H2O5105 (4)C16—C15—C14119.0 (3)
Cl1—O9—Cu1132.23 (16)C16—C15—H15120.5
N8—O15—Cu2128.4 (2)C14—C15—H15120.5
C4—N1—N2106.2 (3)C15—C16—C17119.1 (3)
C4—N1—Cu1115.8 (2)C15—C16—H16120.4
N2—N1—Cu1135.9 (2)C17—C16—H16120.4
N1—N2—C2111.8 (3)C18—C17—C16118.7 (3)
N1—N2—H1N2124.1C18—C17—H17120.7
C2—N2—H1N2124.1C16—C17—H17120.7
C9—N3—C5118.7 (3)N6—C18—C17122.4 (3)
C9—N3—Cu1125.6 (2)N6—C18—H18118.8
C5—N3—Cu1115.6 (2)C17—C18—H18118.8
C13—N4—N5106.9 (3)O17—Cl2—O19111.6 (4)
C13—N4—Cu2116.9 (2)O17—Cl2—O16109.9 (5)
N5—N4—Cu2134.7 (2)O19—Cl2—O16110.3 (6)
N4—N5—C11111.7 (3)O17—Cl2—O18110.8 (4)
N4—N5—H1N5124.1O19—Cl2—O18107.5 (5)
C11—N5—H1N5124.1O16—Cl2—O18106.6 (5)
C18—N6—C14119.0 (3)Cl2—O19—Cu2123.9 (6)
C18—N6—Cu2126.5 (2)O20—N9—O21119.1 (12)
C14—N6—Cu2114.5 (2)O20—N9—O22122.0 (12)
O12—N7—O10121.2 (3)O21—N9—O22118.2 (12)
O12—N7—O11120.3 (3)
O7—Cl1—O9—Cu1171.1 (2)C12—Se—C3—C4109.6 (3)
O8—Cl1—O9—Cu150.8 (3)N2—N1—C4—C31.9 (3)
O6—Cl1—O9—Cu168.7 (3)Cu1—N1—C4—C3168.2 (2)
O2—Cu1—O9—Cl197.4 (2)N2—N1—C4—C5176.5 (2)
O1—Cu1—O9—Cl14.0 (2)Cu1—N1—C4—C510.2 (3)
N1—Cu1—O9—Cl191.2 (2)C2—C3—C4—N12.1 (4)
N3—Cu1—O9—Cl1169.7 (2)Se—C3—C4—N1178.8 (2)
O3—Cu1—O9—Cl178.5 (5)C2—C3—C4—C5175.9 (3)
N4—Cu2—O15—N8170.6 (3)Se—C3—C4—C53.2 (6)
O5—Cu2—O15—N810.9 (3)C9—N3—C5—C62.7 (5)
O4—Cu2—O15—N879.1 (3)Cu1—N3—C5—C6178.7 (2)
N6—Cu2—O15—N8109.1 (3)C9—N3—C5—C4177.7 (3)
O19—Cu2—O15—N845.0 (8)Cu1—N3—C5—C41.7 (3)
O2—Cu1—N1—C444.8 (7)N1—C4—C5—N37.7 (4)
O1—Cu1—N1—C4179.2 (2)C3—C4—C5—N3170.2 (3)
N3—Cu1—N1—C47.3 (2)N1—C4—C5—C6172.7 (3)
O3—Cu1—N1—C495.2 (2)C3—C4—C5—C69.4 (6)
O9—Cu1—N1—C486.7 (2)N3—C5—C6—C71.1 (5)
O2—Cu1—N1—N2116.1 (5)C4—C5—C6—C7179.3 (3)
O1—Cu1—N1—N220.0 (3)C5—C6—C7—C81.0 (5)
N3—Cu1—N1—N2168.1 (3)C6—C7—C8—C91.5 (5)
O3—Cu1—N1—N265.6 (3)C5—N3—C9—C82.2 (5)
O9—Cu1—N1—N2112.4 (3)Cu1—N3—C9—C8177.8 (2)
C4—N1—N2—C21.0 (3)C7—C8—C9—N30.1 (5)
Cu1—N1—N2—C2163.1 (2)N4—N5—C11—C122.0 (4)
O2—Cu1—N3—C916.1 (3)N4—N5—C11—C10178.8 (3)
N1—Cu1—N3—C9172.9 (3)N5—C11—C12—C131.9 (4)
O3—Cu1—N3—C998.2 (3)C10—C11—C12—C13179.0 (3)
O9—Cu1—N3—C971.6 (3)N5—C11—C12—Se175.9 (2)
O2—Cu1—N3—C5168.2 (2)C10—C11—C12—Se3.2 (5)
N1—Cu1—N3—C52.8 (2)C3—Se—C12—C1153.5 (3)
O3—Cu1—N3—C586.1 (2)C3—Se—C12—C13123.7 (3)
O9—Cu1—N3—C5104.1 (2)N5—N4—C13—C120.1 (4)
O5—Cu2—N4—C1370.2 (6)Cu2—N4—C13—C12167.9 (2)
O4—Cu2—N4—C13163.9 (3)N5—N4—C13—C14178.1 (3)
N6—Cu2—N4—C1313.0 (2)Cu2—N4—C13—C1414.0 (4)
O15—Cu2—N4—C13103.2 (2)C11—C12—C13—N41.2 (4)
O19—Cu2—N4—C1368.8 (3)Se—C12—C13—N4176.4 (2)
O5—Cu2—N4—N593.4 (6)C11—C12—C13—C14176.4 (4)
O4—Cu2—N4—N50.2 (3)Se—C12—C13—C146.0 (6)
N6—Cu2—N4—N5176.6 (3)C18—N6—C14—C150.7 (5)
O15—Cu2—N4—N593.1 (3)Cu2—N6—C14—C15178.4 (2)
O19—Cu2—N4—N594.9 (4)C18—N6—C14—C13175.9 (3)
C13—N4—N5—C111.2 (4)Cu2—N6—C14—C135.0 (4)
Cu2—N4—N5—C11166.0 (2)N4—C13—C14—N65.4 (4)
N4—Cu2—N6—C18171.4 (3)C12—C13—C14—N6177.1 (4)
O5—Cu2—N6—C1822.3 (3)N4—C13—C14—C15171.1 (3)
O4—Cu2—N6—C18170.3 (5)C12—C13—C14—C156.5 (6)
O15—Cu2—N6—C1863.8 (3)N6—C14—C15—C161.3 (5)
O19—Cu2—N6—C18103.6 (4)C13—C14—C15—C16174.9 (3)
N4—Cu2—N6—C149.6 (2)C14—C15—C16—C170.8 (5)
O5—Cu2—N6—C14156.7 (2)C15—C16—C17—C180.3 (5)
O4—Cu2—N6—C148.8 (8)C14—N6—C18—C170.4 (5)
O15—Cu2—N6—C14117.2 (2)Cu2—N6—C18—C17179.4 (3)
O19—Cu2—N6—C1475.4 (3)C16—C17—C18—N60.9 (5)
Cu2—O15—N8—O14174.3 (2)O17—Cl2—O19—Cu2102.8 (5)
Cu2—O15—N8—O134.6 (5)O16—Cl2—O19—Cu219.7 (8)
N1—N2—C2—C30.2 (4)O18—Cl2—O19—Cu2135.5 (4)
N1—N2—C2—C1176.7 (3)N4—Cu2—O19—Cl2136.8 (5)
N2—C2—C3—C41.4 (3)O5—Cu2—O19—Cl243.5 (5)
C1—C2—C3—C4175.2 (3)O4—Cu2—O19—Cl2133.1 (5)
N2—C2—C3—Se179.5 (2)N6—Cu2—O19—Cl256.3 (5)
C1—C2—C3—Se3.9 (5)O15—Cu2—O19—Cl29.3 (12)
C12—Se—C3—C269.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H2O1···O100.83 (2)1.93 (2)2.737 (3)164 (4)
O1—H1O1···O18i0.81 (2)2.00 (2)2.801 (6)174 (5)
O1—H1O1···O20i0.81 (2)1.99 (3)2.747 (6)155 (4)
O2—H1O2···O13ii0.83 (2)1.85 (2)2.660 (3)163 (4)
O2—H2O2···O3iii0.83 (2)1.99 (2)2.805 (4)167 (4)
O3—H1O3···O11i0.83 (2)2.03 (2)2.842 (4)166 (4)
O3—H1O3···O12i0.83 (2)2.47 (3)3.130 (4)137 (4)
O4—H1O4···O10iv0.83 (2)1.94 (2)2.762 (3)174 (4)
O4—H2O4···O1Wv0.84 (2)1.88 (2)2.717 (4)174 (5)
O5—H1O5···O130.82 (2)1.87 (3)2.617 (4)150 (4)
O5—H2O5···O160.84 (2)1.97 (3)2.719 (11)148 (4)
O5—H2O5···O160.84 (2)1.97 (3)2.719 (11)148 (4)
O5—H2O5···O220.84 (2)2.07 (3)2.784 (10)142 (4)
O1W—H2W1···O6iv0.83 (2)2.10 (3)2.800 (4)142 (4)
O1W—H1W1···O16vi0.84 (2)2.12 (3)2.833 (9)144 (4)
O1W—H1W1···O22vi0.84 (2)2.23 (3)2.977 (11)149 (4)
N2—H1N2···O110.861.982.829 (4)168
N5—H1N5···O1W0.861.942.762 (4)160
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1, z; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x+1, y, z+1; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(ClO4)1.5(NO3)1.5(C18H16N6Se)(H2O)5]NO3·H2O
Mr934.72
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.7233 (6), 13.1987 (7), 13.3217 (8)
α, β, γ (°)93.510 (4), 108.858 (5), 93.494 (4)
V3)1608.93 (16)
Z2
Radiation typeMo Kα
µ (mm1)2.67
Crystal size (mm)0.30 × 0.25 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.468, 0.728
No. of measured, independent and
observed [I > 2σ(I)] reflections
11167, 7085, 5817
Rint0.073
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.02
No. of reflections7085
No. of parameters498
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.00, 0.95

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H2O1···O100.826 (19)1.93 (2)2.737 (3)164 (4)
O1—H1O1···O18i0.805 (19)2.00 (2)2.801 (6)174 (5)
O1—H1O1···O20i0.805 (19)1.99 (3)2.747 (6)155 (4)
O2—H1O2···O13ii0.834 (19)1.85 (2)2.660 (3)163 (4)
O2—H2O2···O3iii0.831 (19)1.99 (2)2.805 (4)167 (4)
O3—H1O3···O11i0.831 (19)2.03 (2)2.842 (4)166 (4)
O3—H1O3···O12i0.831 (19)2.47 (3)3.130 (4)137 (4)
O4—H1O4···O10iv0.829 (19)1.94 (2)2.762 (3)174 (4)
O4—H2O4···O1Wv0.836 (19)1.88 (2)2.717 (4)174 (5)
O5—H1O5···O130.823 (19)1.87 (3)2.617 (4)150 (4)
O5—H2O5···O160.842 (19)1.97 (3)2.719 (11)148 (4)
O5—H2O5···O160.842 (19)1.97 (3)2.719 (11)148 (4)
O5—H2O5···O220.842 (19)2.07 (3)2.784 (10)142 (4)
O1W—H2W1···O6iv0.832 (19)2.10 (3)2.800 (4)142 (4)
O1W—H1W1···O16vi0.836 (19)2.12 (3)2.833 (9)144 (4)
O1W—H1W1···O22vi0.836 (19)2.23 (3)2.977 (11)149 (4)
N2—H1N2···O110.861.982.829 (4)168
N5—H1N5···O1W0.861.942.762 (4)160
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1, z; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x+1, y, z+1; (vi) x1, y, z.
 

Acknowledgements

The financial support from the State Fund for Fundamental Researches of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged. MS thanks the EU for a Marie Curie fellowship (IIF-253254).

References

First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker–Nonius BV, Delft, The Netherlands.
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals
First citationFritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752.  Web of Science CSD CrossRef CAS
First citationKanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437.  Web of Science CrossRef PubMed
First citationMoroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752.  Web of Science CSD CrossRef CAS PubMed
First citationSeredyuk, M., Fritsky, I. O., Krämer, R., Kozlowski, H., Haukka, M. & Gütlich, P. (2010). Tetrahedron, 66, 8772–8777.  Web of Science CSD CrossRef CAS
First citationSeredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194.  Web of Science CSD CrossRef PubMed
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages m314-m315
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds